用户名: 密码: 验证码:
超宽覆盖空间遥感器底部支撑结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天遥感多光谱成像技术是空间遥感卫星的核心技术之一,由于其应用需求的广泛性,各航天大国都投入了极大的研究力度。我国在多光谱成像遥感技术上也进入到了实用阶段。空间遥感器是航天遥感的主要设备,随着用户对光学遥感器的不同需求,空间遥感器朝向两个方面发展,一方面需求是地面分辨率,另一方面需求是对地成像覆盖宽度。论文要研究的空间遥感器就是为了满足宽覆盖成像要求而研制的。
     本文研究的空间多光谱超宽覆盖遥感器的幅宽超过1000km,为了满足遥感器的结构稳定性及光学成像质量要求,对遥感器的底部支撑组件进行了设计,使其能满足相应的动、静态刚度要求。
     对超宽覆盖遥感器的特点及其对结构设计带来的难点进行了分析,超宽视场遥感器结构形式为大宽长比,外形尺寸宽长比接近1.5:1,因此在设计时采取传统的结构形式和设计手段难以满足光学系统的成像质量要求,同时由于整机重量要求比较严格,要求设计余量非常小,即遥感器结构设计时结构更紧凑、要求精度更高,如许多其它遥感器上可以用线性近似代替非线性计算的设计理念不能再采用了,从而提高了结构设计的难度。
     明确了设计目标,本文的研究工作是针对遥感器的底部支撑机构设计展开的,内容分为基于运动学底部支撑方案分析、支撑机构对遥感器的指向精度影响分析、支撑机构保证遥感器成像质量分析、支撑机构的动态特性分析以及遥感器整机静力学动力学试验五大部分。
     首先对底部支撑机构的支撑方案进行设计,对比了目前空间遥感器常用的刚性支撑、柔性支撑及运动学支撑方式各自的优缺点及应用场合,结合宽幅盖遥感器的结构特点选择了运动学支撑,并针对不同运动学支撑方案进行详细分析,最终确定底部支撑选用2-RRR+2-RRRR并联机构。
     其次确定了底部支撑机构的安装位置,分析了底部支撑机构对超宽覆盖遥感器的光学指向精度的影响程度,通过机构等效、并联机器人工作空间分析等手段,计算出了底部支撑组件对遥感器指向精度影响,即在特定的间隙值下绕X、Y、Z三个方向的最大角量分别是2.6"、2.1"、2.3",满足指向精度要求;
     再次引入了接触理论,通过非线性有限元分析了由转动运动副组成的底部支撑机构的平台适应性,通过计算结果对卫星平台的平面度提出了要求;同时对底部支撑机构的热适应性做了分析,分析结果表明底部支撑机构具有很好的热适应性,在遥感器与外界温差在20℃时仍然可以保持良好的光学成像质量;
     然后对底部支撑机构的动力学特性进行了分析,通过对含间隙的运动支撑模型进行计算分析,得出了底部支撑机构转动副间隙的存在对有限元分析机构的模态及响应的误差非常小,分析时可以不考虑间隙;对底部支撑机构的响应特性采用MPC的计算方式进行了分析计算,同时进行了组件级的力学试验,分析结果和试验结构相吻合,均满足设计要求;
     最后对超宽覆盖多光谱遥感器进行了静力学和动力学试验,静力学试验包括平台平面度适应性试验、温度拉偏试验;动力学试验包括正弦振动试验和随机振动试验。静力学试验和动力试验前后,遥感器的光学成像质量始终保持良好,说明底部支撑机构设计是成功的。
Space remote sensing multispectral imaging technology is one of the coretechnologies of space remote sensing satellite. Various countries have invested greatefforts in the researches because of the wide range of its application requirements.Multispectral imaging remote sensing technology in China has entered into thepractical stage. Space remote sensor is the major equipment for aerospace remotesensing satellite. Space remote sensor gets two development directions with theusers’ different requirements of optical remote sensor. One is the ground resolution;another is the coverage width earth imaging. The space remote sensor researched inthe thesis is developed in order to meet the requirement of the wide coverage ofimaging.
     The coverage width of the space multispectral ultra-wide remote sensors in thisthesis is more than1000km. An optimization design was carried out on the bottomsupport assembly of the remote sensor, in order to meet the requirements of thestructural stability and optical imaging quality, and enable them to meet the dynamicand static stiffness requirements.
     The characteristics of the extra-wide coverage remote sensor and difficulties inthe structural design have been analyzed. The structure form of the extra-widecoverage space remote sensor is large ratio of width to length, which is close to1.5:1 Therefore, it is difficult to meet the requirements of the optical imaging quality, if wetake the traditional structure and design means. Because of the stringent requirementof the whole weight, the design margin is extremely small. It requires the structuremore compact and higher accuracy in design, then the difficulty of the structuraldesign is increased.
     The purpose of this thesis is to design the bottom support structure of theremote sensor. It contains: analysis on kinematic bottom support program, influenceon the pointing accuracy of remote sensor by support structure, analysis on theimaging quality of remote sensor ensured by support structure, dynamiccharacteristics analysis on support structure, the statics and dynamics test forextra-wide field space remote sensor.
     Firstly, the bottom support structure has been designed. The advantages,disadvantages and applications of rigid support, flexible support and kinematicsupport commonly used in space remote sensors at present are compared, and withthe structure characteristics of the extra-wide space remote sensor, the kinematicsupport has been chosen. Different kinematic support schemes are analyzed in detail.Ultimately, the bottom support is determined to choose the2-RRR+2-RRRR parallelmechanism.
     Secondly, the installation positions of the bottom support structure have beendetermined, and the influence on the remote sensor’s optical pointing accuracy hasbeen analyzed by means of equivalent mechanism, error analysis of the parallelmechanism and so on. The pointing accuracy has been calculated. The max anglesaround the X,Y,Z are2.6s、2.1s and2.3s, which meets the pointing accuracyrequirements.
     Thirdly, the contact theory is introduced. Platform adaptability of the bottomsupport structure consists of rotational and motion pairs has been analyzed bynonlinear finite element. And the flatness requirements of satellite platform are putforward. At the same time, the thermal adaptation has been analyzed, and the resultsindicate that the bottom support structure has a good thermal adaptation. So that the remote sensor can keep a good optical imaging quality at the20℃difference intemperature between the remote sensor and environment.
     After that, dynamic characteristics of the bottom support structure have beenanalyzed, by calculating the model of the kinematic support with gaps. The rotatingpair gaps can be neglected in modal analysis because they have little effect on themodal of the structure. Analysis and calculation of the dynamic characteristics of thebottom support structure have been carried on by means of MPC. The results areconsistent with the component-level mechanical test, and the design requirementshave been met.
     Finally, the statics and dynamics test for extra-wide field space remote sensorhave been carried out. The statics test includes platform flatness adaptability test,temperature bias test. A good optical imaging quality of the remote sensorthroughout the statics and dynamics test illustrates a point that the design of bottomsupport structure is very successful.
引文
[1]韩昌元.光学系统成像质量评价及测试[M].中国科学院长春光学精密机械与物理研究所,内部资料,2009.15
    [2]韩昌元.空间光学讲义[M].中国科学院长春光学精密机械与物理研究所,内部资料,2008.3-10
    [3]陈世平.空间相机设计与试验[M].北京:宇航出版社,2003.12
    [4] John W. Figoski. The QuickBird telescope:the reality of large,high-quality,commercial space optics, SPIE.1999,3779,22-30
    [5]Steven E. Forman. EO-1Advanced Land Imager (ALI) Technology TransferForum[R],2001.9
    [6]W.E. Bicknell, C. J. Digenis, S. E. Forman, D. E. Lencioni,“EO-1Advanced LandImager”, SPIE Conference on Earth Observing Systems IV, Denver, Colorado,18July1999.
    [7]SHIMODA H.Japanese earth observation programs [J]. SPIE,1999,3870:37-48
    [8]R.L.Edeson, B.M.Shaughnessy, M.S.Whalley, K.Burke, J.Lucas.The mechanicaland thermal design and analysis of the VISTA infrared camera[J].Proc. SPIE,2004,5497:508-519
    [9]王建永,满益云,傅丹膺,杨居奎.国外高分辨率相机与卫星平台连接方式综述[J].航天返回与遥感,2009,30(4):36-41
    [10]胡君,王栋,孙天宇.现代航天光学成像遥感器的应用与发展[J],中国光学与应用光学,2010,3(6),519-532
    [11]靳颖,韩燕侠,高菲,晓春.2011年国外卫星技术发展[J],太空探索,2012,2,28-31
    [12] WALDRON K J. A study of over constrained linkage geometry by solution ofclosure equations-Part I. Method of Study [J]. Mechanism and Machine Theory,1973,8(2):95-104.
    [13]孙靖民.机械优化设计[M],北京:机械工业出版社,2003:145-150
    [14]柯受权.卫星环境工程和模拟试验(下)[M],北京:中国宇航出版社,2005:23-31
    [15]王延风,卢锷,宋文荣等.空间相机的结构动力学分析[J].光学精密工程,2003,11(4):50-55
    [16]王俊,卢锷,王家骐.遥感相机对空间动力学干扰源的响应分析[J].光学精密工程,1999.7(3):42-47
    [17]Pleiades-1[EB/OL]. http://www.topview.cc/_d274980407.htm,2011
    [18]GeoEye-1[EB/OL].http://www.godeyes.cn/Satellite/geoeye-1/about.html,2012
    [19]Alexander H. Slocum,Precision Machine Design[M]. New Jersey:EnglewoodCliffs,1992,421-523
    [20]Guoping Li, Dehua Yang. Preliminary Structure Design and Analysis of theChinese Future Giant Telescope [J]. SPIE,2004,5495:204-215
    [21]刘磊.空间光学遥感器轻型支撑结构研究[D]:[硕士学位论文].北京:中科院研究生院,2006.
    [22]刘磊,李景林,吕清涛,李丽富.大口径反射光学系统装调装置设计研究[J].光学精密工程,2005,13(04):134-137.
    [23]李威.空间相机主次镜间支撑结构技术研究[D]:[博士学位论文].北京:中科院研究生院,2010.
    [24]郭权锋.同轴三反空间相机结构稳定性研究[D]:[博士学位论文].北京:中科院研究生院,2012.
    [25]刘明辉,梁鲁,白绍竣,张静,郑钢铁.阻尼柔性连接在卫星结构中的综合应用研究[J].宇航学报,2009,30(1):293-298
    [26]吴宗泽.机械设计[M].北京:高等教育出版社,2001.246-275.
    [27]孙宝玉.轻型大视场遥感器动态特性研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文2004.6
    [28]蔡伟军,范斌,张凤芹,李庆林,魏鑫.多光谱相机高稳定性光机结构设计技术[J].航天返回与遥感,2012,33(3):85-92
    [29]张毅.3-RRR并联微动工作台精度保证技术研究[D]:[硕士学位论文].合肥:合肥工业大学,2009
    [30]戴田国.3-RRR并联机构虚拟样机设计与仿真[D]:[硕士学位论文].南京:南京理工大学,2005
    [31]美国航天局成功发射新一代地球观测卫星LandSat-8[EB/OL].http://www.9ifly.cn/article-2620-1.html,2013
    [32]于靖军,刘辛军,丁希仑,戴建生.机器人机构学的数学基础[M].北京:机械工业出版社,2008.102-126.
    [33]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.1-35.
    [34]FANG Y, TSAI L W. Enumeration of a class of over constrained mechanismsusing the theory of reciprocal screws [J]. Mechanism and Machine Theory,2004,39(11):1175-1187
    [35]贾晓辉,张大卫.三自由度精密定位工作台的设计与运动学分析[J].天津大学学报,2010,43(5):457-463.
    [36]胡紫阳.精密装配运动学约束建模及应用[D]:[硕士学位论文].武汉:华中科技大学,2006
    [37]Adams,Jeffrey D.Feature Based Analysis of Selective Limited Motion inAssemblies.Master of Science Thesis,Massachusetts:Massachusetts Institute ofTechnology,1998.
    [38]赵新华,李彬.6-SPS并联机器人机构误差综合[J]中国机械工程第20卷第18期2009年9月2223-2226
    [39]Lindberg R E, Longman R W. Kinematics and Dynamic Properties of an ElbowManipulator Mounted on a Satellite. The Journal of the Astronautical Sciences.1990,38(4):397~421
    [40] ZHAO J SH, FENG ZH J, ZHOU K, et al.. Analysis of the Singularity of SpatialParallel Manipulator with Terminal Constraints[J]. Mechanism and Machine Theory,2005,40(3):275-284.
    [41]莫贤.基于螺旋理论的3_PRS并联机构的运动学建模及仿真[D].[硕士学位论文],扬州:扬州大学,2009
    [42]陈巧红.少自由度并联机构自由度分析中的若干关键问题研究[D].[博士学位论文],杭州:浙江理工大学,2011
    [43]胡波.基于约束力矩的少自由度并联机构和串并联机构理论研究[D].[博士学位论文],燕山:燕山大学,2009
    [44]G. A. Jaime, A. N. Carlos, C. R. Luis, et al. Kinematics and dynamics of2(3-RPS)manipulators by means of screw theory and the principle of virtual work. Mechanismand Machine Theory,2008,43(10):1281-1294
    [45]李炳强,何欣,袁涛.空间光学遥感器运动学支撑方案设计与分析[J].光学仪器,2013,35(1):54-59
    [46]魏鑫,张凤芹,范斌.基于频率的空间相机主体结构优化设计分析[J].航天返回与遥感,2010,31(1):49-54.
    [47] KOSEKI Y, TANIKAWA T, KOYACHI N, et al..Kinematic analysis oftranslational3-DOF micro-parallel mechanism using matrix method [C]. Proceedingsof the2000IEEE/RSJ International Conference on Intelligent Robots and System,Oct.31-Nov.5, Takamatsu,IEEE,2000,3629:786-792.
    [48]岳建如.空间可动结构设计与控制分析[D]:[博士学位论文].杭州:浙江大学,2002.
    [49]Mathieu Barraja,R.Ryan Vallance.Tolerancing Kinematic Couplings,PrecisionEngineering.2005,29:101~112
    [50]Tu Kuo-Yang,Wu Tung-Chung,Lee Tsu-Tian.A Study of StewartPlatformSpecifications for Motion Cueing System,lntemational ConferenceonSystems,Man and Cybernetics,2004:3950-3955
    [51]哈尔滨工业大学理论力学教研室,理论力学.北京:高等教育出版社,2002:261
    [52]Konkar,R.,and Cutkosky,M.Incremental Kinematic Analysis ofMechanisms.ASME Journal of Mechanical Design.1995,117:589~2596.
    [53]Khalil W.,Guegan S..Inverse and direct dynamic modeling of Gough-Stewartrobots.IEEE Transactions on Robotics and Automation,2004,20(4):754-762
    [54]Ui Kyoichi,Urabe Tomoyuki,etc.Microgravity experiments of nano-satellitedocking mechanism for final rendezvous approach and docking phase,MicrogravityScience and Technology,2005,17:56-63
    [55]杨永刚.6-PRRS并联机器人关键技术的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学机电学院,2008
    [56]Yuen Kuan Yong, Tien-Fu Lu, Daniel C. Handley Loop closure theoryin derivinglinear and simple kinematic model for a3dof parallelmicromanipulator [A]. Deviceand Process Technologies for MEMS,Microelectronics, and Photonics III, Perth,Australia,2004:57-66
    [57]HOPKINS J B,CULPEPPER M L. Synthesis of multi-degree of freedom,parallelflexure system concepts via freedom and constraint topology(FACT)-part II: Practice[J]. Precision Engineering,2010,34(2):271-278.
    [58]王大志,何凯,杜如虚.精密机械运动学结构设计方法的若干新进展[J].机械设计与研究,2011,27(3):1-4.
    [59]S. Dubowsky. The Kinematics,Dynamics,and Control of Free-Flying andFree-Floating Space Robotic Systems. IEEE.1993,9(5):531~543
    [60] Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEETransaction on Neural Networks,1994,5(1):96101
    [61]Bi Shusheng, Zong Guanghua, Liu Rong, et al. Accuracy Analysis of theSerial-parallel Micromotion Manipulator. IEEE International Conference on Roboticsand Automation.19972258-2263.
    [62]Gosselin C.M.,Eric St-Pierre. Development and experimentation of a fast threedegree of freedom camera orienting device.The International Journal of RoboticsReseareh.1997(5):619-630
    [63]Shaochi Wang, Hiromitsu Hikita, Hiroshi Kubo, et al. Kinematics and dynamicsof a6degree-of-freedom fully parallel manipulator with elastic joints. Mechanismand Machine Theory,2003,38(5):439-461
    [64]关英俊,辛宏伟,刘巨,赵贵军,任建岳.基于接触非线性分析方法的反射镜组件工程分析[J].光学技术,2006,32(6):859-862.
    [65]郁道银,谈恒英.工程光学[M].第2版.北京:机械工业出版社,2006::206-252.
    [66]王志坚,刘冬梅,付跃刚.光学工程基础[M].北京:兵器工业出版社,2005::35-57.
    [67]才博.机械零部件设计中的非线性接触分析研究[D]:[硕士学位论文].乌鲁木齐:新疆农业大学,2005.
    [68]代晓东.最优化理论求解钻往接触韭线性问题[D]:[硕士学位论文].大庆:大庆石油学院,2005.
    [69]孙林松,王德信,谢能刚.接触问题有限元分析方法综述[J]:水利水电科技进展.2001,21(3):18-20
    [70]冯伟,周新聪,严新平,汪选国.接触问题实体建模及有限元法仿真实现[J]:武汉理工大学学报.2004,26(6)52-55
    [71]郭小明,赵惠麟.工程结构接触问题的研究及进展[J]:东南大学学报.2003,33(5):577-582
    [72]W.R.C. Underhill, M.A. Dokainish, G.AE. Oravasb,A method for contact problemsusing virtual elements[J]Comput. Methods Appl. Mech. Engrg.1997(143)229-247
    [73]Wriggers P, Finite element algorithms for contact problems, Arch,Comp.Metg.Engrg.1995,2(4),1-49
    [74]何蕴增,杨丽红.非线性固体力学及其有限元法[M].哈尔滨:哈尔滨工程大学出版社,2007.40-60.
    [75]吴永礼.计算固体力学[M].北京:科学出版社,2003.159-169.
    [76]接触问题的非线性有限元分析.[EB/OL]http://wenku.baidu.com/view/80ca618ed0d233d4b14e6960.html2012
    [77]任清文.非线性有限元[M],河海大学:2006:56-66
    [78]王胜光.螺纹副联接结构中接触非线性问题的研究与软件开发[D]:[硕士学位论文].北京:中科院研究生院,2004.
    [79]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M],武汉:华中理工大学出版社,1996
    [80]袁亚湘.非线性优化计算方法[M].北京:科学出版社,2008.156-172.
    [81](日)Masao Fukushima.非线性最优化基础[M].北京:科学出版社,2011.1-8.
    [82]A. Landenberger, A. El-zafrany,Boundary element analysis of elastic contactproblems using gap finite elements, Computers and Structures71(1999):651-661
    [83]Wriggers P and Miehe C, Contact constraints within coupled thermomechanicalanalysis:a finite element model.Computer Methods in Applied Mechanics andEngineering,1994,113:301-319
    [84]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.125-159.
    [85](德)瓦伦丁L波波夫.接触力学与摩擦学的原理及应用[M].北京:清华大学出版社,2011.102-112.
    [86]庄茁,由小川,廖剑晖,岑松,沈新普,梁明刚.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.170-188.
    [87]庄茁.ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998.110-128.
    [88] Zhong ZH,Finite Element Procedures for contact-impact Problems[M], NewYork:Oxford University Press,1993
    [89]巩盾.温度对遥感器光学系统成像质量的影响[D].中科院博士学位论文,2010
    [90]HOU X,WU F.Annular subaperture interferometric testing technique for largeaspheric surfaces[J].SPIE,2005,Vol.5638:992-997
    [91]胡家升.光学工程导论[M].第2版.大连:大连理工大学出版社,2005::457-489.
    [92]李贤辉.光机集成有限元分析光学面形后处理研究与实现[D].[硕士学位论文],北京:中科院研究生院,2004
    [93]李颖.空间相机动力学分析[D].[硕士学位论文],西安:西北工业大学,2003
    [94]汪彬.卫星结构的模态与频率传递特性分析[D]:[硕士学位论文].长沙:国防科学技术大学,2011.
    [95]黄元林.小卫星机构运动仿真与结构动态特性分析研究[D]:[硕士学位论文].北京:清华大学,2005
    [96]刘耀.接触系统的非线性振动特性研究[D]:[硕士学位论文].西安:西安理工大学,2005.
    [97]Paulo Vale Urgueira.Dynamic analysis of coupled structures using experimentalData[D].Imperial College of Science,Technology and Medicine,1989.
    [98]龙凯,贾长志,李宝峰.Patran2010与Nastran2010有限元分析从入门到精通[M].第2版.北京:机械工业出版社.2011:339-352
    [99]王华杰.基于虚拟样机技术的含间隙转动铰建模与动力学仿真[J],机械设计与制造,2010,11,207-208
    [100]白争锋.含间隙机构接触碰撞动力学研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [101]彭天国.有初始间隙弹性摩擦接触问题的罚有限元法[J].武警学院学报:2011,27(4)86-88
    [102]邵忍平.机械系统动力学[M],北京:机械工业出版社,2005:54-79
    [103]申智春,梁鲁,郑钢铁,张建钢,满孝颖,车腊梅.某型卫星有效载荷支架振动抑制[J],宇航学报,2006,27(3)503-506
    [104]郑志国,王宇峰.随机振动中的参数介绍及计算方法[J].可靠性与环境适应性理论研究;2009,27(6):45-48
    [105]吴俊,毛建杰.空间相机支撑结构选型动力学分析[J].航天返回与遥感,2012,33(2):34-41.
    [106]胡志强,法庆衍,洪宝林,张越,徐殷.随机振动试验应用技术[M].北京:中国计量出版社,1996.40-45.
    [107]Yin F X Damping behavior characterization of the M2052alloy aimed forpractical application [J]Acta Metallurgica Sinica,2003,39(11).1139-1144
    [108]袁涛,何欣.Mn-Cu系阻尼合金在遥感器结构设计中的应用[J],光机电信息。2010,27(8):32-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700