用户名: 密码: 验证码:
航空发动机机匣包容性机理及数值仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机机匣包容问题非常复杂,涉及大变形、材料粘塑性和失效,以及极短时间内发动机各部件之间大量整体和局部高速高能相互作用,包含多种非线性特性。本文结合打靶试验、模拟机匣/叶片包容试验和真实风扇和涡轮机匣/叶片包容试验,采用理论分析和数值仿真相结合的方法,对以下问题进行了研究:
     (1)进行了平板和机匣受圆柱弹和叶片弹撞击的对比研究。通过打靶试验,使用理论方法对靶板抗击穿性能和弹体侵彻能力进行了研究,对靶板吸能模式进行了分类,并给出了相应的能量计算公式。为计算叶片弹撞击情况下靶板凹陷变形能,提出了基于任意截面形状弹体撞击靶板的凹陷能量计算方法和公式。同时,理论分析了叶片弹体头部破碎和靶板失效模式转变机制,数值仿真研究了偏航角对叶片弹撞击靶板的影响。
     (2)建立了航空发动机机匣/叶片包容性数值仿真方法。以高速旋转试验台上进行的一次模拟机匣/叶片包容试验为研究对象,采用ANSYS/LS-DYNA程序,评估了网格尺寸、接触刚度罚因子和摩擦系数对数值仿真结果的影响。研究结果表明,这些因素影响叶片与机匣之间的相互作用力、能量的转换和转化、机匣和叶片的变形及失效等。基于此,建立了适用于金属材料机匣/叶片包容性问题的数值仿真方法,并使用其它次包容试验对此方法进行了验证。
     (3)深入研究了风扇机匣/叶片包容机理。使用建立的数值仿真方法对真实风扇机匣/叶片包容性进行了数值仿真计算,随后进行了真实风扇机匣/叶片包容试验,通过比较数值仿真与试验结果,验证了数值仿真结果的合理性和数值仿真方法的适用性。采用验证后的数值仿真模型,对风扇机匣/叶片包容机理进行了详细的分析,研究了叶片之间相互作用和转速对包容过程的影响。
     (4)深入研究了涡轮机匣/叶片包容机理。与风扇机匣/叶片包容机理研究方法类似,通过涡轮机匣/叶片包容试验验证了数值仿真结果的正确性和数值仿真方法的合理性,使用数值仿真对涡轮机匣/叶片包容机理进行了详细的研究。结果表明,涡轮机匣/叶片包容机理与风扇机匣/叶片相比存在较大差异,叶片之间相互作用和转速对包容过程的影响也明显不同。
The containment process of failed rotor blades is very complex, which involves high-energy, high-speed interactions of numerous locally and remotely located engine components. It includes every nonlinear aspect of structural dynamics, such as large displacements, plastic behavior of the materials, and contact interaction between structural elements. It is of great importance to systematically and deeply study the containment of failed rotor blades for the improvement in both safety and design of aeroengine. To this end, the main researches are as follows:
     (1) A comparative study involving aeroengine fan casing and plate target impacted by blade-like and cylindrical projectiles has been conducted. Based on the ballist impact tests carried out on the compressed gas gun, theoretical method has been used to analyze the perforation resistance of the target and the penetration capability of the projectile. For this purpose, the energy absorption modes of the target are classified and each mode is established with a corresponding theoretical model, among which, a new dishing energy calculation approach for an arbitrary cross-section projectile impact is proposed. The cause why the blade-like projectile nose shatters and the transformation mechanism of the failure mode on the target are also analyzed using theoretical methods. Moreover, the effects of yaw angle on the perforation process by the blade-like projectile have been investigated using numerical simulations.
     (2) Simulation methodology for aeroengine failed blade containment analysis has been developed. One test selected from nine blade/case containment tests conducted on the high speed spin test facility is simulated with different finite element models using the com-mercially available explicit dynamic analysis code ANSYS/LS-DYNA to assess the effects of mesh size, contact penalty factor and friction coefficient on numerical simulations, wherein a numerical method for metal blade/case containment simulation is formed and developed. Then, the developed simulation method is applied to the other eight tests and good agreements are in general obtained between the numerical and the test results.
     (3) The mechamism of the containment of failed fan blade has been investigated in detail. Firstly, numerical simulations for the containment analysis are conducted using the proposed simulation method, then, containment tests are carried out to validate the numerical results and the application of the proposed simulation method to real aeroengine fan blade containment analysis. Based on the validated FEM model, the mechamism of the containment of failed aeoegine fan blade is studied deeply and in detail.
     (4) The containment of aeroengine turbine blade has been studied systematically. Similar to the research method for the containment of the fan blade, numerical simulations are validated through containment tests. It reveals that the applicability of the proposed simulation method to real aeroengine turbine blade containment analysis. Using numerical method, the containment of aeroengine turbine blade is studied systematically. It is found that the differences of the containment mechanism between the turbine and the fan components are large. Multi-blade effects and the influences of the released speed on the containment capability of the turbine casing depend on the impact angle and the impact location on the casing.
引文
[1]《航空发动机设计手册》总编委会.航空发动机设计手册(第一册通用基础)[M].北京:航空工业出版社,2000.
    [2]《空军装备系列丛书》编审委员会.航空发动机[M].北京:航空工业出版社,2008.
    [3]张宝诚.航空发动机试验和测试技术[M].北京:北京航空航天大学出版社,2005.
    [4]Boeing Commercial Aircraft Group,747-436, G-BNLD. Examination of a Failed Rolls-Royce RB211-524 Turbofan Engine[R]. Technical Analysis Rep. No.20/02, Occurrence File No. BO/200200646, Australian Transport Safety Bureau, Canberra, Australia,2002.
    [5]Federal Aviation Administration. Design considerations for minimizing hazards caused by uncontained turbine engine and auxiliary power unit rotor failure[R]. FAA Advisory Circular No.20-128A,1997.
    [6]Sarkar S, Atluri S N. Effects of multiple blade interaction on the containment of blade fragments during a rotor failure[J]. Finite Elements in Analysis and Design,1996,23: 211-223.
    [7]Luca J J. Development of turbine containments for aircraft[D]. Ann Arbor:University Microfilms International,1990.
    [8]Le D D. Evaluation of lightweight material concept for aircraft turbine engine rotor failure protection[R]. DOT/FAA/AR-96/110,1997.
    [9]宣海军,陆晓,洪伟荣,廖连芳.航空发动机机匣包容性研究综述[J].航空动力学报,2010,25(8):1860-1870.
    [10]United Kingdom Air Accidents Investigation Branch. Report on the accident to Boeing 737-236, G-BGJL at Manchester International Airport on 22 August 1985[R]. Report No. AAIB AAR8/88,1988.
    [11]陈光.漫谈发动机的包容能力[J].航空知识,1994(4):20-21.
    [12]National Transportation Safety Board. Aircraft Accident Report:Uncontained engine failure/fire valujet airlines flight 597, Douglas DC-9-32, N908VJ, Atlanta Georgia JUNE 8, 1995[R]. NTSB Number AAR-96/03,1996.
    [13]National Transportation Safety Board. Aircraft Accident Report:Uncontained engine failure Delta Air Lines Flight 1288, McDonnell Douglas MD-88, N927DA, Pensacola Florida, July 6,1996[R].NTSB/AAR-98-01,1998.
    [14]Aviation Safety Network. Aircraft accident Boeing 767-223ER N330AA Los Angeles international airport [EB/OL]. [2012-1-20]. http://aviation-safety.net/database/record.php?id=20060602-0.
    [15]The Aviation Herald.Accident:American MD83 at New York on Mar 11th 2009, uncontained engine failure [EB/OL]. [2012-1-20]. http://avherald.com/h?article=41650f96.
    [16]The Aviation Herald. Accident:Qantas A388 near Singapore on Nov 4th 2010, uncontained engine failure[EB/OL]. [2012-1-20]. http://avherald.com/h?article=43309c6d&opt=0.
    [17]SAE Committee on Engine Containment. Report on aircraft engine containment[R]. SAE AIR 1537,1977.
    [18]SAE Committee on Engine Containment. Report on aircraft engine containment[R]. SAE AIR 4003,1987.
    [19]FAA/SAE Committee on Uncontained Turbine Engine Rotor Events. Aerospace information report[R]. SAE AIR 4770,1994.
    [20]Moussa N A, Whale M D, Groszmann D E, Zhang X J. The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris[R]. DOT/FAA/AR-96/95,1997.
    [21]Martino A A, Mangano G J. Rotor burst protection program[R]. Naval Air Propulsion Test Center, Final rept.1 Aug 67-31 Jul 68 on Phase 5, AD0693446,1969.
    [22]Delucia R A, Mangano G J. Rotor burst protection program:statistics on aircraft gas turbine engine failures that occurred in commercial aviation during 1971[R]. Naval Air Propulsion Test Center, NASA-CR-131525,1973.
    [23]Mangano G J, Delucia R A. Rotor burst protection program:statistics on aircraft gas turbine engine rotor failures that occurred in U.S. commercial aviation during 1972[R]. Naval Air Propulsion Test Center, NASA-CR-136900,1974.
    [24]Delucia R A, Mangano G J. Rotor burst protection program:statistics on aircraft gas turbine engine rotor failures that occurred in U.S. commercial aviation during 1975[R]. Naval Air Propulsion Test Center, NASA-CR-135304,1977.
    [25]Delucia R A, Salvino J T. Rotor burst protection program:statistics on aircraft gas turbine engine rotor failures that occurred in U.S. commercial aviation during 1978[R]. Naval Air Propulsion Test Center, NASA-CR-136900,1981.
    [26]Delucia R A, Fenton B C, Chapdelaine E R. Statistics on aircraft gas turbine engine rotor failures that occurred in U.S commercial aviation during 1988[R]. Naval Air Propulsion Test Center, ADA255741,1992.
    [27]FAR33. Airworthiness standards:Aircraft engines[S]. United States:Federal Aviation Administration,1984.
    [28]MIL-STD-1783B, Engine structural integrity program[S]. United States:Department of Defense,2002.
    [29]Defense standard 00-971. General specification for aircraft gas turbine engines[S]. United Kingdom:Ministry of Defense,1987.
    [30]CCAR-33航空发动机适航规定[S].北京:中国民用航空总局,2005.
    [31]国防科学技术工业委员会.GJB3366-航空涡轮发动机包容性要求[S].北京,1998.
    [32]Horsley J. The Rolls-Royce way of validating fan integrity[C].29th Joint Propulsion Conference and Exhibit, Monterey, CA,1993:28-30.
    [33]张伯熹,宣海军,洪伟荣等.航空发动机叶片包容部件试验[C].第十三届航空发动机结构强度振动学术会.北京:《材料工程》杂志社,2006:162-166.
    [34]梁春华.RR公司完成TRENT900发动机的叶片包容试验[J].航空发动机,2003,29(3):44.
    [35]Mcmillan A. Material development for fan blade containment ring[J]. Journal of Physics: Conference Series,2008,105:12-22.
    [36]Mecham M. GEnx development emphasizes composites, combuster technology[J]. Avitation Week and Space Technology,2006.4.16.
    [37]Carney K S, Pereira J M, Revilock D M, Matheny P. Jet engine fan blade containment using an alternate geometry[J]. International Journal of Impact Engineering,2009,36:720-728.
    [38]ACE. Fundamentals of protective design office of the chief of engineers[R]. Army Corps of Engineers,1946.
    [39]Young C W. Depth prediction for earth-penetrating projectiles[J]. Journal of the Soil Mechanics and Foundations Division,1969,95(3):803-818.
    [40]Gwaltney R C. Missile generation and protection in light-water-cooled power reaction plants[R]. USA Tennessee, Oak Ridge National Laboratory, Report ORNL-USTC-22, 1968.
    [41]NDRC. Effects of impact and explosion[R]. Washington DC, National Deffence Research Committee, Vol, Summarry Technical Report of Division 2,1946.
    [42]Kennedy R P. A review of Procedures for the analysis and design of concrete structures to resist missile impact effects[J]. Nuclear Engineering and Design,1976,37:183-203.
    [43]Gunderson C O. Study to improve airframe turbine engine rotor blade containment[R]. DOT/FAA/RD-77/44,1977.
    [44]Coppa A P, Stotler C L. Containment of composite fan blades[R]. NASA-CR-159474, 1979.
    [45]Backman M E, Goldsmith W. The mechanics of penetration of projectiles into targets[J]. International Journal of Impact Engineering,1978,16:1-99.
    [46]Corbett G G, Reid S R, Johnson W. Impact loading of plates and shells by free-flying projectiles:a review[J]. International Journal of Impact Engineering,1996,18(2):141-230.
    [47]Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering,1999,22:95-395.
    [48]Radin J, Goldsmith W. Normal projectile penetration and perforation of layered targets[J], International Journal of Impact Engineering,1988,7(2):229-259.
    [49]Gogolewski R P, Cunningham B J. Terminal ballistic experiments for the development of turbine engine blade containment technology[R]. Lawrence Livermore National Laboratory, Report No. UCRL-ID-120930,1995.
    [50]Almohandes A A, Abdel-Kade M S, Eleiche A M, Experimental investigation of the ballistic resistance of steel-fiberglass polyested laminated plates[J]. Composites Parts B: Engineering,1996,27(5):447-458.
    [51]Ben-Dor G, Dubinsky A, Elperin T. Effect of air gaps on ballistic resistance of targets for conical impactors[J], Theoretical and Applied Fracture Mechanics,1998,30(3):243-249.
    [52]Woodward R L, Cimpoeru S J. A study of the perforation of aluminium laminate targers[J]. International Journal of Impact Engineering,1998,21(3):117-131.
    [53]Zukas J A, Scheffler D R. Impact effects in multi-layered plates[J]. International Journal of Solids and Structures,2001,38(19):3321-3328.
    [54]Borvik T, Langseth M, Hopperstad O S, Malo K A. Ballistic penetration of steel plates[J]. International Journal of Impact Engineering,1999,22:855-886.
    [55]Borvik T, Langseth M, Hopperstad O S, Malo K A. Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses Part I: Experimental study[J]. International Journal of Impact Engineering,2002,27:19-35.
    [56]Borvik T, Hopperstad O S, Berstad T, Langseth M. Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses Part II:numerical simulations[J]. International Journal of Impact Engineering,2002,27:37-64.
    [57]Borvik T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration[J]. European.Journal of Mechanics A/Solids,2001:685-712.
    [58]Borvik T, Hopperstad O S, Berstad T. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel.Part Ⅱ.Numerical study[J]. European Journalof Mechanics A/Solids,2003,22:15-32.
    [59]Knight N F Jr, Jaunky N, Lawson R E, et al. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA[J], Finite Elements in Analysis and Design,2000,36:99-133.
    [60]Ambur D R, Jaunky N, Lawson R E, et al. Numerical simulations for high-energy impact of thin plates[J]. International Journal of Impact Engineering,2001,25:683-702.
    [61]Shockey D A, Erlich D C, Simons J W. Full-scale tests of lightweight fragment barriers on commercial aircraft[R]. DOT/FAA/AR-99/71,1999.
    [62]Ambur D R. Experimental investigations of material models for Ti-6AI-4V titanium and 2024-T3 aluminum[R]. DOT/FAA/AR-00/25,2000.
    [63]Gogolowski R P, Morgan B R. Ballistic experiments with titanium and aluminum targets[R]. DOT/FAA/AR-01/21,2001.
    [64]Pereira J M, Lerch B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications[J]. International Journal of Impact Engineering,2001,25:715-733.
    [65]王琳,王富耻,王鲁,才鸿年.空心弹体侵彻金属靶板的数值模拟和实验研究[J].兵器材料科学与工程,2001,24(6):13-17.
    [66]段小明,周玉,贾德昌.动能弹穿甲过程有限元分析[J].兵器材料科学与工程,2002,25(6):20-22,56.
    [67]Gogolowski R P, Morgan B R. Application of low plasticity burnishing to improve damage tolerance of a TI-6A-4V first stage fan blade[R]. DOT/FAA/AR-04/10,2003.
    [68]王海福,刘志雄,冯顺山.钢球侵彻钛合金靶板弹道极限速度[J].北京理工大学学报,2003,23(2):162-164.
    [69]吴克刚.A1203陶瓷板和装甲钢板抗长杆动能弹侵彻效应的实验与数值模拟研究[D].国防科技大学研究生院,2004.
    [70]蒋志刚,曾首义,周建平.刚性尖头弹侵彻贯穿金属薄靶板耗能分析[J].兵工学报,2004,25(6):777-781.
    [71]Lundin S J, Mueller R B. Advanced aircraft materials engine debris penetration testing[R]. DOT/FAA/AR-03/37,2005.
    [72]Elek P, Jaramaz S, Mickovic D. Modeling of perforation of plates and multi-layered metallic targets[J]. International Journal of Solids and Structures,2005,42(3-4):1209-1224.
    [73]Kelley S, Johnson G. Statistical testing of aircraft materials for transport airplane rotor burst fragment shielding[R]. DOT/FAA/AR-06/9,2006.
    [74]纪霞,王利.弹丸侵彻多层靶板数值分析[J].探测与控制学报,2006,28(2):42-45.
    [75]Ben-Dor G, Dubinsky A, Elperin T. Effect of air gaps on the ballistic resistance of ductile shields perforated by non-conical impactors[J]. Journal of Mechanics of Materials and Structures,2006,1(2):279-299.
    [76]管公顺,庞宝君,哈跃,张伟.铝双层板结构高速撞击防护性能实验[J].哈尔滨工业大学学报,2007,29(3):402-405.
    [77]张小坡,石全,王广彦.基于LS-DYNA的圆柱形破片侵彻靶板有限元分析[J].科学技术与工程,2007,7(23):6004-6009.
    [78]Dey S, Borvik T, Teng X, Wierzbicki T, Hopperstad O S. On the ballistic resistance of double-layered steel plates:an experimental and numerical investigation[J], International Journal of Solids and Structures,2007,44(20):6701-6723.
    [79]Teng X, Wierzbicki T. Gouging and fracture of enigine containment structure under fragment impact[J]. Journal of Aerospace Engineering,2008,21(3):174-186.
    [80]Carney K S, Pereira J M, Revilock D M, Matheny P. Jet engine fan blade containment using an alternate geometries[J]. International Journal of Impact Engineering,2009,36:720-728.
    [81]Goldberg R K, Binienda W K. Ballistic impact and crashworthiness response of aerospace structures[J]. Journal of Aerospace Engineering,2009,22(3):199-200.
    [82]Buyuk M, Kan S, Loikkanen M J. Explicit finite-element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding[J]. Journal of Aerospace Engineering,2009,22(3):287-295.
    [83]何庆,宣海军,廖连芳,洪伟荣.平板条叶片撞击靶板的数值仿真研究[J].航空发动机,2009,35(3):26-29.
    [84]Li Juan-juan, Xuan Hai-jun, Liao Lian-fang, Hong Wei-rong, Wu Rong-ren. Penetration of disk fragments following impact on thin plate[J]. Journal of Zhejiang University Science A, 2009,10(5):677-684.
    [85]李娟娟,宣海军,洪伟荣,吴荣仁.靶板抗轮盘碎片撞击能力的数值模拟[J].航空动力学报,2009,24(10):2308-2313.
    [86]李娟娟,宣海军,洪伟荣.轮盘碎片撞击靶板的数值仿真计算[C].第十四届发动机结构强度振动学术会议论文集,贵州贵阳,2008,10.
    [87]何庆,宣海军,廖连芳,洪伟荣,吴荣仁.薄靶板受叶片形弹体撞击的数值仿真研究[J].工程力学,2010,27(4):234-239.
    [88]杨双林.双层金属机匣模拟包容性试验及数值分析[D].南京航空航天大学,2010.
    [89]丁志伟,宣海军,陆晓.平板条叶片侵彻靶板的动响应研究[J].航空发动机,2011,37(3):54-57.
    [90]丁志伟.平板条叶片撞击金属靶板数值方法研究[D].浙江大学,2011.
    [91]He Qing, Xuan Hai-jun, Chen Guang-tao, Liu Lu-lu, Hong Wei-rong, Wu Rong-ren. Experimental and analytical studies of plate and stiffened targets impacted by cylindrical and blade-like projectiles. International Journal of Impact Engineering,2012, In press.
    [92]Martino A A, Mangano G J. Rotor burst protection program initial test results[R]. NASA-CR-106801,1968.
    [93]Mccallum R B. Simplified analysis of a trifragment rotor disk interaction with a containment ring[J]. Journal of Aircraft,1970,7(3):283-285.
    [94]Hagg A C, Sankey G O. The containment of disk burst fragments by cylindrical shells[J]. Journal of Engineering for Power, Transaction of the ASME,1974,96:114-123.
    [95]Gerstle J H. Analysis of rotor fragment impact on ballistic fabric engine burst containment shields[J]. Journal of Aircraft,1975,12(4):388-393.
    [96]John J D L. Development of turbine containment for aircraft[D]. University of Lowell, 1990.
    [97]龚梦贤,王旅生,曹凤兰.叶片包容性试验研究初探[J].燃气涡轮试验与研究,1991,4(3):41-46.
    [98]龚梦贤,王旅生,曹凤兰.叶片包容性试验研究[J].航空动力学报,1992,7(2):144-146.
    [99]Frankenberger C E III. FAA T53-L-13L turbine fragment containment test[R]. DOT/FAA/AR-98/22,1998.
    [100]Shockey D A, Erlich D C, Simons J W. Full-scale tests of lightweight fragment barriers on commercial aircraft[R]. DOT/FAA/AR-99/71,1999.
    [101]吴荣仁.汽轮机、航空发动机断裂叶片撞击机壳的模拟试验研究[J].动力工程,2000,20(4):775-777.
    [102]郑劲松.高速旋转平板叶片撞击同心圆筒壳体试验的研究[J].爆炸与冲击,2002,22(3):267-272.
    [103]浙江大学化工机械研究所.机匣包容性试验报告[R].浙江大学,2005.
    [104]于亚彬,陈伟.叶片包容机理分析综述[C].探索创新交流-中国航空学会青年科技论坛文集,2004.
    [105]宣海军,洪伟荣,吴荣仁.航空发动机涡轮叶片包容试验及数值模拟[J].航空动力 学报,2005,20(5):762-767.
    [106]Xuan Hai-jun, Wu Rong-ren. Aeroengine turbine blade containment tests using high-speed rotor spin testing facility[J]. Aerospace Science and Technology,2006,10(6): 501-508.
    [107]张晓峰,宣海军,吴荣仁.航空发动机叶片包容模拟试验与数值仿真研究[J].航空发动机,2005,31(4):39-42.
    [108]张伯熹,宣海军,吴荣仁.航空发动机涡轮叶片包容模拟试验研究[J].机械工程师,2006,(10):114-116.
    [109]张伯熹.航空发动机涡轮叶片的包容试验和数值仿真[D].浙江大学,2006.
    [110]于亚彬,陈伟.风机叶片包容性分析[J].应用力学学报,2005,22(4):647-649.
    [111]于亚彬,陈伟.模型机匣/叶片的包容性数值分析[J].航空动力学报,2005,20(3):429-433.
    [112]于亚彬,陈伟.叶片包容性计算的软件实现[J].航空发动机,2005,31(1):44-46.
    [113]范志强,高德平,姜涛,覃志贤,王维.模型机匣的包容性试验和数值模拟[J].南京航空航天大学学报,2006,38(5):551-556.
    [114]范志强.航空发动机机匣包容性理论和试验研究[D].南京航空航天大学,2006.
    [115]范志强,高德平,覃志贤,王维,纪永汉.航空发动机真实机匣的包容性试验[J].航空动力学报,2007,22(1):18-22.
    [116]李娟娟.圆环/轮盘包容问题的数值评定方法研究[D].浙江大学,2010.
    [117]李娟娟,宣海军,廖连芳.轮盘碎片撞击圆筒体的试验研究[C].第九届全国冲击动力学学术会议论文集,河南焦作,2009.8.
    [118]陆晓.碳纤维增强复合材料机匣包容性的数值仿真研究[D].浙江大学,2011.
    [119]浙江大学化工机械研究所.真实机匣包容性数值仿真分析及试验验证2-试验报告[R].内部报告,2010.11.
    [120]浙江大学化工机械研究所.某型发动机低压涡轮第三级机匣包容试验-试验报告[R].内部报告,2010.12.
    [121]何庆,宣海军,刘璐璐.航空发动机风扇叶片撞击机匣的响应机理研究[J].兵工学报,2011,32:45-50.
    [122]何庆,宣海军,刘璐璐.航空发动机风扇叶片撞击机匣的响应机理研究[c].第十届全国冲击动力学暨国际爆轰与冲击动力学会议,山西太原,2011.07.
    [123]何庆,宣海军,刘璐璐,陈光涛.叶片相互作用对机匣/叶片包容过程的影响.第20届全国结构工程学术会议[C],浙江宁波,2011.11.
    [124]何庆,宣海军,刘璐璐,陈光涛.叶片相互作用对机匣/叶片包容过程的影响.工程力学,即将刊出.
    [125]梁春华.RR公司完成TRENT900发动机的叶片包容试验[J].航空发动机,2003,29(3):44.
    [126]Wu R W H, Witmer E A. Approximate analysis of containment/deflection ring responses to engine rotor fragment impact[J]. Journal of Aircraft,1973,10(1):28-37.
    [127]Gerstle J H. Analysis of rotor fragment impact on ballistic fabric engine burst containment shield[J]. Journal of Aircraft,1975,12(4):388-393.
    [128]Chamis C C, Johns R H. Computational engine structural analysis[C]. International Gas Turbine Conference and Exhibit. Dusseldorf, West Germany,1986:8-12.
    [129]Dewhurst T B. Impact load on containment rings during a multiple blade shed in aircraft gas turbine engines[C]. International Gas Turbine and Aeroengine Congress and Exposition. New York:American Society of Mechanical Engineers (Paper),1991.
    [130]Dewhurst T B, Tang P. Use of imposed displacements to determine impact forces in a multiple blade shed incident[C]. International Gas Turbine and Aeroengine Congress and Exposition. New York:American Society of Mechanical Engineers (Paper),1993.
    [131]Mathis J A, Parduhn S C, Alvarez P. Analysis of turbine engine rotor containment and shielding structures[R]. AIAA 93-1718,1993.
    [132]Sarkar S, Atluri S N. Effects of multiple blade interaction on the containment of blade fragments during a rotor failure[J]. Finite Elements in Analysis and Design,1996,23(2-4): 211-223.
    [133]Astrid K, Jorg F. Containment and penetration simulation in case of blade loss in a low pressure turbine[C]. DYNAmore LS-DYNA Forum,2002.
    [134]Carney K S, Lawrence C, Carney D V. Aircraft engine blade-out dynamics[C].7th International LS-DYNA Users Conference, Dearborn, USA,2002.
    [135]Cosme N, Chevrolet D, Bonini J, Peseux B, Cartraud P. Prediction of engine loads and damages due to fan blade off event[C].43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, USA,2002.
    [136]Hermosilla U, Alcaraz J L, Aja A M. Blade impact simulation against turbine casing[C]. ABAQUS Users'Conference,2004:331-345.
    [137]Shmotin Y N, Gabov D V. Numerical analysis of aircraft engine fan blade-out[C].42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, USA,2006.
    [138]Husband J B. Developing an Efficient FEM Structural Simulation of a Fan Blade Off test in a Turbofan jet engine[D]. University of Saskatchewan,2007.
    [139]Stamper E, Hale S. The use of LS-DYNA models to predict containment of disk burst fragments[C].10th International LS-DYNA User Conference,2008:1-1-1-9.
    [140]Heidari M, Carlson D L, Sinha S, Sadegbi R, Heydari C, Bayoumi H, Son J. An efficient multi-disciplinary simulation of engine fan-blade out event using MD Nastran[C]. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Schaumburg, Germany,2008.
    [141]Sinha S K, Dorbala S. Dynamic loads in the fan containment structure of a turbofan engine[J]. Journal of aerospace engineering,2009,22 (3):260-269.
    [142]Jain R. Prediction of transient loads and perforation of engine casing during blade-off event of fan rotor assembly[C]. Proceedings of the IMPLAST 2010 Conference. Providence, USA,2010.
    [143]李海波.航空发动机机匣的包容性数值分析与实验研究[D].南京:南京理工大学,2010.
    [144]何庆,宣海军,刘璐璐.某型发动机一级风扇机匣包容性数值仿真[J].航空动力学报,2012,27(2):295-300.
    [145]He Qing, Xuan Hai-jun, Liu Lu-lu, Hong Wei-rong, Wu Rong-ren. Perforation of aero-engine fan casing by a single rotating blade. Aerospace Science and Technology,2012, in press.
    [146]He Qing, Xuan Hai-jun, Liao Lian-fang, Hong Wei-rong, Wu Rong-ren. Simulation methodology development for rotating blade containment analysis. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering),2012, in press.
    [147]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J].爆炸与冲击,2001,21(2):81-88.
    [148]王礼立.计算爆炸力学中的本构建模问题的讨论.计算爆炸力学理论、方法及工程应用[M].宁建国,黄风雷,秦承森主编.北京:北京理工大学出版社,2002.
    [149]Zukas J A, et al. High velocity impact dynamics[M]. New York:John Wiley & Sons Inc,1990.
    [150]Meyers M A. Dynamic behavior of materials[M]. New York:John Wiley & Sons Inc, 1994.
    [151]黄西成,陈裕泽,朱建士.金属高应变率本构模型描述[J].工程设计与力学环境,2004(3)..
    [152]黄西成,陈裕泽.金属材料动态本构模型[C].低压本构及动态断裂建模问题研讨会文集,2001.
    [153]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design,2011,32: 1733-1759.
    [154]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. Proceedings of the 7th International Symposium on Ballistics. Den Haag, The Netherlands:1983:541-543.
    [155]Klopp R W, Clifton R J, Shawki T G. Pressure-shear impact and the dynamic viscoplastic response of metals[J]. Mechanics of Materials,1985,4:375-385.
    [156]Campbell J D, Ferguson W G. The temperature and strain-rate dependence of the shear strength of mild steel[J]. Philosophical Magazine,1970,21(169):63-82.
    [157]Khan A S, Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. International Journal of Plasticity, 1992,8:397-424.
    [158]Khan A S, Liang R. Behaviors of three BCC metal over a wide range of strain rates and temperatures:experimental and modeling[J]. International Journal of Plasticity,1999,15: 1089-1109.
    [159]Khan A S, Liang R. Behaviors of three BCC metals during non-proportional multi-axial loadings:experiments and modeling[J]. International Journal of Plasticity,2000,16: 1443-1458.
    [160]Farrokh B, Khan A S. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al:synthesis, experiment, and constitutive modeling[J]. International Journal of Plasticity,2009,25:715-732.
    [161]Fields D S, Bachofen W A. Determination of strain hardening characteristics by torsion testing[C]. Proceedings of the 60th Annual Meeting of the American Society for Testing and Materials,1957,57:1259-1272.
    [162]Molinari A, Ravichandran G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J]. Mechanics of Materials,2005,37:737-752.
    [163]Voce E. The relationship between stress and strain for homogeneous deformation[J]. Journal of Institute of Metals,1948,74:537-562.
    [164]Kocks U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology,1976,98:76-85.
    [165]Zener C, Hollomon H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15:22-32.
    [166]Sellars C M. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14: 1136-1138.
    [167]Jonas J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. International Materials Reviews,1969,14:1-24.
    [168]Shi H, McLaren A J, Sellars C M, Shahani R, Bolingbroke R. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Materials Science and Technology, 1997,13:210-216.
    [169]Hoge K G, Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum[J]. Journal of Materials Science,1977,12(8):1666-1672.
    [170]Steinberg D J, Cochran S G; Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics,1980,51(3):1498-1504.
    [171]Steinberg D J, Lund C M. A constitutive model for strain rates from 10-4 to 106 s-l[J]. Journal of Applied Physics,1989,65(4):1528-1533.
    [172]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. Journal of Applied Physics,1987,61(5):1816-1825.
    [173]Zerilli F J, Armstrong R W. Constitutive equation for HCP metals and high strength alloys steels[C]. Proceedings of the Symposium, ASME International Mechanical Engineering Congress. San Francisco, CA,1995:121-126.
    [174]Maudlin, P J, Wright S I, Gray G T Ⅲ, House J W. Application of faceted yield surfaces for simulating compression tests of textured materials[C]. International Conference on Metallurgical and Materials Applications of Shock-wave and High-strain-rate Phenomena. El Paso, TX, USA,1995.
    [175]Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for extreme loading conditions[J]. Journal of Applied Physics,2003,93:211-220.
    [176]Rusinek A, Klepaczko J R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress[J]. International Journal of Plasticity,2001,17:87-115.
    [177]Voyiadjis G Z, Almasri A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechanics of Materials,2008,40:549-563.
    [178]Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strainhardening materials[J]. Journal of Applied Mechanics,1975,42:385-389.
    [179]Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automaton[J]. Scripta Mater,1998,38:405-413.
    [180]Rule W K, Jones S E. A revised form for the Johnson-cook strength model[J]. International Journal of Impact Engineering,1998,21:609-624.
    [181]Liang R, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity,1999,15:963-980.
    [182]彭建祥.钽的本构关系研究[D].中国工程物理研究院,2001.
    [183]Zhang H J, Wen W D, Cui H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures:experiments and modeling steel[J]. Materials Science and Engineering A,2009,504:99-103.
    [184]Vural M, Caro J. Experimental analysis and constitutive modeling for the newly developed 2139-T8 alloy[J]. Materials Science and Engineering A,2009,520:56-65.
    [185]Shin H, Kim J B. A phenomenological constitutive equation to describe various flow stress behaviors of materials in wide strain rate and temperature regimes[J]. Journal of Engineering Materials and Technology,2010,132(2):021009.1-021009.8.
    [186]Lin Y C, Chen X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel [J]. Computation Materials Science,2010,49: 628-633.
    [187]Nadai A, Manjoine M J. High-speed tension tests at elevated temperatures-parts Ⅱ and Ⅲ[J]. Journal of Applied Mechanics,1941,8:A77-91.
    [188]Hou Q Y, Wang J T. A modified Johnson-Cook constitutive model for Mg-Gd-Y alloy extended to a wide range of temperatures[J]. Computation Materials Science,2010,50: 147-152.
    [189]Bridgman P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure[M]. New York-London:McGraw-Hill,1952.
    [190]汤安民,王静.几种金属材料断裂形式变化规律的试验分析[J].试验力学,2003,18(4):440-444.
    [191]Wierzbicki T, Bao Y, Lee Y W, Bai Y. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Science,2005,47:719-743.
    [192]Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,1969,17:210-217.
    [193]Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics and Physics of Solids,1976,24(2-3):147-160.
    [194]Bai Y, Dodd B. Adiabatic shear localization:occurrence, theories and applications[M]. Oxford:Pergamon Press,1992.
    [195]Dodd B, Bai Y. Ductile fracture and ductility:with applications to metalworking[M]. London:Academic Press Incorporation,1987.
    [196]Hosford W F, Caddell R M. Metal forming:mechanics and metallurgy[M]. New Jersey: Prentice Hall Incorporation,1993.
    [197]Dey S, Borvik T, Hopperstad O S, Leinum R, Langseth M. The effect of target strength on the perforation of steel plates using three different projectile nose shapes[J]. International Journal of Impact Engineering,2004,30(8-9):1005-1038.
    [198]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics,1985, 21 (1):31-48.
    [199]Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences,2004,46:81-98.
    [200]Teng X, Wierzbicki T. Transition of failure modes in round-nosed mass-to-beam impact[J]. European Journal of Mechanics A/Solids,2005,24:857-876.
    [201]Bai Y, Bao Y, Wierzbicki T. Fracture of prismatic aluminum tubes under reverse straining[J]. International Journal of Impact Engineering,2006,32:671-701.
    [202]Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading[J]. International Journal of Solids and Structures,2007,44:5163-5181.
    [203]Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and lode dependence[J]. International Journal of Plasticity,2008,24:1071-1096.
    [204]Xue L Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory[J]. Engineering Fracture Mechanics,2008,75:3276-3293.
    [205]Luo M, Wierzbicki T. Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model[J]. International Journal of Solids and Structures,2010,47:3084-3102.
    [206]Dey S, Brovik T, Hopperstada O S, Langseth M. On the influence of constitutive relation in projectile impact of steel plates[J]. International Journal of Impact Engineering, 2007,34:464-486.
    [207]Dey S, B(?)rvik T, Hopperstad O S, Langseth M. On the influence of fracture criterion in projectile impact of steel plates[J]. Computational Materials Science,2006,38:176-191.
    [208]Wierzbicki T, Bao Y, Lee Y, Bai Y. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences,2005,47:719-743.
    [209]Teng X, Wierzbicki T. Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics,2006,73:1653-1678.
    [210]陈刚.半穿甲战斗部弹体穿甲效应数值模拟与试验研究[D].中国工程物理研究院,2006.
    [211]Roberts G D, Revilock D M, Binienda W K, Nie W Z, Mackenzie S B, Todd K B. Impact testing and analysis of composites for aircraft engine fan cases[J]. Journal of Aerospace Engineering,2002,15:104-110.
    [212]Chen X W, Li Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile[J]. International Journal of Impact Engineering,2003,28:513-536.
    [213]Chen X W, Li Q M, Fan S C. Initiation of adiabatic shear failure in a clamped circular plate struck by a blunt projectile[J]. International Journal of Impact Engineering,2005,31: 877-893.
    [214]Gupta N K, Iqbal M A, Sekhon G S. Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt-and hemispherical-nosed projectiles[J]. International Journal of Impact Engineering,2006,32:1921-1944.
    [215]Solberg J K, Leinum J R, Embury J D, Dey S, Borvik T, Hopperstad O S. Localised shear banding in weldox steel plates impacted by projectiles[J]. Mechanics of Materials, 2007,39:865-880.
    [216]Zhou D W, Stronge W J. Ballistic limit for oblique impact of thin sandwich panels and spaced plates[J]. International Journal of Impact Engineering,2008,35:1339-1354.
    [217]Arias A, Rodriguez-Martinez J A, Rusinek A. Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles[J]. Engineering Fracture Mechanics,2008,75:1635-1656.
    [218]Iqbal M A, Chakrabarti A, Beniwal S, Gupta N K.3D numerical simulations of sharp nosed projectile impact on ductile targets[J]. International Journal of Impact Engineering, 2010,37:185-195.
    [219]Jones N, Paik J K. Impact perforation of aluminium alloy plates. International Journal of Impact Engineering,2011, In Press.
    [220]Lundin S J. Engine debris fuselage penetration testing, phase I[R]. DOT/FAA/AR-01/27, U S:Department of Transportation,2001.
    [221]Lundin S J. Engine debris fuselage penetration testing, phase II[R]. DOT/FAA/AR-01/27 II, U S:Department of Transportation,2002.
    [222]Song W, Ning J, Wang J. Normal impact of truncated oval-nosed projectiles on stiffened plates[J]. International Journal of Impact Engineering,2008,35:1022-1034.
    [223]Yong C, Wang Y, Tang P, Hua H X. Impact characteristics of stiffened plates penetrated by sub-ordnance velocity projectiles[J]. Journal of Constructional Steel Research, 2008,64:634-643.
    [224]Borvik T, Dey S, Clausen A H. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates[J]. International Journal of Impact Engineering, 2009,36:-948-964.
    [225]Borvik T, Olovsson L, Dey S, Langseth M. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates[J]. International Journal of Impact Engineering,2011,38:577-589.
    [226]Zukas J A. Impact dynamics[M]. New York:JohnWiley & Sons,1982:157.
    [227]Donald R L. Experimental investigations of material models for Ti-6A1-4V titanium and 2024-T3 aluminum[R]. DOT/FAA/AR-00/25, U S:Department of Transportation, 2000.
    [228]Gregory K. Failure modeling of titanium 6A1-4V and aluminum 2024-T3 with the Johnson-Cook material model[R]. DOT/FAA/AR-03/57, U S:Department of Transportation,2003.
    [229]Corran R S J, Shadbolt P J, Ruiz C. Impact loading of plates-an experimental investigation[J]. International Journal of Impact Engineering,1983,1(1):3-22.
    [230]陈刚,陈忠富,陶俊林等.TC4动态力学性能研究[J].实验力学,2005,20(4):605-609.
    [231]陈刚,陈忠富,徐伟芳等.45钢的J-C损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135.
    [232]范志强,高德平,覃志贤等.机匣包容性破坏势能法的试验验证[J].燃气涡轮试验与研究,2006,19(2):26-29.
    [233]Nichol K L. Assessment of current turbine engine high cycle fatigue test methods[J]. Journal of Engineering for Gas Turbines and Power,2003,125(3):760-765.
    [234]Stallone M J, Gallardo V, Storace A F, Bach L J, Black G, Gaffney E F. Blade loss transient dynamic analysis of turbomachinery[J]. AIAA Journal,1983,21:1134-1138.
    [235]Charles L, Kelly C, Vicente G. Simulation of Aircraft Engine Blade-Out Structural Dynamics[R]. NASA/TM—2001-210957/REV1,2001.
    [236]Zukas J A, Scheffer D R. Practical aspects of numerical simulations of dynamic events: effects of meshing[J]. International Journal of Impact Engineering,2000,24:925-945.
    [237]Scheffer D R, Zukas J A. Practical aspects of numerical simulation of dynamic events: material interfaces[J]. International Journal of Impact Engineering,2000,24:821-842.
    [238]Zukas J A. Introduction to Hydrocodes[M]. Elsevier,2004.
    [239]Morris A J, Vignjevic R. Consistent finite element structural analysis and error control[J]. Computer Methods in Applied Mechanics and Engineering,1997,140:87-108.
    [240]范志强,高德平,覃志贤,姜涛.20号钢的冲击拉伸力学性能试验研究[J].燃气涡轮试验与研究,2006,19(4):35-37.
    [241]陈刚,陈忠富,陶俊林等.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456.
    [242]陈刚,陈忠富,徐伟芳等.45钢的J-C损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135.
    [243]Livermore Software Technology Corporation. LS-DYNA keyword user's manual (Version 971)[M]. California:Livermore Software Technology Corporation,2007.
    [244]Ravid M, Bodner S R. Dynamic perforation of viscoplastic plates by rigid projectiles[J]. International Journal of Engineering Science,1983,21(6):577-591.
    [245]《中国航空材料手册》编辑委员会.中国航空材料手册-第2卷变形高温合金铸造高温合金(第二版)[M].北京:中国标准出版社,2001.
    [246]Pereira J M, Lerch B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering,2001,25:715-733.
    [247]Kobayashi T, Simons J W, Brown C S, Shockey D A. Plastic flow behavior of Inconel 718 under dynamic shear loads[J]. International Journal of Impact Engineering,2008,35: 389-396.
    [248]Jones N. Structural impact[M]. Cambridge:Cambridge University Press,2003.
    [249]Livermore Software Technology Corporation. LS-DYNA theory manual[M]. California: Livermore Software Technology Corporation,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700