用户名: 密码: 验证码:
基于RBF-ARX模型的复杂系统建模、优化与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RBF-ARX模型是一种便于局部线性化的全局非线性时间序列模型,全称为具有径向基函数神经网络型系数的带外生变量的自回归模型。它有时变线性ARX模型的基本结构,用RBF神经网络逼近非线性ARX模型的依存于系统状态的函数型系数,就得到了RBF-ARX模型。因此,RBF-ARX模型兼具状态依赖的ARX模型对非线性动态特性的描述能力,以及RBF神经网络的函数逼近能力和对过程局部变化的学习能力。
     RBF-ARX模型的参数可由一种结构化的非线性参数优化方法离线辨识得到。此方法将线性参数和非线性参数分开辨识,不但避免了模型参数在线辨识失败带来的潜在风险,而且提高了建模精度和参数优化过程的收敛速度。此外,模型的复杂性被分散到了RBF-ARX模型的自回归滞后结构中,所以与单纯的RBF模型相比,它不需要太多的中心。
     本论文对基于RBF-ARX模型的建模、优化及控制方法进行了较为深入的研究,主要研究成果包括:
     (1)在以往众多相关研究成果的基础上,提出了多变量RBF-ARX模型结构及其建模、参数优化方法,以及基于多变量RBF-ARX模型的非线性预测控制器的设计方法。该方法基于一个统一的框架,可用于一类快速变化或慢速变化的多变量非线性系统的建模和优化控制。分别在一个快速变化对象(四旋翼飞行器)和一个慢速变化对象(日本海洋大学实验船舶)上,对本文提出的建模、优化及控制方法进行了应用研究并作了深入的探讨。
     (2)四旋翼飞行器是一个具有多变量、强耦合、不确定性等复杂非线性特性的快速对象(控制周期为0.1秒)。本文介绍了该对象的物理模型,及基于物理模型的LQR控制策略。然后将四旋翼直升机的工作空间平均划分为16个工作区,在每个工作区分别辨识出一个线性ARX模型,并设计了一个综合16个局部线性ARX模型的增益调度LQR控制策略。本文建立了四旋翼飞行器的4输入3输出RBF-ARX模型,并设计了基于多变量RBF-ARX模型的全局LQR控制器(一种基于局部线性化模型的无限时域预测控制器),以控制四旋翼直升机的俯仰、翻转和巡航姿态。
     (3)海洋船舶是一个具有典型复杂非线性特性的欠驱动慢速对象(控制周期为1秒)。本论文首先以船舶舵角为输入,首摇角偏差为输出,建立了单输入单输出的RBF-ARX模型,然后综合船舶运动学方程模型,构造出了单输入双输出的混合状态空问模型。将基于RBF-ARX模型的混合模型作为预测控制器的内部模型,设计了基于该模型的预测控制策略,并给出了详细的理论推导和分析过程。
     (4)为提高船舶航迹跟踪过程的控制性能,本论文设计了一种船舶航迹跟踪导航策略和多步提前预报策略,该策略可以有效抑制船舶在拐点处位置跟踪误差的超调,并减小曲线航迹跟踪过程的位置跟踪误差。
     (5)对船舶航迹跟踪过程的建模方法进行了进一步的研究,建立了渐近稳定的基于RBF-ARX模型的混合模型,弥补了原不稳定模型长期预测结果不理想的缺点。通过与船舶转弯实验的真实航迹对比,证明该渐近稳定混合模型的动态特性与真实船舶的动态特性更接近。
     (6)针对混合模型船舶位置跟踪误差的一步预测输出存在偏移的缺点,建立了多变量RBF-ARX模型综合描述船舶舵角、首摇角偏差和位置跟踪误差三者间的动态关系。该模型解决了混合模型位置跟踪误差的一步预测输出存在偏移的问题,而且在有限时域内的长期预测性能更好。
     (7)除建模外,外在不可抗拒自然力的干扰,也会造成船舶位置跟踪误差的偏移。本文设计了一个带输出补偿的预测控制器,可以有效地消除各种因素引起的位置跟踪误差偏移。在船舶的直线航迹跟踪控制实船实验中,验证了该控制策略的有效性。
     本文提出的基于多变量RBF-ARX模型的建模、优化方法,不但可以很好地描述一类多变量慢速变化控制过程的全局复杂非线性特性,而且对一些多变量快速变化对象也有优越的全局非线性描述能力。本文中的两个成功的实际应用,验证了基于多变量RBF-ARX模型的建模、优化和控制策略是一种较为通用的、安全的、使用方便的、性能优越的先进建模与控制策略,不但在工业控制领域有重要的应用价值,对我国的国防建设也有一定的积极意义。
The RBF-ARX model is a global nonlinear time serious model which can be locally linearized at each state-dependent working point. Using radial basis function (RBF) networks to approximate the functional coefficients of a state-dependent AutoRegressive model with eXogenous variable (SD-ARX) yields the RBF-ARX model. Therefore, it incorporates the advantages of SD-ARX models in nonlinear dynamics description and the RBF network in function approximation.
     The parameters of the RBF-ARX model are identified offline by a structured nonlinear parameter optimization method which can avoid the potential problems of online parameter estimation. The parameter search space is divided into the linear weight subspace and the nonlinear parameter space, and therefore the computational convergence speed and the modeling accuracy are improved. Besides, compared with the single RBF network model it does not need too many RBF centers, because the model's complexity is dispersed into the lags of the autoregressive parts.
     The main research works and achievements are summarized as follows.
     (1) On the basis of a large amount of existing research results, this dissertation presents the multi-input multi-output (MIMO) RBF-ARX model together with its parameter optimization method. Based-on the MIMO RBF-ARX model, a predictive control strategy is designed to control the multivariable nonlinear system.
     The state-space form of the MIMO RBF-ARX model can be easily obtained, thus it is convenient to apply the RBF-ARX model to the industry control field. In this dissertation, the MIMO RBF-ARX modeling method is for the first time applied to a fast multivariable control plant (the quadrotor helicopter); a hybrid model based-on the RBF-ARX model is presented for the first time to characterize a slow control process (the ship's trajectory tracking process). In the two real control applications, the RBF-ARX model-based modeling method, optimization method and controller design approaches are discussed deeply.
     (2) The referenced quadrotor in this dissertation is a fast system (sampling period:0.1s) and has a unique configuration which is different from the classic quadrotor in cross configuration. It is a typical complex multi-input and multi-output control system with strong coupling and uncertain nonlinearities. Firstly, the physical model-based LQR control strategy is introduced. Secondly, the working space of the quadrotor is divided into16working areas averagely, then16linear ARX models are identified in each area and the ARX model-set-based LQR gain scheduling controller is designed. At last, a global RBF-ARX model-based LQR control strategy is proposed to realize the attitude control of the quadrotor.
     (3) Ship tracking control process is a typical slow complex under-actuated system with1input and2outputs (sampling period:Is). A single input single output RBF-ARX model is built to describe the nonlinear relation between the ship heading angle deviation and the ship ruder. Then a single input dual outputs state space model combined with the relationship between the heading angle deviation and the cross track errors is proposed to represent the tracking dynamic behavior. Based on the hybrid state space model a model predictive controller is designed to steer the ship tracking a predefined reference trajectory with a constant velocity.
     (4) A navigation strategy together with a multistep forecast strategy is designed for the ship tracking predictive controller, which could suppress the overshot at the switching points of the curve trajectory, and reduce the cross track error during the curve tracking segments.
     (5) For improving the long-term prediction performance of the hybrid model, an RBF-ARX model-based critical stable hybrid model was proposed. It is verified by comparing the turning test trajectory that the dynamic behavior of the new hybrid model is much better.
     (6) A pure single input dual outputs RBF-ARX model was built for more detailed representation of a ship's dynamic tracking behavior. The modeling results showed that the pure RBF-ARX model has a better modeling accuracy not only in the one-step-ahead prediction but also in a finite horizon long-term prediction.
     (7) Apart from the modeling, external natural force will also result in the large offset of the cross track. For overcoming the influence introduced by the irresistible natural force, a novel RBF-ARX model-based predictive controller with output compensation was proposed. The real-time control result of the straight-line tracking verified the effectiveness of the compensation strategy.
     The two successful applications verified the effectiveness and the superiority of the multivariable RBF-ARX model-based modeling and control method in handling multivariable nonlinear systems modeling and control problem, not only for the slow control processes but also for some fast systems. It is also verified that the multivariable RBF-ARX model-based modeling, optimization and control method is a general, reliable, convenient and advanced method, which has the significance in both the industry field and national defense.
引文
[1]Peng H, Ozaki T, Toyoda Y, et al. Nonlinear system identification using radial basis function-based signal-dependent ARX model. Proc.5th IFAC Symposium on Nonlinear Control Systems. Russia:Saint-Petersburg,2001.703-708
    [2]吴麒,王诗宓.自动控制原理(上册).北京:清华大学出版社,1990
    [3]吴麒,王诗宓.自动控制原理(下册).北京:清华大学出版社,1992
    [4]Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: Stability and optimality. Automatica,2000,36:789-814
    [5]Qin S J, Badgwell T A. A survey of industrial model predictive control technology. Control Engineering Practice,2003,11(7):733-764
    [6]Morari M, Lee J H. Model predictive control:Past, present and future. Computers and Chemical Engineering,1999,23,667-682
    [7]Rawlings J B. Tutorial overview of model predictive control. IEEE Contr. Sys. Magazine,2000,20(3):38-52
    [8]Kwakuo T, Phillip D S, Thomas J M. Model predictive control of an industrial packed bed reactor using neural networks. Journal of Process Control,1995, 5(1):19-27
    [9]Kodogiannis V S, Lisboa P J G, Lucas J. Neural network modeling and control for underwater vehicles. Artificial intelligence in Engineering,1996,10(3): 203-212
    [10]Trajanoski Z, Regittnig W, Wach P. Neural predictive controller for closed-loop control of glucose using the subcutaneous route:a simulation study. Control Engineering Practice,1997,5(12):1727-1730
    [11]Shaw A M, Doyle F J. Multivariable nonlinear control applications for a high purity distillation column using a recurrent dynamic neuron model. Journal of Process Control,1997,7(4):255-268
    [12]Benne M, Perez B G, Herve P. Artificial neural networks for modeling and predictive control of an industrial evaporation process. Journal of Food Engineering,2000,46(4):227-234
    [13]Gao F, Wang F L, Li M Z. A simple nonlinear controller with diagonal recurrent neural network. Chemical Engineering Science,2000,55(7):1283-1288
    [14]Rasit K. Design and performance of an intelligent predictive controller for a six-degree-of-freedom robot using the Elman network. Information Science, 2006,176(12):1781-1799
    [15]Zamarrenoa J M, Vegab P. Neural predictive control. Application to a highly nonlinear system. Engineering Applications of Artificial Intelligence,1999, 12(2):149-158
    [16]Zamarrenoa J M, Vegab P, Garcia L D, et al. State-space neural network for modelling, prediction and control. Control Engineering Practice,2000,8(9): 1063-1075
    [17]Lu C H, Tsai C C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes. Journal of Process Control,2007,17(1): 83-92
    [18]Mingzhi H, Ma Y, Jinquan W. Simulation of a paper mill wastewater treatment using a fuzzy neural network. Expert Systems with Applications,2009,36(3): 5064-5070
    [19]古勇,苏宏业,褚健.循环神经网络建模在非线性预测控制中的应用.控制与决策,2000,15(2):254~256
    [20]Arefi M M, Montazeri A, Poshtan J, et al. Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor. Chemical Engineering Journal,2008,138:274-282
    [21]Bloemen H H J, Boom T J J V D, Verbruggen H B. Model-based predictive control for Hammerstein-Wiener systems. International Journal of Control,2001, 74(5):482-495
    [22]Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities. Automatica,1996,32:1361-1379
    [23]Prasad G, Swidenbank E, Hogg B W. A local model networks based multivariable long-range predictive control strategy for thermal power plants. Automatica,1998,34(10):1185-1204
    [24]Mahfouf M, Linkens D A. Non-linear generalized predictive control (NLGPC) applied to muscle relaxant anaesthesia. International Journal of Control,1998, 71(2):239-257
    [25]Mizuno N, Kuroda M, Okazaki T, et al. Minimum time ship maneuvering method using neural network and nonlinear model predictive compensator. Control Engineering Practice,2007,15(6):757-765
    [26]Sentoni G, Agamennoni O, Desages A, et al. Approximate models for nonlinear process control. AIChE Journal,1996,42(8):2240-2250
    [27]Lakhdari Z, Mokhtari M, Lecluse Y, et al. Adaptive predictive control of a class of nonlinear systems-A case study. IFAC Proceedings:Adaptive Systems in Control and Signal Processing, Budapest, Hungary,1995.209-214
    [28]Peng H, Ozaki T, Toyoda Y, et al. Exponential ARX model-based long-range predictive control strategy for power plants. Control Engineering Practice,2001, 9(12):1353-1360
    [29]Hubert A B, Eric J L, Jacquelien M A. Control of nonlinear chemical processes using neural models and feedback linearization. Computers & Chemical Engineering,1998,22:1113-1127
    [30]刘军,何星,许晓鸣.基于神经网络非线性模型的多级工作点阶跃响应预测控制.控制与决策,2000,15(3):342~344
    [31]戴宪华.基于信息几何的统计回馈神经网络非线性自适应预测控制.自动化学报,1999,25(5):640~646
    [32]Peng H, Ozaki T, Haggan-Ozaki V, et al. Structured parameter optimization method for the radial basis function-based state-dependent autoregressive model. International Journal of Systems Science,2002,33(13):1087-1098
    [33]Peng H, Ozaki T, Haggan-Ozaki V, et al. A parameter optimization method for radial basis function type models. IEEE Transactions on Neural Networks,2003, 14(2):432-438
    [34]Gan M, and Peng H, Stability analysis of RBF network-based state-dependent autoregressive model for nonlinear time series. Applied Soft Computing,2012, 12(1):174-181
    [35]甘敏,彭辉,陈晓红.RBF-AR模型在非线性时间序列预测中的应用.系统工程理论与实践,2010,30(6):1055~1061
    [36]甘敏,彭辉.不同基函数对RBF-ARX模型的影响研究.中南大学学报,2010,41(6):2231~2235
    [37]甘敏,彭辉.基于带回归权重的RBF-AR模型的混沌时间序列预测.系统工程与电子技术,2010,32(4):820~824
    [38]Gan M, Peng H, Chen L. A global-local optimization approach to parameter estimation of RBF-type models. Information Sciences,2012,197(15):144-160
    [39]甘敏,彭晓燕,彭辉.RBF神经网络参数估计的两种混合优化算法.控制与决策,2009,24(8):1172~1176
    [40]Gan M, Peng H, Dong X. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction. Applied Mathematical Modelling,2012,36(7):2911-2919
    [41]张刚林,甘敏,董学平,等.全局优化RBF网络的一种新算法.控制工程,2012,19(3):459~466
    [42]Gan M, Peng H, Peng X, et al. A local linear RBF nets-based state-dependent AR model for nonlinear time series modeling and predicting. Information Sciences,2010,180(22):4370-4383
    [43]Inoussa G, Peng H, Wu J. Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model. Neurocomputing,2012,86(1):89-74
    [44]Haggan-Ozaki V, Ozaki T, Toyoda Y. RBF-ARX modeling for prediction and control. In Proc.14th IFAC Symp. Syst. Identification.2006.1210-1215
    [45]Peng H, Ozaki T, Toyoda Y, et al. RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process. Control Engineering Practice,2004,12:191-203
    [46]Clarke D, Mohtadi C, Tuffs P. Generalized predictive control. Automatica,1987, 23(2):137-160
    [47]Clarke D. and Mohtadi C. Properties of generalized predictive control. Automatica,1989,25(6):859-875
    [48]Peng H, Shioya H, Peng X, et al. Nonlinear MPC based on the state-space form of RBF-ARX model. Proceedings of the 2004 IEEE International Conference on Control Applications. Taipei,2004.1679-1684
    [49]Peng H, Wu J, Inoussa G, Deng Q, Nakano K. Nonlinear system modeling and predictive control using RBF nets-based quasi-linear ARX model. (IFAC) Control Engineering Practice,2009,17(1):59-66
    [50]Haggan-Ozaki V, Ozaki T, Toyoda Y. An Akaike state-space controller for RBF-ARX models. IEEE Transactions on Control Systems Technology,2009, 17(1):191-198
    [51]Peng H, Ozaki T, Nakano K, et al. Stability analysis of the RBF-ARX model based nonlinear predictive control. Proceedings of the European Control Conference (ECC2003). Cambridge, UK,2003
    [52]Peng H, Ozaki T, Mori M, et al. Modeling and control of nonlinear nitrogen oxide decomposition process. Proceedings of 42nd IEEE Conference on Decision and Control.2003.4770-4775
    [53]Peng H, Nakano K, Shioya H. Nonlinear predictive control using neural nets-based local linearization ARX model-Stability and industrial application. IEEE Transactions on Control Systems Technology,2007,15(1):130-143
    [54]Wu J, Peng H, Chen Q. RBF-ARX model-based modeling and control of quadrotor. Proceeding of 2010 IEEE International Conference on Control Applications (CCA). Yokohama, Japan,2010,1731-1736.
    [55]Wu J, Peng H, Ohtsu K, et al. Ship's tracking control based on nonlinear time series model. Applied Ocean Research,2012,36:1-11
    [56]方崇智,萧德云.过程辨识.北京:清华大学出版社,1988.6~7
    [57]范剑青,姚琦伟.非线性时间序列---建模、预报及应用(陈敏,译者).北京:高等教育出版社,2005.7-11
    [58]Granger C W J, Anderson A P. An Introduction to Bilinear Time Series Models. Gottingen:Vandenhoeck and Ruprecht.1978
    [59]Subba-Rao T, Gabr M M. An Introduction to Bispectral Analysis and Bilinear Time Series Models. New York:Springer Verlag.1984
    [60]Tong H. Threshold Models in Nonlinear time Series Analysis. New York: Springer Verlag.1983
    [61]Priestley M B. State-dependent models:a general approach to non-linear time series analysis. Journal of the Time Series Analysis,1980,1(1):57-71
    [62]Priestley M B. Non-linear and Non-stationary Time Series Analysis. London: Academic Press.1988
    [63]Ozaki T, Oda H. Nonlinear time series model identification by Akaike's information criterion. In:Dubuisson B. eds. Information and systems. Pergamon, 1978.83-91
    [64]Haggan V, Ozaki T. Modeling nonlinear random vibrations using an amplitude-dependent autoregressive time series model. Biometrika,1981,68(1): 189-196
    [65]Peng H, Ozaki T, Toyoda Y, et al. Exponential ARX model-based long-range predictive control strategy for power plants. (IFAC) Control Engineering Practice,2001,9(12):1353-1360
    [66]Peng H, Ozaki T, Toyoda Y, et al. Modeling and control of NOx decomposition process with operating-point dependent dynamics. Trans. IEE Japan,2002, 122(11):1940-1946
    [67]Peng H, Ozaki T, Haggan-Ozaki V, et al. A nonlinear exponential ARX model-based multivariable generalized predictive control strategy for thermal power plants. IEEE Trans. On Control Systems Technology,2002,10(2): 256-262
    [68]Bronshtein I N, Semendyayev K A. Handbook of mathematics. Berlin:Springer, 1998
    [69]Chen S, Tsay R S. Functional-coefficient autoregressive models. Journal of the American Statistical Association,1993,88(421):298-308
    [70]Poggio T, Girosi F. A theory of networks for approximation and learning. Massachusetts Institute of Technology, Cambridge, MA.1989.1-64
    [71]Girosi F, Poggio T. Networks and the best approximation property. Biological Cybernetics,1990,63(3):169-176
    [72]Ozaki T. Non-linear time series models for non-linear random vibrations. Journal of applied probability,1980,17(1):84-93
    [73]Vesin J M. An amplitude-dependent autoregressive signal model based on a radial basis functions expansion, Proc. Int. Conf. ASSP. Minnesota,1993. 129-132
    [74]Ozaki T, Sosa P V, Haggan-Ozaki V. Reconstructing the nonlinear dynamics of epilepsy data using nonlinear time series analysis. J. Signal Processing,1999, 3(3):153-162
    [75]Shi Z, Tamura Y, Ozaki T. Nonlinear time series modelling with the radial basis function-based state-dependent autoregressive model, Int. J. Syst. Science,1999, 30(7):717-727
    [76]Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control,1974,19(6):716-723
    [77]Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics,1963, 11(2):431-441
    [78]Golub G H, Van Loan C F. Matrix Computations,3rd ed. Baltimore, MD:Johns Hopkins Univ. Press,1996.
    [79]Bouabdallah S, Noth A, Siegwart R. PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems. Sendai, Japan,2004.2451-2456
    [80]Tayebi A, McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology,2006,14(3):562-71
    [81]Bouchoucha M, Tadjine M, Tayebi A, et al. Step by step robust nonlinear PI for attitude stabilisation of a four-rotor miniaircraft.16th Mediterranean Conference on Control and Automation. Ajaccio,2008:1276-1283
    [82]Das A, Subbarao K, Lewis F. Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory & Applications,2009, 3(3):303-314
    [83]Guenard N, Hamel T, Mahony R. A Practical Visual Servo Control for an Unmanned Aerial Vehicle. IEEE Transactions on Robotics,2008,24(2): 331-340
    [84]Morel Y, Leonessa A. Direct adaptive tracking control of quadrotor aerial vehicles. Florida Conference on Recent Advances in Robotics. Miami, Florida, 2006.1-6
    [85]Nicol C, Macnab C, Ramirez-Serrano A. Robust neural network control of a quadrotor helicopter. Canadian Conference on Electrical and Computer Engineering.2008.1233-1238
    [86]Dierks T, Jagannathan S. Neural network output feedback control of a quadrotor UAV.47th IEEE Conference on Decision and Control. Cancun,2008. 3633-3639
    [87]Dunfied J, Tarbouchi M, Labonte G. Neural network based control of a four rotor helicopter. IEEE International Conference on Industrial Technology.2004. 1543-1548
    [88]Amir M Y, Abbass V. Modeling of quadrotor helicopter dynamics. International Conference on Smart Manufacturing Application. Gyeonggi-do,2008.100-105
    [89]Mian A A, Daobo W. Nonlinear flight control strategy for an under actuated quadrotor aerial robot. IEEE International Conference on Networking, Sensing and Control. Sanya,2008.938-942
    [90]Bouktir Y, Haddad M, Chettibi T. Trajectory planning for a quadrotor helicopter. 16th Mediterranean Conference on Control and Automation. Ajaccio,2008. 1258-1263
    [91]Hamel T, Mahony R, Lozano R, et al. Dynamic modelling and configuration stabilization for an X4-flyer. IFAC 15th Triennial World Congress. Barcelona, Spain,2002.2012-2017
    [92]Bouabdallah S, Murrieri P, Siegwart R. Design and control of an indoor micro quadrotor. IEEE International Conference on Robotics and Automation. Citeseer, 2004.4393-4398
    [93]Hoffmann G, Huang H, Waslander S, et al. Quadrotor helicopter flight dynamics and control:Theory and experiment. Proc. of the AIAA Guidance, Navigation, and Control Conference. Citeseer,2007.1-20
    [94]Suresh S, Kumar M, Omkar S, et al. Neural networks based identification of helicopter dynamics using flight data. Proceedings of the 9th International Conference on Neural Information Processing.2002.10-14
    [95]Kumar M, Omkar S, Ganguli R, et al. Identification of helicopter dynamics using recurrent neural networks and flight data. Journal Of the American Helicopter Society,2006,51(2):164-174
    [96]Castillo P, Lozano R, Dzul A. Stabilization of a mini rotorcraft with four rotors. IEEE control systems magazine,2005,25(6):45-55
    [97]Lewis F L, Syrmos V L. Optimal control,2nd ed. New York:John Wiley & Sons.1995.188-193
    [98]胡寿松,王执铨,胡维礼.最优控制理论与系统.北京:科学出版社.2005.176~180
    [99]Deng X, Schenato L, Sastry S. Model identification and attitude control for a micromechanical flying insect including thorax and sensor models. Proceedings of IEEE International Conference on Robotics and Automation.2003. 1152-1157
    [100]张显库,贾欣乐.船舶运动控制.北京:国防工业出版社,2006.4-5
    [101]Fossen T. Guidance and control of ocean vehicles. New York:Wiley.1994
    [102]Holzhuter T. LQG approach for the high-precision track control of ships. IEE Proceedings Control Theory and Applications,1997,144(2):121-127
    [103]Kvam K, Ohtsu K, Fossen T. Optimal ship maneuvering using Bryson and Ho's time varying LQ controller. Proceedings of the OFAC Conference on Maneuvering and Control of Marine Craft. Aalborg, Denmark,2000
    [104]Fukuda H, Ohtsu K, Tasaki T, Okazaki T. Study on tracking control system using the time varying gain theory. Tech. Rep.180, Society of Naval Architecture of Japan.2001
    [105]Pettersen K, Nijmeijer H. Underactuated ship tracking control:theory and experiments. International Journal of Control,2001,74(14):1435-1446
    [106]Lefeber E, Pettersen K, Nijmeijer H. Tracking control of an underactuated ship. IEEE Transactions on Control Systems Technology,2003,11(1):52-61
    [107]Jiang Z. Global tracking control of underactuated ships by Lyapunov's direct method. Automatica,2002,38(2):301-309
    [108]Do K, Pan J. Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica,2005,41(1):87-95
    [109]Moreira L, Fossen T. Guedes Soares C. Path following control system for a tanker ship model. Ocean Engineering,2007,34(14-15):2074-2085
    [110]Do K, Jiang Z, Pan J. Universal controllers for stabilization and tracking of underactuated ships. Systems & Control Letters,2002,47(4):299-317
    [111]Miyoshi S, Hara Y, Ohtsu K. Study on optimum tracking control with linearized model for vessel. Tech. Rep.117, Japan Institute of Navigation.2007
    [112]Du J, Guo C. Nonlinear adaptive ship course tracking control based on backstepping and Nussbaum gain. Proceedings of the American control conference. Boston, MA, USA,2004.3845-3850
    [113]Ohtsu K, Horigome M, Kitagawa G A new ship's auto pilot design through a stochastic model. Automatica,1979,15(3):255-288
    [114]Ohtsu K, Kitagawa G Statistical analysis of the AR type ships autopilot system. Journal of Dynamic Systems, Measurement, and Control,1984,106:193-202
    [115]Ohtsu K. Recent development on analysis and control of ship's motions. Proceedings of the IEEE International Conference on Control Applications. Kohala Coast, HI,1999.1096-1103
    [116]Park J, Ohtsu K, Kitagawa G. Batch-adaptive ship's autopilots. International Journal of Adaptive Control and Signal Processing,2000,14(4):427-439
    [117]Iseki T, Ohtsu K. Bayesian estimation of directional wave spectra based on ship motions. Control Engineering Practice,2000,8(2):215-219
    [118]Oda H, Ohtsu K, Hotta T. Statistical analysis and design of a rudder roll stabilization system. Control Engineering Practice,1996,4(3):351-358
    [119]Lewis E. Principles of naval architecture, chapter 9. Society of Naval Architects & Marine Engineers.1989
    [120]Akaike H, Nakagawa T. Statistical analysis and control of dynamic systems. Dordrecht:Kluwer Academic Pub,1988
    [121]Kwakernaak H, Sivan R. Linear optimal control systems. New York: Wiley-Interscience,1972
    [122]Bowditch N. The American practical navigator (Pub.9). National Imagery and Mapping Agency,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700