用户名: 密码: 验证码:
高压富氧燃煤烟气冷凝放热试验及受热面设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火力发电所排放的二氧化碳是导致温室效应的主要来源,实现燃煤电厂的二氧化碳捕集与封存是减少二氧化碳排放的一个重要途径,基于富氧燃烧的增压富氧燃煤发电是一项新型可实现燃煤电厂二氧化碳零排放的洁净煤发电技术。
     增压富氧燃烧系统中,潜热吸收式高压排烟冷凝器是关键设备之一,为了给冷凝器的设计提供依据,本文研究了高压烟气的热力学性质和其中水分的凝结换热特性;为了探索燃烧方式和压力的变化对锅炉受热面的影响,还对受热面的换热、优化设计及磨损进行了研究。
     增压富氧燃煤产生的烟气为高压含湿混合三原子气体,已有的基于理想气体的热力学性质计算方法不再适用,本文基于实际气体建立了高压混合气体热力学性质的求解模型,并通过软件验证了模型的可靠性;为了研究高压烟气的凝结换热,分别搭建了高压含湿混合气体在水平管内和横掠管束凝结换热的实验台,并依据气液界面能量平衡采用迭代计算的方法建立了适用于高压混合气体管内凝结换热的数学模型,通过理论研究与试验研究相结合,对高压含湿混合气体的凝结换热特性进行分析;基于(?)经济分析,以单位换热量换热器总费用为目标函数,采用遗传算法对增压富氧燃烧锅炉的对流受热面进行优化设计;通过与已有试验结果对比,选择合适的管壁磨损模型,分析影响磨损量的因素,并将磨损模型嵌入FLUENT软件中,通过数值模拟对常压空气燃烧锅炉和增压富氧燃烧锅炉省煤器中飞灰颗粒的流动及其对受热面的磨损特性进行了研究。
     与常压空气燃烧相比,6MPa富氧燃烧下烟气的密度增大了约80倍,定压比热容增大了18.1%,而动力黏度和导热系数随压力变化不明显;烟气流速不变时,对流换热系数平均增大了16.3倍;受热面结构不变时,烟气流速降低了2个数量级,但对流换热系数却反而增加:在水平管内,含湿混合气体有凝结时的放热系数比无凝结时大了1个数量级,且放热系数随着压力的升高而增大,但压力越高增加量越小;横掠管束时,凝结的发生也增强了换热,混合气体冷凝放热系数与单相对流换热系数在同一数量级,且随着压力的升高换热系数反而有所降低;此外,无论是管内还是横掠管束,混合气体的凝结放热系数都随着雷诺数、水蒸汽含量的增加而增大;与常压空气燃烧锅炉相比,优化后的增压富氧燃烧锅炉受热面结构紧凑、尺寸减小、换热能力增强、烟气流动阻力增加较小;管壁磨损量随着颗粒入射速度和颗粒粒径的增大以及壁面材料硬度的减小而增加,随着颗粒入射角度的增加,磨损量先增大后减小;增压富氧燃烧下发生最大磨损的管排位置也不同于常压空气燃烧时,各管排磨损量较小,磨损速率分布较均匀。
Carbon dioxide produced by thermal power generation is the main source which causes greenhouse effect. The capture and storage of carbon dioxide from coal-fired power plants is an important way to reduce carbon dioxide emission. And the pressurized oxy-coal power generation technology based on oxy-coal combustion is a new generation of clean power generation technology which can achieve zero emission of carbon dioxide from coal-fired power plants.
     In the pressurized oxy-coal combustion system, the high pressure exhaust condenser with latent heat recovery is one of the key equipments. In order to provide the basis of designing the condenser, the article studies the thermodynamic properties of high pressure flue gas and the condensation heat transfer characteristic of vapor in the gas. In order to explore the influence of changes in the combustion mode and pressure on heating surface of boiler, the article also investigates the heat transfer, optimized design, and erosion of the heating surface.
     The flue gas produced by pressurized oxy-coal combustion is high-pressure, wet and mixed triatomic gases. The existing calculation methods of thermodynamic properties based on the ideal gas are no longer applicable. The article establishes the calculation model of thermodynamic properties of high-pressure gas mixture based on the actual gas, and the model is verified by software. To explore the condensation heat transfer of high-pressure flue gas, the experiment rigs of condensation heat transfer of wet flue gas inside a horizontal pipe and across a tube bundle are built respectively. The mathematical model of condensation heat transfer inside tube with iterative method based on energy balance on the gas-liquid interface is established. Through the combination of theoretical study and experimental research, the condensation heat transfer characteristic of wet gas mixture is analyzed. Based on exergy economic analysis, taking the total cost of heat exchanger of unit heat as the objective function, the article designs and optimizes the heating surface of pressurized oxy-coal combustion boiler applying genetic algorithm method. By comparison with the existing experiment results, the appropriate erosion model is chosen, the factors influencing erosion loss are analyzed. Embedding the erosion model into the FLUENT software, the article also investigates the flow of fly ash particles and the heating surface wear properties in atmospheric air combustion boiler and pressurized oxy-coal combustion boiler through numerical simulation.
     Comparing with atmospheric air combustion, the density of flue gas increases almost80times, while the specific heat at constant pressure, dynamic viscosity and thermal conductivity of flue gas change a little under oxy-coal combustion at6MPa. When the heating surface structure is unchanged, the flue gas velocity will reduce by2orders of magnitude, but the convective heat transfer coefficient will increase slightly. In the horizontal pipe, the heat transfer coefficient of wet gas mixture with condensation is1order of magnitude larger than that without condensation, and the heat transfer coefficient increases as the pressure rises. But the higher the pressure, the smaller the increment. Outside the bundle, the occurrence of condensation enhances heat transfer, the condensation heat transfer of gas mixture is in the same order of magnitude with single-phase convective heat transfer, and the heat transfer coefficient will rather diminish as the pressure increases. Besides, the condensation heat transfer coefficient increases with the larger of the Reynolds number and the content of water vapor no matter in or outside the tube. Compared to the conventional air combustion boiler, the optimized heating surface of pressurized oxy-coal combustion boiler is in a more compact structure, smaller size, stronger heat transfer capability and a little larger flow resistance of flue gas. The erosion loss of the wall increases with the rises of the particle impact velocity and particle size and the decrease of the hardness of wall material. The erosion loss first increases and then decreases with increasing particle incident angle. The location of maximum wear has also changed, and the erosion loss of each tube row is smaller, the erosion rate is more evenly distributed.
引文
[1]范英.温室气体减排的成本、路径与政策研究[M].北京:科学出版社,2011
    [2]郑楚光,郑瑛,李帆,等.温室效应及其控制对策[M].北京:中国电力出版社,2001
    [3]Worrell E, Beer J, Blok K. Improve energy efficiency, decrease CO2 emission[J]. Industry and Environment,1995,17(1):32-35
    [4]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究[J].中国电力,1997,30(6):59-62
    [5]阎维平.洁净煤发电技术[M].(第二版).北京:中国电力出版社,2008
    [6]Axel M S, Shuai X S. Research and development issues in CO2 capture[J]. Energy Convers and Management,1997,38(6):37-42
    [7]郭远珍,彭密军.二氧化碳与气候[M].北京:化学工业出版社,2012
    [8]张阿玲,方栋.温室气体CO2的控制和回收利用[M].北京:中国环境科学出版社,1996
    [9]骆仲泱,方梦祥,李明远,等.二氧化碳捕集、封存和利用技术[M].北京:中国电力出版社,2012
    [10]张军,李桂菊.CO2封存技术及研究现状[J].能源与环境,2007,(3):33-35
    [11]何建坤,苏明山.全球气候变化问题与我国能源战略[J].中国环保产业,2002,35(1):60-63
    [12]梁金修.我国能源供需与新型化能源战略[J].宏观经济管理,2006,(4):37-41
    [13]郑瑛,池保华,王保文,等.燃煤CO2减排技术[J].中国电力,2006,39(10):92-94
    [14]林汝谋,金红光,蔡替贤.新一代能源动力系统的研究方向与进展[J].动力工程,2003,23(3):2370-2376
    [15]毛玉如,方梦祥,王树荣,等.空气分离/烟气再循环技术的研究进展[J].锅炉技术,2002,33(3):5-9
    [16]Liu H, Zailani R, Gibbs B M. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle [J]. Fuel,2005,84(16):2109-2115
    [17]Leci H, Yozo K, Isao M. Reactivities of blair athol and nang tong coals in relation to their behavior in PFBC boiler [J]. Fuel,2004,83(16):2151-2156
    [18]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].杭州:浙汀大学,2003
    [19]Andersson K, Johnsson F. Process evaluation of an 865 MWe lignite fired O2/CO2 power plant[J]. Energy Conversion and Management,2006,47(18-19): 3487-3498
    [20]刘忠,宋蔷,姚强,等.O2/CO2燃烧技术及其污染物生成与控制[J].华北电力大学学报,2007,34(1):82-88
    [21]张科峰.膜法富氧助燃技术提高加热炉热效率[J].化工科技,2000,8(1):39-42
    [22]沈光林.膜法富氧的应用研究[J].低温与特气,2000,18(3):26-31
    [23]Liu L H, Chu S X. Verification of numerical simulation method for entropy generation of radiation heat transfer in semitransparent medium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,103(1):43-56
    [24]Gou C, Cai R, Hong H. An advanced oxy-fuel power cycle with high efficiency[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,2006,220(4):315-325
    [25]Buhre B J P, Elliott L.K, Sheng C.D, et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science, 2005,31(4):283-307
    [26]Shamp D, Marin O, Joshi M, et al. Oxy-fuel furnace design optimization using coupled combustion/glass bath numerical simulation [J]. Ceramic Engineering and Science Proceedings,1999,20(1):23-36
    [27]Zhao Y.C, Zhang J.Y, Liu H.T, et al. Thermodynamic equilium study of mineral elements evaporation in O2/CO2 recycle combustion[J]. Journal of Fuel Chemistry and Technology,2006,34(6):641-650
    [28]Andersson K, Nelsen B, Johnsson F, et al. The CO2 avoidance cost of a large scale O2/CO2 power plant[J]. Greenhouse Gas Control Technologies,2005,1(7): 1787-1790
    [29]Hu Y, Naito S, Kobayashi N, et al. CO2, NOx and SO2 emission from the combustion of coal with high oxygen concentration gases[J]. Fuel,2000,79 (15):1925-1932
    [30]刘彦丰,阎维平,丁千岭.控制和减缓电力生产过程中CO2排放的技术[J].华北电力大学学报,2000,27(2):36-41
    [31]Klas A, Filip J. Process evaluation of all 865MWe lignite fired O2/CO2 power plant[J]. Energy Conversion and Management,2006,47(18-19):3487-3498
    [32]Barbucci P. Enel Strategy for zero emission power generation[R]. Beijing: Beijing Sgmposium on Sino-Italy Cooperation on Clean Coal Technology and CCS, December,2008
    [33]米翠丽.富氧燃煤锅炉设计研究及其技术经济性分析[D].北京:华北电力大学博士学位论文,2010
    [34]Ahmed F. Ghoniem ENEL-MIT Clean Energy Program[R]. USA:Massachusetts Institute of Technology, October,2008
    [35]费维扬,艾宁,陈健.温室气体CO2的捕集和分离——分离技术面临的挑战和机遇[J].化工进展,2005,24(1):1-4
    [36]Romano M C, Lozza G G. Long-term coal gasification-based power plants with near-zero emissions, Part A:Zecomix cycle [J]. International Journal of Greenhouse Gas Control,2010,4(3):459-468
    [37]Seepana S, Jayanti S. Steam-moderated oxy-fuel combustion[J]. Energy Conversion and Management,2010,51(10):1981-1988
    [38]Romano M C, Lozza G G. Long-term coal gasification-based power with near-zero emissions, Part B:Zecomag and oxy-fuel IGCC cycles [J]. International Journal of Greenhouse Gas Control,2010,4(3):469-477
    [39]Kass H, Tappe S, Krautz H J. The combustion of dry lignite under Oxy-fuel process conditions in a 0.5 MWth test plant[J]. Greenhouse Gas Control Technologies 9,2009,1(1):423-430
    [40]Liszka M, Ziebik A. Coal-fired oxy-fuel power unit-Process and system analysis[J]. Energy,2010,35(2):943-951
    [41]Hong J, Gunaranjan C, Brisson J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy,2009,34(9):1332-1340
    [42]Hong J, Field R, Gazzino M, et al. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle[J]. Energy,2010,35(12): 5391-5399
    [43]Monning C, Numrich R. Condensation of vapours of immiscible liquids in the presence of a non-condensable gas[J]. International Journal of Thermodynamic Science,1999,38(8):684-694
    [44]Tzevelekos K P, Romanos G E, Kikkinides E S, et al. Experimental investigation on separations of condensable from non-condensable vapors using mesoporous membranes[J]. Microporous and Mesoporous Materials,1999,31(1-2):151-162
    [45]Sabir H M, Eames I W, Suen K O. The effect of non-condensable gases on the performance of film absorbers in vapour absorption systems[J]. Applied Thermal Engineering,1999,19(5):531-541
    [46]Copati J A. Influence of non-condensable on the condensation of vapour mixtures forming immiscible liquids[J]. International Communication Heat Transfer,2000,27(3):425-434
    [47]Canbolat S, Akin S, Kovscek A R. Noncondensable gas steam-assisted gravity drainage[J]. Journal of Petroleum Science and Engineering,2004,45(1-2): 83-96
    [48]Siddique M, Golay M W, Kazimi M S. Local heat transfer coefficients for forced-convection of steam in a vertical tube in the presence of a noncondensable gas[J]. Nuclear Technology,1993,102(3):386-402
    [49]Siddique M. The effects of noncondensable gases on steam condensation under forced convection conditons[D]. USA:Massachusetts Institute of Technology, 1992
    [50]朱爱梅.露点蒸发淡化过程中含高分率不凝气的蒸汽冷凝传热研究[D].天津:天津大学博士学位论文,2005
    [51]Yesin O, Tanrikut A. An experimental research activity on in-tube steam condensation in the presence of non-condensable gases for passive cooling applications [C]. Research Coordinating Meeting, IAEA Headquarter,1996
    [52]Kroger D G, Rohsenow W M. Condensation heat transfer in the presence of a non-condensable gas [J]. International Journal of Heat and Mass Transfer,1968, 11(1):15-26
    [53]Minkowycz W J, Sparrow E M. Condensation heat transfer in the presence of noncondensable, interfacial resistance, superheating, variable properties, and diffusion [J]. International Journal of Heat and Mass Transfer,1966,9(10): 1125-1144
    [54]科利尔.对流沸腾和凝结[M].北京:科学出版社,1982
    [55]Siow E C, Ormiston S J, Soliman H. M. Fully coupled solution of a two-phase model for laminar film condensation of vapor-gas mixtures in horizontal channels[J]. International Journal of Heat and Mass Transfer,2002,45(18): 3689-3702
    [56]Nithianandan C K, Morgan C D, Shah N H. RELAP5/MOD2 Model for Surface Condensation in the presence of Noncondensable Gases[C]. Proceeding of the 8th International Heat Transfer Conference,1986(4):1627-1633
    [57]Srzic V, Soliman H M, Ormiston S J. Analysis of laminar mixed-convection condensation on isothermal plates using the full boundary-layer equations: mixtures of a vapor and a lighter gas[J]. International Journal of Heat and Mass Transfer,1999,42(4):685-695
    [58]Peterson P F, Schrock V E, Kageyama T. Diffusion layer theory for turbulent vapor condensation with noncondensable gases[C]. National Heat Transfer Conference, San Diego,1992
    [59]Dehbi A A. The effects of noncondensable gases on steam condensation under turbulent natural convection conditions[D]. USA:Massachusetts Institute of Technology,1991
    [60]Ganguli A, Patel A G, Maheshwari N K, et al. Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium [J]. Nuclear Engineering and Design,2008,238 (9):2328-2340
    [61]Kim M H, Corradini M L. Modeling of condensation heat transfer in a reactor containment [J]. Nuclear Engineering Design,1990,118(2):193-212
    [62]Corradini M L. Turbulent condensation on a cold wall in the presence of a noncondensable gas [J]. Nuclear Technology,1984,64(2):186-195
    [63]Kuhn S Z, Schrock V E, Peterson P F. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube[J]. Nuclear Engineering and Design,1997,177(1-3):53-69
    [64]Osakabe M, Jshida K, Yagi K. Condensation Heat Transfer on Tubes in Actual Flue Gas [J]. Heat Transfer-Asian Research,2001,30(2):139-151
    [65]Groff M K, Ormiston S J, Soliman H M. Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes[J]. International Journal of Heat and Ma(?)s Transfer,2007,50(19-20):3899-3912
    [66]Chen H T, Chang S M, Lan Z. Effect on noncondensable gas on laminar film condensation along a vertical plate fin [J]. International Journal of Heat and Fluid Flow,1998,19(4):374-381
    [67]Maheshwari N K, Saha D, Sinha R K, Aritomi M. Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number[J]. Nuclear Engineering and Design,2004,227(2):219-238
    [68]Park H S, Hee C N, Young S B. Analysis of experiments for in-tube steam condensation in the presence of noncondensable gases at a low pressure using the RELAP5/MOD3.2 code modified with a non-iterative condensation model [Jl. Nuclear Engineering and Design,2003,225(2-3):173-190
    [69]Krishnaswamy S, Wang H S, Rose J W. Condensation from gas-vapour mixtures in small non-circular tubes [J]. International Journal of Heat and Mass Transfer, 2006,49(9-10):1731-1737
    [70]Hong J. Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO2 capture [D]. USA:Massachusetts Institute of Technology,2007
    [71]Webb R. L. Performance evaluation criteria for used of enhanced heat exchanger surface in heat exchanger design [J]. International Journal of Heat and Mass Transfer,1981,24(4):715-726
    [72]Marcel T, Igor B, Jiri K, et al. Cost estimation and energy price forecasts for economic evaluation of retrofit projects [J]. Applied Thermal Engineering,2003, 23(14):1819-1835
    [73]Antonio C C, Pacifico M P, Paolo S. Heat exchanger design based on economic optimization [J]. Applied Thermal Engineering,2008,28(10):1151-1159
    [74]Selbas R, Kizilkan O, Reppich M.A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view [J]. Chemical Engineering and Processing,2006,45(4):268-75
    [75]Wildi T P, Gosselin L. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance [J]. International Journal of Energy Research,2007,31(9):867-885
    [76]Bejan A. Entropy generation through heat and fluid flow [M]. New York:Wiley, 1982
    [77]Johannessen E, Nummedal, Kjelstrup S. Minimizing the entropy production in heat exchanger [J]. International Journal of Heat and Mass Transfer,2002, 45(13):2649-2654
    [78]Saboya F E M, Costa C E. Minimizing irreversibility criteria for heat exchanger configurations [J]. Transactions of the ASME, Journal of Energy Resources Technology,1999,121(4):241-246
    [79]Yilmaz M, Sara O N, Karsli S. Performance evaluation criteria for heat exchangers based on second law analysis[J]. International Journal of Exergy, 2001,1(4):278-294
    [80]Tabakoff W,Kotwal R, Hamed A. Erosion study of different materials affected by coal ash particles [J]. Wear,1979,52(1):161-173
    [81]Robert W L, Jacques X B. State-of-the-art review of erosion modeling in fluid/solids systems[J]. Progress in Energy and Combustion Science,2002, 28(6):543-602
    [82]Mbabazi J G, Sheer T J, Shandu R. A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles [J]. Wear,2004,257(5-6):612-624
    [83]Mikikumar B G, Rupa V, Hari V, et. al. CFD based prediction of erosion rate in large wall-fired boiler [J]. Applied Thermal Engineering,2012,42(1):90-100
    [84]Chen X H, McLaury B S, Shirazi S A. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees[J]. Computers & Fluids,2004,33(10):1251-1272
    [85]Zhang Y L. Application and improvement of computational fluid dynamics (CFD) in solid particle erosion modeling [D]. USA:The University of Tulsa,2006
    [86]Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact Part 1:Effects of impact parameters on a predictive equation [J]. Wear,2005,259(1-6):95-101
    [87]Oka Y I, Yoshida T. Practical estimation of erosion damage caused by solid particle impact Part 2:Mechanical properties of materials directly associated with erosion damage [J]. Wear,2005,259(1-6):102-109
    [88]应于舟.含不凝气的蒸汽冷凝的传热计算与换热器计算[J].化工设备设计,1999,36(6):8-11
    [89]贾力,彭晓峰,孙金栋等.具有凝结的混合气体传热理论研究[J].热科学与技术,2002,1(1):15-19
    [90]贾力,齐巍,吴冬梅等.含湿混合气体水平管外对流冷凝放热试验研究[J].热科学与技术,2007,6(4):300-303
    [91]吴冬梅,贾力.水平单管外混合气体对流冷凝放热的理论研究[J].工业加热,2006,35(6):1-4.
    [92]吴冬梅.混合气体水平管外对流冷凝放热机理研究[D].北京:北京交通大 学硕士学位论文,2007
    [93]贾力,吴冬梅,齐巍.混合气体横向冲刷水平管时对流冷凝放热的机理研究[J].热科学与技术,2007,6(3):209-213
    [94]庄正宁,李江荣,车得福,等.加湿热空气对流冷凝放热冷凝液量的试验研究[J].热能动力工程,2005,20(1):69-72
    [95]庄正宁,唐桂华,朱常新.不凝气体存在时水平管束冷凝放热特性的试验研究[J].西安交通大学学报,2000,34(7):35-38
    [96]笪耀东.高水分烟气对流冷凝放热与传质特性试验研究[D].西安:西安交通大学硕士学位论文,2003
    [97]罗棣庵、黄良璧.含不凝气(空气)的水蒸汽在波纹槽道内凝结换热试验研究[J].工程热物理学报,1992,13(4):416-419
    [98]熊孟清,刘咸阳定,林宗虎.含不凝气体的蒸汽冷凝放热的计算方法[J].西安建筑科技大学学报,1996,25(3):307-310
    [99]熊孟清,林宗虎.含不凝气体的蒸汽冷凝放热系数的关联式[J].热能动力工程,1997,12(5):377-380
    [100]曹彦斌,艾效逸,郭全,等.伴随有水蒸汽凝结的烟气对流换热的试验研究[J].工程热物理学报,2000,21(6):729-733
    [101]杨冬梅.不同防腐镀层肋片冷凝放热器传热传质研究[D].北京:北京建筑工程学院硕士学位论文,1999
    [102]李慧君,罗忠录,程刚强,等.天然气锅炉烟气换热特性的分析[J].动力工程,2006,26(4):467-471
    [103]王立,李红英.含高分压不凝性气体的蒸汽在倾斜管内的凝结换热[J].冶金能源,2007,26(3):17-20
    [104]杨俊兰,马一太,曾宪阳,等.超临界压力下CO2流体的性质研究[J].制冷空调,2008,36(1):53-58
    [105]刘圣春,马一太,刘秋菊.CO2水冷气体冷却器理论与试验研究[J].制冷与空调,2008,8(1):64-68
    [106]魏东.二氧化碳跨临界循环换热与膨胀机理的研究[D].天津:天津大学博士学位论文,2002
    [107]吕静.二氧化碳跨临界循环及换热特性的研究[D].天津:天津大学博士学位论文,2005
    [i08]朱予东,张婷,李太兴,等.电站锅炉的换热器熵产模型[J].中国电机工程学报,2007,28(6):319-323
    [109]熊大曦,李志信,过增元.换热器的效能与熵产分析[J].工程热物理学报,1997,18(1):90-94
    [110]余敏,马俊杰,杨茉等.换热器特性参数与热力性能熵产分析[J].热能动力工程,2007,22(4):399-403.
    [111]吴双应,李友荣.关于换热器热力学性能评价指标的分析与讨论[J].重庆大学学报(自然科学版),1997,20(4):54-59
    [112]吴双应,李友荣.强化传热性能的(?)经济指标评价[J].石油化工设备,1998,27(1):13-17
    [113]吴双应,牟志才,刘泽筠.换热器性能的(?)经济评价[J].热能动力工程, 1999,14(6):437-440
    [114]高翔,骆仲泱,周劲松,等.单位熵产分析在强化传热研究中的应用[J].化工学报,1998,49(5):639-643
    [115]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004
    [116]Guo Z Y, Zhu H Y, Liang X G. Entransy-a physical quantity describing heat transfer ability [J]. International Journal of Heat and Mass Transfer,2007, 50(13-14):2545-2556
    [117]李志信,过增元.对流传热优化的场协同原理[M].北京:科学出版社,2004
    [118]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1999
    [119]郭江峰.换热器的热力学分析与优化设计[D].济南:山东大学,2011
    [120]任建强.管壳式换热器及换热器网络的多目标优化设计[D].济南:山东大学,2011
    [121]高绪栋.管壳式换热器的数值模拟及优化设计[D].济南:山东大学,2009
    [122]王则力,罗坤,樊建人.颗粒与顺列管束磨损的数值模拟[J].工程热物理学报,2008,29(9):1518-1520
    [123]Fan J R, Zhou D D, JinJ, et al. Numerical prediction of tube row erosion by coal ash impaction [J]. Wear,1991,142(1):171-184
    [124]陈丽华,金军,樊建人,等.电站锅炉受热面管束防磨技术的研究[J].中国电机工程学报,1999,19(7):67-71
    [125]闫洁,李文春,樊建人,等.绕流中颗粒与柱体碰撞和磨损的直接数值模拟[J].浙江大学学报(工学版),2007,41(4):589-593
    [126]李文春,金晗辉,任安禄,等.气固两相三维圆柱绕流的直接数值模拟[J].工程热物理学报,2006,27(5):808-810
    [127]吕萍,金森旺.顺列光管式省煤器管束间飞灰颗粒撞击率的模拟研究[J].太原理工大学学报,2011,42(1):420-423
    [128]吕萍,王鹏.不同粒径飞灰对顺列管束磨损的非线性特性研究[J].太原理工大学学报,2009,40(4):71-77
    [129]陆国栋,周强泰,俞小莉.顺列光管管束烟气颗粒通过率的研究[J].动力工程,2005,25(3):396-398
    [130]陆国栋.顺列螺旋槽管传热及光管颗粒撞击特性的研究[D].南京:东南大学博士学位论文,2004
    [131]古尔维奇,库兹涅佐夫.锅炉机组热力计算标准方法[M].北京锅炉厂,译.北京:机械工业出版社,1976
    [132]李向荣.用SRK方程计算真实气体的密度[J].青岛化工学院学报(自然科学版),2002,23(1):98-100
    [133]刘朝,杨智勇.高温高压湿空气的维里系数[J].中国电机工程学报,2006,26(9):36-39
    [134]董静兰,阎维平,李皓宇,等.基于实际气体的增压富氧燃煤烟气焓值的计算[J].动力工程学报,2010,30(9):673-677
    [135]Piter K S, Curl R F. The volumetric and thermodynamic properties of fluids: Empirical equation for the second virial coefficient [J]. Journal of the American Chemical Society,1957,79(10):2369-2370
    [136]Tsonopoulos C. Second virial coefficients of polar haloalkanes [J]. AIChE Journal,1975,21(4):827-829
    [137]项卫红.流体的热物理化学性质:对应态原理与应用[M].北京:科学出版社,2003
    [138]Meng L, Duan Y Y. Correlations for second and third virial coefficients of pure fluids [J]. Fluid Phase Equilibria,2004,226(10):109-120
    [139]Hasan O, Vera J H. Correlation for the third virial coefficient using Tc, Pc and w as parameters[J]. AIChE Journal,1983,29(1):107-113
    [140]Chuen P L, Prausnitz J M. Third virial coefficients of nonpolar gases and their mixtures [J]. AIChE Journal,1967,13(5):520-535
    [141]波林,普劳斯尼茨,奥康奈尔,等.气液物性估算手册[M].赵红玲,王凤坤,陈圣坤等译.原著第5版.北京:化学工业出版社,2006
    [142]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982
    [143]Ji X, Lu X, Yan J. Survey of experimental date and assessment of calculation methods of properties for the air-water mixture [J], Applied Thermal Engineering,2003,23(17):2213-2228
    [144]Ely J F, Hanley J M. Prediction of transport properties, Viscosity of fluid and mixtures [J]. Industrial & Engineering Chemistry Fundamentals,1981,20(4):323-328
    [145]同济大学应用数学系.MATHEMATICA实用手册[M].上海:同济大学出版社,2002
    [146]ASPEN Inc. ASPEN PLUS 10.2 User Guide [M]. ASPEN Inc.,2000
    [147]米翠丽,阎维平,李皓宇,等.02/C02燃烧方式下锅炉对流传热系数的修正算法和数值研究[J].动力工程,2009,29(5):417-421
    [148]杨世铭,陶文铨.传热学[M].第3版.北京:高等教育出版社,1998
    [149]高正阳,夏瑞青,阎维平,等.增压富氧燃烧锅炉对流受热面换热特性研究[J].中国电机工程学报,2012,32(23):1-8
    [150]阎维平,董静兰.增压富氧煤燃烧烟气焓值计算方法的研究[J].华北电力大学学报,2010,37(1):1-4
    [151]尹雪梅,刘林华,李炳熙.水蒸气和C02混合气体辐射换热宽带k分布模型[J].中国电机工程学报,2008,28(5):63-68
    [152]米翠丽,阎维平.增压富氧燃烧烟气辐射特性宽带关联k模型[J].中国电机工程学报,2010,30(29):62-68
    [153]隋海明.水蒸汽在竖直管内冷凝放热的试验研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2007
    [154]Munoz J L, Herranz L, Sancho J. Turbulent vapour condensation with noncondensable gases in vertical tubes [J]. International Journal of Heat and Mass Transfer,1996,39(15):3249-3260
    [155]Shripad T R, Doug P. Laminar film condensation in a vertical tube in the presence of noncondensable gas [J]. Applied Mathematical Modelling,2005, 29(4):341-359
    [156]Seungmin O, Shripad T R. Experimental and theoretical investigation of film condensation with noncondensable gas [J]. International Journal of Heat and Mass Transfer,2006,49(15-16):2523-2534
    [157]刘鉴民.传热传质原理及其在电力科技中的应用分析[M].北京:中国电力 出版社,2005
    [158]陈钟颀.传热学专题讲座[M].北京:高等教育出版社,1989
    [159]Sparrow E M, Minkowycz W J. Forced convection condensation in the presence of noncondensables and interfacial resistance [J]. International Journal of Heat and Mass Transfer,1967,10(12):1829-1845
    [160]Denny V. E, Jusionis V. J. Effects of noncondensable gas and forced flow on laminar film condensation [J]. Int. J. Heat Mass Transfer,1972,15(2):315-326
    [161]Colburn A P, Hougen O A. Design of cooler condensers for mixtures of vapors with noncondensing gases[J]Industrial and Engineering Chemistry,1934, 26(11):1178-1182
    [162]Hasanein H A. Steam condensation in the presence of noncondensable gases under forced convection conditions[D]. USA:Massachusetts Institute of Technology,1994
    [163]Asano K, Nakano Y, Inabe M. Forced convection film condensation of vapor in the presence of noncondensable gas on a small vertical plate [J]. Journal of Chemical Engineering of Japan,1979,12(1):196-202
    [164]Mcdams W H. Heat Transmittion [M].3rd Edition. New York:McGraw-Hill, 1975
    [165]Kim J W, Lee Y G, Ahn H K. Condensation heat transfer characteristic in the presence of noncondensable gas on natural convection at high pressure[J]. Nuclear Engineering and Design,2009,239(4):688-698
    [166]Vierow K M, Schrock V E. Condensation in a natural circulation loop with noncondensable gases, Part 1-heat transfer[C]. International Conference on Multiphase Flows, Tsukuba, Japan,1991,183-186
    [167]Peterson P F, Schrock V E, Kageyama T. Diffusion layer theory for turbulent vapor condensation with non-condensable gases [J]. Journal of Heat Transfer, 1993,115(4):998-1003
    [168]Mills A F. Heat and Mass Transfer [M]. Chicago:Richard D. Irwin,1995
    [169]Incropera F P, DeWitt D P, Bergman T L. Fundamental of heat and mass transfer[M].6th Edition. New York:Wiley,2006
    [170]Dehbi A A. The effects of noncondensable gases on steam condensation under turbulent natural convection conditions[D]. USA:Massachusetts Institute of Technology,1991
    [171]Siddique M. The effects of noncondensable gases on steam condensation under forced convection conditions[D]. USA:Massachusetts Institute of Technology, 1992
    [172]Bird R B, Stewart W E, Lightfoot E D. Transport Phenomena[M]. Wiley, New York,1960
    [173]Brouwers H J H. Film models for transport phenomena with fog formation:the classical film model [J]. International Journal of Heat and Mass Transfer,1992, 35(1):1-11
    [174]Brouwers H J H. Film models for transport phenomena with fog formation:the fog film model [J]. International Journal of Heat and Mass Transfer,1992,35 (1): 13-28
    [175]Brouwers H J H. The film model applied to free convection over a vertical plate with blowing or suction [J]. International Journal of Heat and Mass Transfer, 1992,35(7):1841-1844
    [176]Falkov A A, Kulakov IN, Slepnova E A. GARRIC User's Manual [M]. OKBM, Russia,2004
    [177]车得福.冷凝式锅炉及其系统[M].北京:机械工业出版社,2002
    [178]笪耀东,车得福,庄正宁,等.高水分烟气对流冷凝放热模拟实验研究[J].工业锅炉,2003,1(1):12-15
    [179]玄光男,于歆杰,周根贵.遗传算法与工程优化[M].北京:清华大学出版社,2004
    [180]吴志刚,丁国良,浦辉,等.基于遗传算法的翅片管换热器管路优化方法[J].化工学报,2007,58(5):1115-1120
    [181]薛梅,刘颖,邬志敏等.基于遗传算法的高温空冷冷凝器优化设计[J].流体机械,2009,37(2):73-76
    [182]马进.基于遗传算法和神经网络的锅炉汽水系统模型参数优化[D].北京:华北电力大学,2009
    [183]吴燕玲,钟崴,童水光.锅炉尾部受热面子系统的遗传优化设计[J].中国电机工程学报,2010,30(8):56-62
    [184]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002
    [185]EU施林德尔.换热器设计手册(第二卷)流体力学与传热学[M].北京:机械工业出版社,1989
    [186]朱予东,阎维平,高正阳,等.燃煤锅炉对流受热面污染沉积对传热熵产的影响[J].中国电机工程学报,2008,28(5):23-27
    [187]倪振伟.换热器的热力学第二定律分析与评价方法[J].工程热物理学报,1985,6(4):311-314
    [188]岑可法、樊建人、池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理和计算[M].北京:科学出版社,1994
    [189]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [190]Morsi Y S, Tu J Y, Yeoh G H, et al. Principal characteristics of turbulent gas-particulate flow in. the vicinity of single tube and tube bundle structure [J]. Chemical Engineering Science,2004(59):3141-3157
    [191]刘洪涛.气固两相流中微细颗粒沉积与扩散特性的数值研究[D].重庆:重庆大学,2010
    [192]Benedetto B, Marco E R, Marco B, et al. Evaluation of erosion-corrosion in multiphase flow via CFD and experimental analysis[J]. Wear,2003,255(1-6): 237-245
    [193]Meng H. S, Ludema K. C. Wear models and predictive equations:their form and content [J]. Wear,1995 (18):443-457
    [194]Bourgoyne A. Experimental study of erosion in diverter systems due to sand production[C]. Proceedings of SPE/IADC Drilling Conference, New Orleans, Los Angeles,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700