用户名: 密码: 验证码:
电力系统低频振荡控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候的变化和人口的快速增长,在全球范围内人们对电能的需求不断增加,使得电力系统负荷不断加重。同时,电力系统已步入了大电网、大机组、跨区域联网的新阶段,长距离互联线路广泛存在。这些因素容易导致低频振荡的产生,电力系统低频振荡如果得不到有效的抑制,将会引起连锁故障,造成大面积的停电,产生巨大的损失。由于电力系统的不断发展及其本身存在的非线性、时变性、强约束强耦合等特点,使得电力系统的低频振荡控制技术还有很多问题并没有完全解决,值得进一步研究。本文从电力系统的实际需求出发,对电力系统低频振荡的控制技术进行了研究。
     本文首先对电力系统低频振荡机理进行了研究,深入研究低频振荡的产生机理有助于采取有效的控制方法来抑制系统的低频振荡。文中分析了低频振荡机理研究的现状,对负阻尼机理、共振或谐振机理、非线性机理分别进行了论述,并对各自的特点进行了分析。接着以发电机阻尼系数的解析表达式为基础,对影响发电机阻尼系数的各种因素进行了分析,最后以发电机转子运动方程为基础,提出电力系统低频振荡的阻尼系数机理,得到阻尼系数对低频振荡影响的具体结论。
     文中对电力系统动态研究的实用模型进行了求解。在研究过程中,从电力系统的基本方程入手,通过对基本方程进行小偏差线性化处理和数学求解,从而求得以本地易测量为状态量的单机无穷大系统三阶状态方程数学模型,并给出了模型求解算法的具体步骤,最后结合实际数据求得了开封电网的数学模型,为基于数学模型的分散控制器的设计打下基础。
     本文提出了基于系统阻尼比的最优励磁控制器的设计方法。针对常规多变量反馈最优控制存在的不足之处,结合无阻尼机械振荡频率的不变性,求解得到基于系统阻尼比的最优反馈增益矩阵,进而得到基于系统阻尼比的最优励磁控制器设计方法。最后,通过对开封电网和豫东电网的仿真研究说明了所设计控制器具有比常规最优励磁控制器和电力系统稳定器更好的控制效果。
     结合新一代的智能控制技术,论文对基于Mamdani模糊推理的电力系统智能控制进行了研究。基于比例积分微分(PID)励磁控制原理和模糊PID励磁控制器的组成原理,本文设计了基于Mamdani模糊推理的PID励磁控制器(MFPID),并给出了基于Mamdani模型的模糊逻辑单元的详细设计过程和MFPID控制器的算法实现。进一步地,结合常规电力系统稳定器(PSS)的优点,提出了结合PSS和MFPID的分段切换控制策略。最后通过仿真研究说明了所设计控制器的有效性。
With the global climate change and rapidly growth of population, the demand of electric energy is continuously increasing globally, which made the load of power system heavier continuously. Meanwhile, power system has stepped into a new stage of large power grid, large generator unit and interregional interconnection, and long distance interconnection electric transmission lines exist extensively. These factors lead to the generation of low frequency oscillation easily. If power system low frequency oscillation can not be suppressed effectively, it will cause cascading outages, large area power cutting and big losses. Due to continuous development of power system and its nonlinear, time-varying, strong constraint and close coupling characteristics, many problems of power system low frequency oscillation control technology are not solved totally and worthy of further research. From the actual needs of power system, the control technology of power system low frequency oscillation is studied.
     In this dissertation, the mechanism of power system low frequency oscillation is studied. In-depth studies of the production mechanism of low frequency oscillation are helpful for adopting effective control method for suppression of low frequency oscillation. The research status of the mechanism of low frequency oscillation is analyzed in this dissertation. Negative damping mechanism, resonance or harmonic mechanism, and nonlinear mechanism are discussed separately, and the particular features of each mechanism are analyzed. Then various influencing factors of generator damping coefficient are analyzed based on the analytical expression of generator damping coefficient. Finally, the damping coefficient mechanism of power system low frequency oscillation is put forward, and the specific conclusions of the influence of damping coefficient on low frequency oscillation are obtained based on the motion equations of generator rotor.
     The practical model for power system dynamic research is solved in this dissertation. During the research, the basic power system equations are processed by small deviation linearization and mathematical solution, then the third-order state equation mathematical model for the single-machine infinite-bus power system is obtained, the state variables of the model are local quantities which are easy to measure, and the concrete steps of model solution algorithm are given. At last, the mathematical model of Kaifeng power grid is obtained referring to practical data, which lay a foundation for the design of decentralized controllers based on mathematical model.
     In this dissertation, the design method of the optimal excitation controller based on the damping ratio of a system is presented. In view of disadvantages of conventional multivariable feedback optimal control, the optimal feedback gain matrix based on the damping ratio of a system can be solved according to the invariance of undamped mechanical oscillation frequency, and then the design method of optimal excitation controller based on the damping ratio of a system is obtained. Finally, the simulation study is carried out on Kaifeng power grid and Yudong power grid. Simulation results show that the controller designed has better control effect relative to the conventional optimal excitation controller and power system stabilizer.
     Combing the new generation intelligent control technology, the power system intelligent control based on Mamdani fuzzy inference is studied in this dissertation. The proportional integral derivative (PID) excitation controller based on Mamdani fuzzy inference (MFPID) is designed according to PID excitation control principle and the composition principle of fuzzy PID excitation controllers. The detailed design process of fuzzy logic unit based on Mamdani model and algorithm implementation of MFPID controller is presented. Combing advantages of conventional power system stabilizer (PSS), the segmentation switch control strategy is proposed by combing PSS and MFPID further. Finally, the effectiveness of the controller designed is illustrated by simulation.
引文
[1]Garrity, T.F. Getting Smart. IEEE power & energy magazine,6(2):38-45.
    [2]Vehbi C. Gungor, Bin Lu, Gerhard P. Hancke. Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Transactions on Industrial Electronics,2010,57(10):3557-3564.
    [3]宋墩文,杨学涛,丁巧林等.大规模互联电网低频振荡分析与控制方法综述.电网技术,2011,35(10):22-28.
    [4]李建设,苏寅生,周剑.地区电网低频振荡问题及其治理措施.广东电力,2010,23(1):5-9.
    [5]I.S.BaxevanoS,P.D.Labridis. Implementing multi-agent systems technology for Power distribution network control and protection management. IEEE Trans, on Power delivery,2007,22(1):433-443.
    [6]陈中,杜文娟,王海风等.电压稳定后紧急控制多代理系统框架.电力系统自动化,2006,30(12):33-37.
    [7]何飞,梅生伟,薛安成等.基于直流潮流的电力系统停电分布及自组织临界性分析.电网技术,2006,30(14):7-12.
    [8]Jie Chen, James S. Thorp, Ian Dobson. Cascading Dynamics and Mitigation Assessment in Power System Disturbances via a Hidden Failure Model. Eleetrical Power and Energy Systems,2005,27(4):318-326.
    [9]A.G Phadke, J.S. Thorp. Expose hidden failures to prevent cascading outages in power Systems. IEEE Computer Applications in power,1996,9(3):20-23.
    [10]S.K. Joo, J.C. Kim, C.C. Liu. Empirical analysis of the impact of 2003 blackout on security values of U.S. utilities and electrical equipment manufacturing firms. IEEE Trans. Power Syst.,2007,22(3):1012-1018.
    [11]Dou CX, Yang JZ, Li XG Decentralized coordinated control for large power system based on transient stability assessment. International Journal of Electrical Power & Energy Systems,2013,46,153-162.
    [12]Tan W, Zhou H. Robust analysis of decentralized load frequency control for multi-area power systems. International Journal of Electrical Power & Energy Systems,2012,43(1):996-1005.
    [13]Benahdouga S, Boukhetala D, Boudjema F. Decentralized high order sliding mode control of multimachine power systems. International Journal of Electrical Power & Energy Systems,2012,43(1):1081-1086.
    [14]Mohamed Tarek Hassan, Morel Jorge, Bevrani Hassan. Decentralized model predictive-based load-frequency control in an interconnected power system concerning wind turbines. IEEJ Transactions on Electrical and Electronic Engineering,2012,7(5):487-494.
    [15]Lee HJ, Kim DW. Decentralized Load-Frequency Control of Large-Scale Nonlinear Power Systems:Fuzzy Overlapping Approach. Journal of Electrical Engineering & Technology,2012,7(3):436-442.
    [16]Ouassaid M, Maaroufi M, Cherkaoui M. Decentralized Nonlinear Adaptive Control and Stability Analysis of Multimachine Power System. International Review of Electrical Engineering-iree,2010,5(6):2754-2763.
    [17]彭瑜,阳木林,徐敏.基于MATLAB的电力系统非线性控制器的设计.南昌大学学报,2008,30(2):188-192.
    [18]韩英铎,高景德.电力系统最优分散协调控制.1997,北京:清华大学出版社.
    [19]Wang Youyi, Hill David J., Guo Guoxiao. Robust decentralized control for multimachine power systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,1998,45(3):271-279.
    [20]Dehghani M., Nikravesh S.K.Y. Decentralized nonlinear H∞ controller for large scale power systems. International Journal of Electrical Power and Energy Systems, 2011,33(8):1389-1398.
    [21]王海风,冯纯伯.稳定器(PSS)在多机电力系统协调稳定中的分散镇定作用.中国电机工程学报,1990,10(3):47-53.
    [22]Ramos R A, Alberto L F C, Bretas N G. A new methodology for the coordinated design of robust decentralized power system damping controllers. IEEE Transactions on Power Systems,2004,19(1):444-454.
    [23]谢小荣,夏祖华,崔文进等.考虑信息结构约束的协调型非线性优化励磁控制.中国电机工程学报,2003,23(1):1-5.
    [24]Wang S H, Davision E J. On the stabilization of decentralized control systems. IEEE Transactions on Automatic Control,1973,18(5):473-478.
    [25]Alrifai Muthana, Hassan Mohamed F., Zribi Mohamed. Decentralized load frequency controller for a multi-area interconnected power system. International Journal of Electrical Power and Energy Systems,2011,33(2):198-209.
    [26]Sun Miaoping, Nian Xiaohong. Nonlinear decentralized control of interconnected large-scale power systems. Proceedings of the 27th Chinese Control Conference,2008,699-703.
    [27]张凯锋,戴先中.电力系统分散控制.电力系统自动化,27(19):86-90.
    [28]陆娴,郭昊坤,陆国超.同步电机最优励磁控制系统设计.电工电气,2011,11,25-28.
    [29]Yu Hao, Liu Ruiye, Chen Xueyun. Suppression of low-frequency oscillation in local power system by adaptive excitation control. Automation of Electric Power Systems,1998,22(9):65-68.
    [30]Wang Maohai, Guo Dengfeng, Jiang Changming. An analysis method to evaluate damping characteristics of excitation systems in low frequency oscillation process. Automation of Electric Power Systems,2013,37(4):47-50.
    [31]Yazdchi Mohammad Reza, Boroujeni Sayed Mojtaba Shirvani. Power system stabilizer design based on model reference robust fuzzy control. Research Journal of Applied Sciences, Engineering and Technology,2012,4(8):852-858.
    [32]Ishimaru Masachika, Yokoyama Ryuichi, Neto Oriane Magela. Allocation and design of power system stabilizers for mitigating low-frequency oscillations in the eastern interconnected power system in Japan. International Journal of Electrical Power and Energy Systems,2004,26(8):607-618.
    [33]Zhong Zhaozhun, Wang Jingcheng. A comparison and simulation study of robust excitation control strategies for single-machine infinite bus power system. International Journal of Modelling, Identification and Control,2009,7(4):351-356.
    [34]Talaq Jawad. Optimal power system stabilizers for multi machine systems. International Journal of Electrical Power and Energy Systems,2012,43(1):793-803.
    [35]朱方,赵红光,刘增煌等.大区电网互联对电力系统动态稳定性的影响.中国电机工程学报,2007,27(1):1-7.
    [36]Wang Sheng-Kuan. A novel objective function and algorithm for optimal PSS parameter design in a multi-machine power system. IEEE Transactions on Power Systems,2013,28(1):522-531.
    [37]Xu Lin. Coordinated control of SVC and PSS for transient stability enhancement of multi-machine power system. Telkomnika,2013,11(2):1054-1062.
    [38]Chen Gang, Sun Yuanzhang, Cheng Lin. A novel PSS-online re-tuning method. Electric Power Systems Research,2012,91,87-94.
    [39]Zhang, P., Coonick, A.H. Coordinated synthesis of PSS parameters in multi-machine power systems using the method of inequalities applied to Genetic Algorithms. IEEE Transactions on Power Systems,2000,15(2):811-816.
    [40]Y. Rui, D. Zhao Yang, Saha T.K., Majumder Rajat. A power system nonlinear adaptive decentralized controller design. Automatica,2010,46(2):330-336.
    [41]Huerta H., Loukianov, A.G., Canedo, J.M. Robust multimachine power systems control via high order sliding modes. Electric Power Systems Research, 2011,81(7):1602-1609.
    [42]Soliman M., Elshafei A.L., Bendary F., Mansour W. Robust decentralized PID-based power system stabilizer design using an ILMI approach. Electric Power Systems Research,2010,80(12):1488-1497.
    [43]Huerta H., Loukianov Alexander G, Canedo Jose M. Decentralized sliding mode block control of multimachine power systems. International Journal of Electrical Power and Energy Systems,2010,32(1):1-11.
    [44]Kenne Godpromesse, Goma Raphael, Nkwawo Homere. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input. Energy Conversion and Management,2010,51(1):218-224.
    [45]Shahab Mehraeen, Sarangapani Jagannathan, Mariesa L. Crow. Power System Stabilization Using Adaptive Neural Network-Based Dynamic Surface Control. IEEE Transactions on Power Systems,2011,26(2):669-680.
    [46]Geun Bum Koo, Jin Bae Park, Young Hoon Joo. Robust Fuzzy Controller for Large-Scale Nonlinear Systems Using Decentralized Static Output-Feedback. International Journal of Control, Automation, and Systems,2011,9(4):649-658.
    [47]Wen-Shyong Yu. Design of a power system stabilizer using decentralized adaptive model following tracking control approach. International Journal of Numerical Modelling:Electronic Networks, Devices and Fields,2010,23(2):63-87.
    [48]陈卓.复杂电力系统分散协调控制的改进研究:[硕士学位论文].贵州:贵州大学,2005.
    [49]Dou, CX, Duan, ZS, Jia, XB. Delay-Dependent Robust Stabilization for Nonlinear Large Systems via Decentralized Fuzzy Control. Mathematical Problems in Engineering,2011,1-20.
    [50]郭岗,王子须,牛文生等.非线性时滞关联大系统的分散控制.四川大学学报,2011,43(1):168-172.
    [51]武强,佟绍成.基于区间二型模糊逻辑系统的非线性大系统模糊自适应分散控制.辽宁工业大学学报(自然科学版),2011,31(1):1-8.
    [52]肖小石,毛志忠.时滞大系统的模型参考鲁棒自适应分散控制.系统工程与电子技术,2011,33(11):2501-2505.
    [53]杜正春,王毅,张强.采用低阶动态补偿器的电力系统分散控制.中国电机工程学报,2008,28(31):15-21.
    [54]黄有建.广义子系统的非线性控制及其在电力系统分散控制中的应用.控制理论与应用,2008,27(8):13-17.
    [55]何蔚超,姚强.同步电机最优励磁控制系统的研究与仿真.电工电气,2011,7,9-13.
    [56]赵辉.电力系统低频振荡阻尼机理及控制策略研究:[博士学位论文].天津:天津大学,2006.
    [57]Shirai Y, Nitta T, Shimoda K. Measurement of the damping coefficient of an electric power system by use of a superconducting magnet energy storage system. Electrical Engineering in Japan,1997,119(3):40-48.
    [58]Jalayer Reza, Ooi Boon-Teck. Frequency Dependant Estimation of Damping and Synchronizing Torque Coefficients in Power Systems.2012 IEEE Power and Energy Society General Meeting,2012,1-7.
    [59]Yousef AM, El-Sherbiny MK. Improvement of synchronizing and damping torque coefficients based LQR power system stabilizer. International Conference on Electrical, Electronic and Computer Engineering,2004,753-758.
    [60]Deoliveira Sem. Synchronizing and Damping Torque Coefficients and Power-system Steady-state Stability as Affected by Static Var Compensators. IEEE Transactions on Power Systems,9(1):109-116.
    [61]Lauw Hk. Determination of Electro-mechanical Damping Coefficients for Power-system Transient Stability Studies. IEEE Transactions on Power Apparatus and Systems,1979,98(l):1-9.
    [62]Huang SG, Wu B, Xia YH. A Novel Multi-Function Digital Excitation Regulator of the Synchronous Generator. IEEE International Conference on Industrial Technology,2008,121-125.
    [63]Ghazizadeh MS, Hughes FM. A generator transfer function regulator for improved excitation control. IEEE Transactions on Power Systems,1998,13(2):435-441.
    [64]Ji QS, Wu YQ, Hao HY. Excitation System With Voltage Regulator for Marine-use Brushless Synchronous Generators. International Conference on Manufacturing Science and Technology,2011,383-390.
    [65]Liu H, Hu ZC, Song YH. Lyapunov-Based Decentralized Excitation Control for Global Asymptotic Stability and Voltage Regulation of Multi-Machine Power Systems. IEEE Transactions on Power Systems,2012,27(4):2262-2270.
    [66]Mahmud MA, Pota HR, Hossain MJ. Full-order nonlinear observer-based excitation controller design for interconnected power systems via exact linearization approach. International Journal of Electrical Power & Energy Systems,2012,41 (1):54-62.
    [67]Shi J, Tang YJ, Xia YJ. SMES Based Excitation System for Doubly-Fed Induction Generator in Wind Power Application. IEEE Transactions on Applied Superconductivity,2011,21(3):1105-1108.
    [68]董清,张玲,颜湘武.电网中强迫共振型低频振荡源的自动确定方法.中国电机工程学报,2012,32(8):68-75.
    [69]竺炜,周有庆,谭喜意.电网侧扰动引起共振型低频振荡的机制分析.中国电机工程学报,2009,29(25):37-42.
    [70]韩志勇,贺仁睦,徐衍会.由汽轮机压力脉动引发电力系统共振机理的低频振荡研究.中国电机工程学报,2005,25(21)14-18.
    [71]徐衍会,贺仁睦,韩志勇.电力系统共振机理低频振荡扰动源分析.中国电机工程学报,2007,27(17):83-87.
    [72]韩志勇,贺仁睦,徐衍会.基于能量角度的共振机理电力系统低频振荡分析.电网技术,2007,31(8):13-16.
    [73]邓集祥,马景兰.电力系统中非线性奇异现象的研究.电力系统自动化,1999,23(22):1-4.
    [74]邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究.中国电机工程学报,1997,17(6):391-398.
    [75]李强,袁越,周海强.浅谈电力系统低频振荡的产生机理、分析方法及抑制措施.继电器,2005,33(9):78-84.
    [76]檀斌,薛禹胜.多机系统混沌现象的研究.电力系统自动化,2001,25(2):3-8.
    [77]贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究.中国电机工程学报,2001,21(7):26-30.
    [78]Franz Heilemann. Frequenz-und Leistungspendelungen in elektronischen Verbundnetzen, Entstehung und Gegenmassnahmen.1983, Stuttgart:Universitat Stuttgart.
    [79]卢强,王仲鸿,韩英铎.输电系统最优控制.1982,北京:科学出版社.
    [80]Xu QS, Zang HX, Shi LJ. Researches on Power System Low-Frequency Oscillations Damping with FESS. International Review of Electrical Engineering-iree,2011,6(5):2537-2544.
    [81]Prasertwong K, Mithulananthan N, Thakur D. Understanding low-frequency oscillation in power systems. International Journal of Electrical Engineering Education,2010,47(3):248-262.
    [82]Xu GG, Chen C, Sun Q. Analyzing the influence of induction motor inertia on power system low frequency oscillation. Electric Power Components and Systems,2005,33(5):551-561.
    [83]Cong L., Wang Y., Hill D. J. Transient stability and voltage regulation enhancement via coordinated control of generator excitation and svc. International Journal of Electric Power and Energy Systems,2005,27(2),121-130.
    [84]Dong Z. Y., Hill D. J., Guo Y. A power system control scheme based on security visualisation in parameter space. International Journal of Electrical Power & Energy Systems,2005,27(7),488-495.
    [85]Fan J. Y., Ortmeyer T. H., Mukundan R. Power system stability improvement with multivariable self-tuning control. IEEE Transactions on Power Systems,1990,5(1):227-234.
    [86]Kemmetmuller Wolfgang, Muller Stefffen, Kugi Andreas. Mathematical modeling and nonlinear controller design for a novel electrohydraulic power-steering system. IEEE/ASME Transactions on Mechatronics,2007,12(1):85-97.
    [87]Psillakis Haris E., Alexandridis Antonio T. A new excitation control for multimachine power systems I:Decentralized nonlinear adaptive control design and stability analysis. International Journal of Control, Automation and Systems,2005,3(2):278-287.
    [88]张风营,朱守真.基于强跟踪滤波器的自适应励磁控制器.中国电机工程学报,2005,25(23):31-35.
    [89]陈前,毛承雄.基于改进Elman网络的最优励磁控制器.大电机技术,2007,3,51-55.
    [90]Lahdhiri T., Alouani A.T. Design of a robust nonlinear excitation controller for a single machine infinite-bus power system. Proceedings of the Annual Southeastern Symposium on System Theory,1997,228-231.
    [91]Ajami Ali, Asadzadeh Hamed. Damping of power system oscillations using UPFC based multipoint tuning AIPSO-SA algorithm. Gazi University Journal of Science,2011,24(4):791-804.
    [92]Rigatos G., Siano P. Design of robust electric power system stabilizers using Kharitonov's theorem. Mathematics and Computers in Simulation,2011,82(1): 181-191.
    [93]Tumiran, Nandar Cuk Supriyadi Ali, Sarjiya. Power oscillation damping control using robust coordinated smart devices. Telkomnika,2011,9(1):65-72.
    [94]Pal, A, Thorp, JS, Veda, SS, Centeno, VA. Applying a robust control technique to damp low frequency oscillations in the WECC. International Journal of Electrical Power & Energy Systems,2013,44(1):638-645.
    [95]Shojaeian, S, Soltani, J, Markadeh, GA. Damping of Low Frequency Oscillations of Multi-Machine Multi-UPFC Power Systems, Based on Adaptive Input-Output Feedback Linearization Control. IEEE Transactions on Power Systems,2012, 27(4):1831-1840.
    [96]Rezaei, N, Shayanfar, HA, Kalantar, M. Robust Low Frequency Power System Oscillation Damping Using an IPFC Based Multi-Objective Particle Swarm Optimizer. International Review of Electrical Engineering-iree,2012,7(3): 4538-4547.
    [97]Ma, J, Peng, MF, Wang, T. Low Frequency Oscillation Eigenvalue Analysis of Uncertain System Based on Perturbation Method.2012 IEEE Power and Energy Society General Meeting,2012,1-5.
    [98]刘明锦.基于线性最优控制理论的励磁系统的设计及仿真.电气开关,2010,1,52-55.
    [99]Zhang Xiaoying, Cheng Zhizhuang, Dang Cunlu. Research on excitation controller based on linear quadratic optimal control. Proceedings of 2011 International Conference on Electronic Engineering, Communication and Management,2012,211-216.
    [100]Mao Chengxiong, Malik O.P., Hope GS., Fan Jun. An adaptive generator excitation controller based on linear optimal control. IEEE Transactions on Energy Conversion,1990,5(4):673-678.
    [101]Subramaniam P., Berg GJ. Optimal excitation control of non-linear power systems. Canadian Electrical Engineering Journal,1979,4(2):21-25.
    [102]Ghandakly Adel A., Idowu Peter. Design of a robust linear optimal regulator for synchronous generator excitation control. Electric Machines and Power Systems,1989,16(5):319-330.
    [103]张洪钺,王青.最优控制理论与应用.2006,北京:高等教育出版社.
    [104]余耀南.动态电力系统.1985,北京:水利电力出版社.
    [105]方思立,朱方.电力系统稳定器的原理及其应用.1996,北京:中国电力出版社.
    [106]张立峰,金秀章,田沛.基于模糊自调整PID技术的励磁控制器研究.华北电力 大学学报,2006,33(4):20-22.
    [107]Taher Seyed Abbas, Akbari Shahabeddin, Abdolalipour Ali. Robust decentralized controller design for UPFC using μ-synthesis. Communications in Nonlinear Science and Numerical Simulation,2010,15(8):2149-2161.
    [108]Khayyam Hamid. Adaptive intelligent control of vehicle air conditioning system. Applied Thermal Engineering,2013,51(1):1154-1161.
    [109]Frumusanu GR, Constantin IC, Marinescu V. Development of a stability intelligent control system for turning. International Journal of Advanced Manufacturing Technology,2013,64(5):643-657.
    [110]Wang CS, Wu M. Hierarchical Intelligent Control System and Its Application to the Sintering Process. IEEE Transactions on Industrial Informatics,2013,9(1):190-197.
    [111]Nurwahaa D, Wang XH. Optimization of electrospinning process using intelligent control systems. Journal of Intelligent & Fuzzy Systems,2013,24(3):593-600.
    [112]Farahani Mohsen. Intelligent control of SVC using wavelet neural network to enhance transient stability. Engineering Applications of Artificial Intelligence,2013,26(l):273-280.
    [113]Sadeghpour M, Khodabakhsh M, Salarieh H. Intelligent control of chaos using linear feedback controller and neural network identifier. Communications in Nonlinear Science and Numerical Simulation,2012,17(12):4731-4739.
    [114]Chang YH, Chan WS, Chang CW. T-S Fuzzy Model-Based Adaptive Dynamic Surface Control for Ball and Beam System. IEEE Transactions on Industrial Electronics,2013,60(6):2251-2263.
    [115]Abdelazim T, Malik OP. Adaptive fuzzy control of SSSC to improve damping of power system oscillations. Power Engineering Society General Meeting,2006,2276-2281.
    [116]Wang T, Tong SC. Adaptive fuzzy output feedback control for SISO nonlinear systems. International Journal of Innovative Computing Information and Control,2006,2(1):51-60.
    [117]Achiche S, Baron L, Balazinski M. Predictive fuzzy control of paper quality. Annual Meeting of the North American Fuzzy Information Processing Society,2006,31-34.
    [118]Lin C, Zhou H, Sun FC. Study on Intelligent Control Strategy of Battery-Electric Bus Based on the Fuzzy Comprehensive Evaluation Method. Proceedings of the 2009 wri global congress on intelligent systems,2009,328-332.
    [119]王德意,孙新志,杨国清,王芳英.同步发电机模糊PID励磁控制器仿真研究.水电自动化与大坝监测,2005,29(1):17-21.
    [120]Jing XJ, Cheng L. An Optimal PID Control Algorithm for Training Feedforward Neural Networks. IEEE Transactions on Industrial Electronics,2013,60(6):2273-2283.
    [121]Moradi Morteza. Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters. International Journal of Non-linear Mechanics,2013,49,50-56.
    [122]Wang FC, Ko CC. Multivariable robust PID control for a PEMFC system. International Journal of Hydrogen Energy,2010,35(19):10437-10445.
    [123]Yang Liu. A stable self-learning PID control based on the artificial immune algorithm. IEEE International Conference on Automation and Logistics,2009,1237-1242.
    [124]Bagis Aytekin. Determination of the PID controller parameters by modified genetic algorithm for improved performance. Journal of Information Science and Engineering,2007,23(5):1469-1480.
    [125]Feng DQ, Dong LJ, Fei MR. Genetic algorithm based neuro-fuzzy network adaptive PID control and its applications. Computational and Information Science, Proceedings,2004,330-335.
    [126]张泾周,杨伟静,张安祥.模糊自适应PID控制的研究及应用仿真.计算机仿真,2009,26(9):132-135.
    [127]Arama Bogdan, Barissi Sasan, Houshangi Nasser. Control of an unmanned coaxial helicopter using hybrid fuzzy-pid controllers. Canadian Conference on Electrical and Computer Engineering,2011,1064-1068.
    [128]Li H.-Z., Li L., He L. PID plus fuzzy logic method for torque control in traction control system. International Journal of Automotive Technology,2012,13(3):441-450.
    [129]Chaiyatham Theerawut, Ngamroo Issarachai. A self-tuning PID-based SMES controller by optimal fuzzy gain scheduling for stabilization of inter-area power system oscillation. ICIC Express Letters,2013,7(1):229-234.
    [130]Karasakal Onur, Guzelkaya Mujde, Eksin Ibrahim. Online tuning of fuzzy PID controllers via rule weighing based on normalized acceleration. Engineering Applications of Artificial Intelligence,2013,26(1):184-197.
    [131]钟飞,钟毓宁.Mamdani与Sugeno型模糊推理的应用研究.湖北工业大学学报,2005,20(2):28-30.
    [132]吕红丽.Mamdani模糊控制系统的结构分析理论研究及其在暖通空调中的应用:[博士学位论文].济南:山东大学,2007.
    [133]Takagi Tomohiro, Sugeno Michio. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics,1985,15(1):116-132.
    [134]Kiriakidis K. Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems,2001,9(2):269-277.
    [135]Sii How Sing, Ruxton Tom, Wang Jin. A fuzzy-logic-based approach to qualitative safety modelling for marine systems. Reliability Engineering and System Safety,2001,73(1):19-34.
    [136]Wang Wen-June, Sun Chung-Hsun. A relaxed stability criterion for T-S fuzzy discrete systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2004,34(5):2155-2158.
    [137]Tanaka Kazuo, Sano Manabu. Robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. IEEE Transactions on Fuzzy Systems,1994,2(2):119-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700