用户名: 密码: 验证码:
负极性地闪雷击点选择过程的模拟试验及仿真模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷电是一种常见的自然灾害,其巨大的破坏力每年造成大量的人身伤亡事故和财产损失。雷电防护是能源、交通、航天航空、建筑等诸多领域关注的热点问题。采用负极性地闪模型模拟雷击过程是指导防雷保护装置设计和改造的重要手段。然而,由于现有的负极性地闪模型仍然存在缺陷,部分按照其计算结果设计的防雷保护装置未起到应有的雷电防护效果,亟待提出一种更为合理的雷击过程仿真模型。
     针对现有模型存在的问题,本文拟提出一种可以反映下行先导曲折、分叉特性、地表电场时空变化以及迎面先导起始和发展物理过程的负极性地闪模型。并围绕负极性梯级先导形成机制、下行先导通道电荷分布、负极性下行先导随机发展模型、正极性迎面先导特性及仿真模型、负极性地闪发展过程三维仿真模型几个方面开展工作。
     根据负极性流注的能量平衡方程,结合基于电位畸变的空间电荷计算方法,推导了描述负极性流注-先导转化过程的转化区温度计算公式,提出转化区的背景电场是决定负极性梯级先导形成的关键物理参数;通过开展4~10m间隙尺度的负极性长空气间隙放电,获取了负极性梯级尺度、发展速度等放电参数,并通过与自然雷电相关参数进行对比,论证了负极性长间隙放电与自然雷电的相似性;采用外推的方法,提出了雷电梯级先导形成所需的临界背景电场。
     基于模拟电荷法,根据回击电流积分电荷总量与回击电流峰值的关系,研究了下行先导通道的电荷总量和电荷分布。提出了下行先导通道电荷总量与回击电流峰值的关系;获得了下行先导通道内的电荷分布规律;研究了分支通道对下行先导通道电荷分布的影响,通过引入电荷系数,提出了考虑分支的下行先导通道电荷分布计算方法。
     采用背景电场作为选择下行先导发展方向的放电参数,建立了负极性下行先导三维随机发展模型;通过对雷电通道的三维几何特征进行分析,建立了分形维数、分支系数以及电荷系数的关系,并根据自然雷电的分形维数,确定了电荷系数和发展概率指数;采用雷电观测结果在分形维数、电荷总量以及地表电场变化三个方面验证了下行先导发展模型的正确性。
     通过分析雷电下的地表电场时空分布特性,提出了基于电场时空分布等效的正极性迎面先导特性模拟试验方法;设计并开展了避雷针的迎面先导特性模拟试验,获得了初始电晕电荷、电晕起始电压、先导起始电压等放电特征参数;提出了新的流注茎-先导转化临界电荷判据;论证了空间电荷对二次电晕起始的抑制作用;获得了先导初始发展阶段的单位长度电荷量,及单位长度电荷随先导电流的变化趋势。考虑暗区内初始先导的生长和空间电荷对电场的影响,提出了包括流注茎-先导转化热过程和二次电晕起始过程的正极性迎面先导起始模型;结合先导电流计算方法和根据人工引雷试验、迎面先导模拟试验和理论推导提出的先导速度与先导电流的关系,建立了迎面先导发展模型;采用正极性迎面先导模拟试验结果以及自然雷电的迎面先导观测结果对模型进行了验证。
     结合下行先导三维随机模型和正极性迎面先导起始和发展模型,建立了负极性地闪发展过程三维仿真模型。采用该模型对避雷针的击距、保护半径、引雷范围等防雷性能进行了研究。探讨了电气几何模型对于某个回击电流峰值采用固定击距进行计算可能存在的问题;提出折线法会过于乐观地估计较高避雷针的保护半径;发现了下行先导在近地区域内的侧向发展是导致较高避雷针地表屏蔽失效的主要原因。
Lightning flash is a frequent natural disaster, and it causes massive casualties and property losses every year. Therefore, lightning protection is the focus in fields of energy, traffic, aerospace, construction, and et al. Model of negative cloud-to-ground lightning (CG) is the major tool to assist to design and improve lightning protection devices. However, defects in previous CG models lead to incorrect assessment of the performance of lightning protection devices. Therefore, it is extremely urgent to improve the previous CG models.
     In order to propose a novel improved CG model, which can simulate the tortuous and branched development of downward leader and the physical process of upward leader, a series of studies on the physics mechanism of negative stepped leaders, the charge distributions in downward leaders, the stochastic development model of downward leader, the characteristics and model of positive upward leader were carried out.
     Base on the energy balance equation in negative streamers and the potential distortion method for calculating the space charge, an equation describing the temperature variation in the streamer-leader transition zone during transformation processes was present. The background electric field in the transition zone was proposed to be the major influencing factor for the development of stepped leader. And the critical background electric field for the development of the stepped leader in natural lightning was proposed by extrapolation method according to the experiment results of negative long air gap discharges.
     The total charge and charge distribution in downward leader were studies by employing the charge simulation method. A relationship between the total charge and the return stroke current was established, and the distribution law of the charge was obtained. The influence of branched leader on the total charge and charge distribution in downward leader was studied. By introducing a charge factor, a novel calculation method of the charge distribution in branched downward leader was raised.
     Taking the background electric field as the core parameter for deciding the development direction of stepped leaders, a three-dimensional stochastic model of downward leader was then present. After analyzing the geometric features of simulated lightning channel, the relationships among the fractal dimension, the branched factor, and the charge factor were established. And according to the observational fractal dimension of natural lightning channels, the reasonable values of branched factor and charge factor were chosen. The three-dimensional stochastic model of downward leader was verified by observational results of natural lightning in the aspects of the fractal dimension, the total charge, and the ground electric field.
     Base on the equivalence of electric field in temporal and spatial (T-S) distribution, a novel simulation test method of positive upward leaders was proposed. After investigating the T-S distribution of electric field in natural lightning, it was found that designing a suitable electrode and choosing a reasonable applied voltage can ensure the equivalence of the simulation test. A series of simulation test on the positive upward leader was carried out, and the critical charge of the stem-leader transition, the shielding effect of space charge on the inception of the second corona, and the charge density of leader were investigated.
     Considering the initial leader's propagation and the influence of space charges on electric field, a novel inception model of upward leader including the stem-leader transition and the inception of second corona was proposed. Combining the calculation method of leader current and the relationship between leader velocity and leader current obtained from the artificial triggering lightning experiments, upward leader simulation tests, and physical mechanism, a development model of upward leader was established. This model was verified by simulation tests and observations of natural lightning.
     Combining the stochastic model of negative downward stepped leaders and the model of positive upward leader by taking the electric field as an intermediary, a simulation model of negative CG flash was established. Using the model, the performances of lightning rods, including the lightning drawing range, the striking distance, and the protection radius on the ground, were investigated and compared with those in the electro-geometrical model (EGM) and the polygon method. And the striking distance in the EGM was found to just reflect the general case. Therefore, objects protected by lightning rods designed using EGM is still possible to be struck. The polygon method is only suitable to assess the performance of lightning rod with a low height, and the assessment for a high lightning rod will be over optimistic. The phenomenon of side striking often happens with a lower lightning current and higher lightning rod. The side development of downward leader is the major reason for the shielding failure of high lightning rods.
引文
[1]Weitao Lu, Yang Zhang, Luwen Chen, et al. Obeservation and preliminary analysis on the attachment process of lightning flashes striking on high stractures[C].2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, 2010,1188-1190.
    [2]中华人民共和国电力工业部.交流电气装置的过电压保护和绝缘配合[S].DL/T620-1997.
    [3]Armstrong H R and Whitehead E R. Field and analytical studies of transmission line shielding [J]. IEEE Trans. Power Apparatus and Systems,1968, Pas-87(1):270-279.
    [4]Eriksson A J. An improved electrogeometric model for transmission line shielding analysis [J]. IEEE Trans, on Power Delivery,1987,2(2):871-886.
    [5]Eriksson A J. The incidence of lightning strikes to power lines [J]. IEEE Trans, on Power Delivery,1987, PWRD-2(3):859-870.
    [6]Rizk F A M. Critical switching impulse strength of long air gaps:modelling of air density effects [J]. IEEE Trans. Power Delivery,1992,7(3):1507-1515.
    [7]Rizk F A M. Modeling of transmission line exposure to direct lighting strokes [J]. IEEE Trans. Power Delivery,1990,5(4):1983-1997.
    [8]Rizk F A M. Switching impulse strength of air insulation:leader inception criterion [J]. IEEE Trans. Power Delivery,1989,4(4):2187-2194.
    [9]Dellera L and Garbagnati E, Lightning strike simulation by means of the leader progression model, Part I:Description of the model and evaluation of free-standing structures [J]. IEEE Trans. Power Delivery,1990,5(4):2009-2022.
    [10]Dellera L and Garbagnati E. Lightning strike simulation by means of the leader progression model, Part II:Exposure and shielding failure evaluation of overhead lines with assessment of application graphs [J]. IEEE Trans. Power Delivery,1990, 5(4):2023-2029.
    [11]Schonland B F J. The pilot streamer in the lightning and the long spark [J]. Proc. R. Soc. London Ser. A,1953,220:25-38.
    [12]Thomson E M, Uman M A and Beasley W H. Speed and current for lightning stepped leader near ground as determined from electric field records [J]. J. Geophys. Res., 1985,90:8136-8142.
    [13]Golde R H. The frequency of occurrence and their distribution of lightning flashes to transmission lines [J]. AIEE Trans.,1945,64:901-910.
    [14]Golde R H. Lightning Protection [M]. London:Edward Arnold,1973.
    [15]Berger K. Methods and results of lightning records at Monte San Salvatore from 1963-1971 [J]. Bull. Schweiz. Elektrotech.1972,3:21403-21422.
    [16]Berger K and Vogelsanger. Measurement and results of lightning records at Monte San Salvatore from 1955-1963 [J]. Bull. Schweiz. Elektrotech.1965,56:2-22.
    [17]Eriksson A J. The lightning ground flash-an engineering study [D]. Ph.D. thesis, Faculty of Engineering, University of Natal, Pretoria, South Africa,1979.
    [18]Nguyen D T, Deegan G and D'Alessandro F. Fractal nature of probabilistic model of lightning discharge [C]. Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, Tencon,2001,814-818.
    [19]Uman M A. The lightning discharge [M]. Orlando:Academic Press,1987.
    [20]Cooray V, Rakov V and Theethayi N. The lightning striking distance-Revisited [J]. Journal of Electrostatics,2007,65:296-306.
    [21]Kruszewski P. A probabilistic technique for the synthetic imagery of lightning [J]. Computers and Graphics,1999,23:287-293.
    [22]Vargas M and Torres H. On the development of a lightning leader model for tortuous or branched channels-Part I:Model description [J]. Journal of Electrostatics,2008, 66:482-488.
    [23]Vargas M and Torres H. On the development of a lightning leader model for tortuous or branched channels-Part II:Model results [J]. Journal of Electrostatics,2008,66: 489-495.
    [24]Mandelbrot B B. The fractal geometry of nature [M]. W. H. Freeman and Company, 1982.
    [25]Niemeyer L, Pietronero L and Wiesmann H J. Fractal dimension of dielectric breakdown [J]. Physics Review Letters,1984,52(12):1033-1036.
    [26]Niemeyer L. A model of SF6 leader channel development[C]. Proceedings of 8th International Conference on Gas Discharges, Oxford,1985:223-226
    [27]谷琛.基于分形理论的绝缘介质中放电仿真研究.中国科学院电工研究所硕士学位论文[D].北京:中国科学院电工研究所,2006.
    [28]Wiesman H J and Zeller H R. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics [J]. Journal of Applied Physics,1986,60(5): 1770-1773.
    [29]Tsonis A A and Elsner J B. Fractal characterization and simulation of lightning [J]. Beitrage zur Physik der Atmosphare,1987,60:187-192.
    [30]Kawasaki Z I, Nakano M, Takeuti T and Hasegawa T. Numerical simulations of lightning by means of the leader propagation model [C]. Proc.8th Int. Conf. on Atmospheric Electricity,1988,483-489.
    [31]Richman C I. Fractal geometry of lightning strokes [C]. Military Communications Conference,1990,3:1085-1090.
    [32]Petrov N I and Petrova G N. Modeling of lightning channel branching and bending [C]. Proc.9th Int. Conf. on Atmospheric Electricity,1992,3:675-679.
    [33]Petrov N I and Petrova G N. Modelling of the trajectory of leader discharge development [C]. Proc.8th Int. Symp. on High Voltage Engineering,1993,4: 101-104.
    [34]Takeuti T, Hashimoto T and Takagi T. Two-dimensional computer simulation on the, natural stepped leader in summer [J]. J. Atmos. Electr.,1993,13:9-14.
    [35]Vecchi G, Labate D and Canavero F. Fractal approach to lightning radiation on a tortuous channel [J]. Radio Science,1994,4(29):691-704.
    [36]Petrov N I, Petrova G N and D'Alessandro F. Quantification of the probability of lightning strikes to structures using a fractal approach [J]. IEEE Trans, on Dielectrics and Electrical Insulation,2003,4(10):641-654.
    [37]伏进.特高压直流输电线路耐雷性能分析方法研究[D].重庆大学博士论文,2009
    [38]伏进,司马文霞,李建标,杨庆,孙才新.基于分形理论的超特高压线路绕击耐雷性能评估[J].高电压技术,2006,6:1274-1278.
    [39]司马文霞,李建标,杨庆,袁涛,伏进.雷电先导分形特性及其在特高压线路耐雷性能分析中的应用[J.].高电压技术,2010,1:86-91.
    [40]He J L, Zhang X W, Dong L, Zeng R and Liu Z H. Fractal model of lightning channel for simulating lightning strikes to transmission lines [J]. Science in China Series E: Technological Sciences,2009,11(52):3135-3141.
    [41]Zhang X, Dong L, He J, Chen S and Zeng R. Study on the effectiveness of single lightning rods by a fractal approach [J]. Journal of Lightning Research,2009,1:1-8.
    [42]何金良,张薛巍,董林,曾嵘,刘泽洪.输电线路雷击过程分析的雷电通道分形模型[J].中国科学:E辑,2009,11:1818-1823.
    [43]Dong L, He J and Zeng R. A statistical view for fractal simulation of lightning [C]. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing,2010.
    [44]何金良,董林,张薛巍,曾嵘.输电线路防雷分析分形模型及其统计特性[J].高电压技术,2010,6:1333-1340.
    [45]Gallimberti I. A computer model for streamer propagation [J]. J. Phy. D. Appl. Phys., 1972,5:2179-2189.
    [46]Gallimberti I. The mechanism of the long spark formation [J]. Journal de Physique Colloques,1979, C7 (40):193-250.
    [47]Les Renardieres Group. Research on long air gap discharges at Les Renardieres [J]. Electra,1972,23:53-157.
    [48]Les Renardieres Group. Research on long air gap discharges-1973 results [J]. Electra, 1974,35:47-155.
    [49]Les Renardieres Group. Positive discharges in long air gaps at Les Renardieres-1975 results and conclusions [J]. Electra,1977,53:31-152.
    [50]Gallet G, Leroy G, Lacey R and Kromer I. General expression for positive switching impulse strength valid up to extra long air gaps [J]. IEEE Trans, on Power Apparatus and System,1975, PAS-94(6):1989-1993.
    [51]Gallet G, Bettler M and Leroy G Switching impulse results obtained on the outdoor testing area at Renardieres [J]. IEEE Trans, on Power Apparatus and System,1976, PAS-95(2):580-585.
    [52]Carrara G and Thione L. Switching surger strength of large air gaps:A physical approach [J]. IEEE Trans, on Power Apparatus and System,1976, PAS-95(2): 512-524.
    [53]Domens P, Gibert A, Dupuy J and Hutzler B. Propagation of the positive streamer-leader system in a 16.7 m rod-plane gap [J]. Journal of Physics D:Applied Physics,1991,24:1748-1757.
    [54]Reess T, Paillol J, Gibert A and Domens P. A study of the mean charge consumption of long sparks in air as a function of the gap length and the impulse shape [J]. J. Phys. D:Appl. Phys.,1998,31:1712-1722.
    [55]Gallimberti I, Bacchiega G, Bondiou-Clergerie A and et al. Fundamental processes in long air gap discharges [J]. C. R. Physique,2002,3:1335-1359.
    [56]Gary C, Hutzler B, Cristescu D, et al. Laboratory aspects regarding the upward positive discharge due to negative lightning [J]. Rev. Roum. Sci. Techn Electrotechn. Energ,1898,34:363-377.
    [57]Alessandro F D, Kossmann C J, Gaivoronsky A S, et al. Experimental study of lightning rods using long sparks in air [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(4):638-648.
    [58]Petrov N I and Waters R T. Determination of the striking distance of lightning to earthed structures [J]. Proc. R. Soc,1995,450:589-601.
    [59]Petrov N I and Alessandro F D. Theoretical analysis of the processes involved in lightning attachment to earthed structures [J]. Journal of Physics D:Applied Physics, 2002,35(14):1788-1795.
    [60]Domens P, Dupuy J, Gibert A, Diaz R, Hutzler B, Riu J P and Ruhling F. Large air-gap discharge and Schlieren techniques [J]. Journal of Physics D:Applied Physics, 1988,21:1613-1623.
    [61]Becerra M and Cooray V. A self-consistent upward leader propagation model [J]. Journal of Physics D:Applied Physics,2006,39(16):3708-3715.
    [62]Becerra M and Cooray V.A simplified physical model to determine the lighting upward connecting leader inception [J]. IEEE Trans, on Power Delivery,2006,21(2): 897-908.
    [63]Becerra M and Cooray V. Time dependent evaluation of the lightning upward connecting leader inception [J]. Journal of Physics D:Applied Physics,2006,39(21): 4695-4702.
    [64]Becerra M, Cooray V and Hartono Z A. Identification of lightning vulnerability points on complex grounded structures [J]. Journal of Electrostatics,2007,65(9): 562-570.
    [65]Becerra M Cooray V and Roman F. Lightning striking distance of complex structures [J]. IET Generation, Transmission & Distribution,2008,2(1):131-138.
    [66]Moore C B, Rison W, Mathis J and Aulich G. Lightning rod improvement studies [J]. Journal of Applied Meteorology,2000,39:593-609.
    [67]Moore C B, Aulich G D, and Rison W. Measurements of lightning rod responses to nearby strikes [J]. Geophysical Research Letters,2000,27:1487-1490.
    [68]Hutzler B and Hutzler-Barre D. Leader propagation model for predetermination of switching surge flashover voltage of large air gaps [J]. IEEE Trans, on Power Apparatus and System,1978, PAS-97(4):1087-1096.
    [69]Townsend J S. Electricity in gases [M]. New York:Oxford University Press,1914.
    [70]Goelian N, Lalande P, Bondiou A et al. A simplified model for the simulation of positive-spark development in long air gaps [J]. Journal of Physics D:Applied Physics,1997,30:2441-2452.
    [71]Comtois D, Pepin H, Vidal F, et al. Triggering and guiding of an upward positive leader from a ground rod with an ultra-short laser pulse II-Modeling [J]. IEEE Trans. on Plasma Science,2003,31(3):387-395.
    [72]Larsson A, Bondiou-Clergerie A and Gallimberti I. Numerical modeling of inhibited electrical discharge in air [J]. Journal of Physics D:Applied Physics,1998,31(15): 1831-1840.
    [73]Baldo G, Gallimberti I, Garcia H N, et al. Breakdown phenomena of long gaps under switching impulse conditions influence of distance and voltage level [J]. IEEE Trans. on Power Apparatus and Systems,1975,94(4):1131-1140.
    [74]Rizk F A M and Vidal F. Modeling of positive leader speed under slow front voltages part I:long air gaps [J]. IEEE Trans, on Power Delivery,2008,23(1):296-301.
    [75]Hutzler B and Hutzler D. Modeling of sparkover of large air gaps [J]. EDF Bull. DER, ser. B,1982,4:11-39.
    [76]Schonland B F J. Progressive lightning IV-The discharge mechanism [J]. Proc. R. Soc, London, Ser. A,1938,164:132-150.
    [77]Berger K. Novel observations on lightning discharges:results of reaserch on mount San Salvatore [J]. J. Franklin Inst.,1967,283:478-525.
    [78]Krehbiel P R. The Earth's Electrical Environment [M]. Washington D. C.:National Academy Press,1986.
    [79]Hill R D. Analysis of irregular paths of lightning channels [J]. J. Geophys. Res.,1968, 73(6):1897-1906.
    [80]Hill R D. Tortuosity of lightning [J], Atmos. Res.1988,22(3):217-233.
    [81]Idone V and Orville R. Channel tortuosity variation in Florida triggered lightning [J]. Geophys. Res. Lett.,1988,15(7):645-648.
    [82]Shonland B F J, Malan D J and Collens H. Progressive lightning II [J]. Proc. R. Soc. London Ser. A,1935,152:595-625.
    [83]Orville R E and Idone V P. Lightning leader characteristics in the thunderstorm research international program [J]. J. Geophys. Res.,1982,87:11172-11192.
    [84]Shao X M. The development and structure of lightning discharges observed by VHF radio interferometer [D]. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro, New Mexico,1993.
    [85]Jayaratne K P X C and Cooray V. The lightning HF radiation at 3MHz during leader and return stroke processes [J]. J. Atmos. Terres. Phys.,1994,56:493-501.
    [86]Cooray V and Lundquist S. Characteristics of the radiation fields from lightning in Sri Lanka in the tropics [J]. J. Geophys. Res.,1985,90:6099-6109.
    [87]雷清泉.工程电介质的最新进展[M].北京:科学出版社,1999.
    [88]Kawasaki Z and Matsuura K. Does a lightning channel show a fractal? [J]. Applied Energy,2000,67(1):147-158.
    [89]张其林,郄秀书王怀斌陈成品张广庶张彤近距离负极性地闪电场波形的观测分析与数值模拟[J].中国电机工程学报,2005,18(25):126-130.
    [90]Willett J C, Davis D A and Larochec P. An experimental study of positive leaders initiating rocket-triggered lightning [J]. Atmospheric Research,1999,51:189-219.
    [91]Soula S and Chauzy S. Multilevel measurement of the electric field underneath a thundercloud 2. Dynamical evolution of a ground space charge layer [J]. Journal of Geophysical Research,1991,96(D12):22327-22336.
    [92]IEEE-SA Standards Board. IEEE guide for improving the lightning performance of transmission lines [S]. IEEE Press, New York,1997.
    [93]Warner T A. Observations of simultaneous multiple upward leaders from tall structures[C]. Proceedings of the 30th International Conference on Lightning Protection. Cagliari, Italy,2010.
    [94]Peek F W. A study of lightning rods and cages, with special reference to the protection of oil tanks [J]. AIEE Trans.,1926,45:1131-1146.
    [95]Wagner C F, McCann G D and MacLane G L. Shielding of transmission lines [J]. American Institute of Electrical Engineers,1941,6(60):313-328.
    [96]朱木美.架空地线绕击率的计算[J].华中工学院学报,1963,NO.8.
    [97]Suzuki T. Discharge path model in model test of lightning strokes to tall mast [J]. IEEE Trans. Power Apparatus and Systems,1981, PAS-100(7):3553-3562.
    [98]Suzuki T. Study on experimental simulation of lightning strokes [J]. IEEE Trans. Power Apparatus and Systems,1981, PAS-100(4):1703-1711.
    [99]Hutzler B. Lightning simulation. Lightning and Electrostatic,1989,2:58-69.
    [100]王晓瑜.雷电屏蔽性能的模拟试验和分析模型的研究[J].高电压技术,1994,2(20):48-53.
    [101]Taniguchi S, Okabe S, Asakawa A and Shindo T. Flashover characteristics of long air gaps with negative switching impulses [J]. IEEE Trans. Dielectrics and Electrical Insulation,2008,2(15):399-406.
    [102]Taniguchi S and Okabe S. A contribution to the investigation of the shielding effect of transmission line conductors to lightning strikes [J]. IEEE Trans. Dielectrics and Electrical Insulation,2008,3(15):710-720.
    [103]Gumley J R, Alessandro F D, Kossmann C J and Rousseau A. A new, high voltage, arbitrary waveform generator for lightining protection research and other applications [J]. High Voltage Engineering Symposium,1999,467:22-27.
    [104]Grzybowski S, Disyadej T and Mallick S. Effectiveness of lightning protection devices [J].高电压技术,2008,34(12):2517-2522.
    [105]Calo J M and Axtmann R C. Vibratinal relaxation and electronic quenching of the C3□u(vn=1) state of nitrogen [J]. J. Chem. Phys.,1971,54:1332-1342.
    [106]Mitchell K B. Fluorescence efficiencies and collisional deactivation rates for N2 and N2+bands excited by soft X rays [J]. J. Chem. Phys.,1970,153:1795-1802.
    [107]Legler W. Anregung von UV-Strahlung in Stickstoff und Wasserstoff durch einen Elektronenschwarm [J]. Z. Phys.,1963,173:169.
    [108]Meek J M. A theory of spark discharge [J]. Phys. Rev.,1940,57:722-728.
    [109]Loeb L B and Meek J M. The mechanism of spark discharge in air at atmospheric pressure [J]. J. Appl. Phys.,1940,11(6):438-447.
    [110]Raether H. Electron avalanches and breakdown in gases [M]. Washington: Butterworths,1964.
    [111]Dawson G A and Winn W P. A model for streamer propagation [J]. Zeitschrift fur Physik,1965,183:159-171.
    [112]Fouad L and Elhazek S. Effect of humidity on positive corona discharge in a three electrode system [J]. Journal of Electrostatics,1995,35:21-30.
    [113]Abdel-Salam M. Positive wire-to-plane coronas as influenced by atmospheric humidity [J]. IEEE Trans. Industry Applications,1985, IA-21(1):35-40.
    [114]Rizk F A M. A model for switching impulse leader inception and breakdown of long air-gaps [J]. IEEE Trans, on Power Delivery,1989,4(1):596-606.
    [115]陈维江,贺恒鑫,钱冠军,等.基于长间隙放电研究雷电屏蔽问题的进展[J].中国电机工程学报,2012,32(10):1-12.
    [116]Young F S, Clayton J M and Hileman A R. Shielding of transmission lines [J]. IEEE Trans. Power Apparatus and Systems,1963, S82:132-154.
    [117]Brown G W and Whitehead E R. Field and analytical studies of transmission line shielding II [J]. IEEE Trans. Power Appatatus and Systems,1969,88:617-626.
    [118]Love E R. Improvement on lightning stroke modeling and application to design of EHV and UHV transmission lines [D]. M.Sc. theses, University of Colorado,1973, USA.
    [119]Gilman D W and Whitehead E R. The mechanism of lightning flashover on high-voltage and extra high-voltage transmission lines [J]. Electra,1973,27:65-96.
    [120]Whitehead E R. CIGRE survey of the lightning performance of extra high-voltage transmission lines [J]. Electra,1974,33:63-89.
    [121]Taniguchi S, Tsuboi, T, Okabe S, Nagaraki Y, Takami J and Ota H. Improved method of calculating lightning stroke rate to large-sized transmission lines based on electric geometry model [J]. IEEE Trans. Dielectrics and Electrical Insulation,2010,17(1): 53-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700