用户名: 密码: 验证码:
低温胁迫下甘蔗后期生理特性及差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗(Saccharum officenarum L.)为禾本科甘蔗属植物,属于热带、亚热带作物,其光合效率高,光饱和点高,而二氧化碳补偿点低,光呼吸率低,光合强度大,以蔗茎为收获物,因此生物产量和经济产量高。但甘蔗对自然资源有一定的要求,特别是对温度和水分。在我国,近年来气候变化异常,极端低温频发,在甘蔗的生长后期常遭受自然低温伤害,低温使甘蔗生产和制糖工业生产的发展受严重影响,导致不同程度的经济损失。本研究采用自然低温从生理生化水平对其品种的抗寒性进行比较研究,探讨各指标与抗寒性的关系,运用蛋白质组学方法比较甘蔗在低温胁迫下的蛋白质表达情况,利用同源克隆等技术对一些抗寒基因进行克隆和表达分析,所获主要结果如下:
     1.在大田自然低温条件下,以21个常规甘蔗品种作为材料,研究不同甘蔗品种在遭受长时间持续低温时的形态和生理生化特性的变化,结果表明:在长时间自然低温胁迫下,甘蔗叶片、生长点、侧芽、蔗茎均受到不同程度伤害;甘蔗在自然降温过程中,不同甘蔗品种的生理指标反应程度各异,叶绿素受寒害后前期降解慢,后期降解逐渐加剧,可溶性糖含量因品种抗寒性不同而表现不一,可溶性蛋白质在低温持续时表现迟钝,脯氨酸和丙二醛(MDA)含量在低温中增加,但因品种抗寒性不同而积累量不同。选择多个生理生化指标,采用模糊隶属函数法,将供试品种抗寒性划分为高抗寒型、抗寒型和低抗寒型3级。
     2.利用双向电泳技术,选取抗寒性差异大的2个品种桂糖28号和园林6号作为材料,研究低温胁迫对甘蔗生长后期的茎尖蛋白质的差异表达情况。结果表明:经PDQuest软件对蛋白质2-DE图谱进行分析,检测到1000多个有效蛋白点,并找到蛋白质丰度变化在2倍以上的蛋白点45个,部分蛋白点呈现上调表达,而部分蛋白点呈现下调表达,因品种抗性不同而表现各异。推测甘蔗在低温胁迫条件下,蛋白质丰度呈动态性变化。
     3.运用质谱技术,研究了低温胁迫对甘蔗生长后期茎尖中差异表达的45个蛋白质点,进行了质谱鉴定和生物信息分析,结果表明:45个差异蛋白点经质谱鉴定后,有35个蛋白点被成功鉴定。对所鉴定的蛋白质根据功能分类分为7类。其中参与自由基清除的7个;参与光合作用3个;参与细胞信号转导3个;参与蛋白加工5个;参与细胞生长和分裂2个;参与基础代谢(包括糖代谢、氮代谢、碳代谢、能量代谢、次生代谢以及RNA加工等)11个;未知功能蛋白4个。甘蔗对低温胁迫应答机制是一个涉及多系统、多水平的综合过程。
     4.采用RT-PCR和同源克隆技术,克隆获得了甘蔗过氧化物酶基因(SoPOD1)、甘蔗20S蛋白酶体α亚基基因(So20S)、甘蔗α-微管蛋白基因(SoTUA)以及5个甘蔗钙调磷酸酶B类似蛋白家族基因CSoCBL1, SoCBL3, SoCBL5, SoCBL6和SoCBL9)的cDNA全长。利用qRT-PCR技术研究了上述基因在低温胁迫下在不同抗性甘蔗品种中的的动态表达情况。在低温胁迫下,两个甘蔗品种SoPODl基因表达先升高后降低,但抗寒强的GT28品种SoPOD1基因表达量上升速度要比不抗寒品种YL6快;So20S基因的表达在两个甘蔗品种中的变化不一,在GT28中其变化趋势为先升后降,在YL6中其变化趋势为缓慢升高;SoTUA在两个品种中的变化总体上趋势一致,但在含量上,GT28中的表达量明显要高于在YL6中的;SoCBL1和SoCBL9基因的表达水平在两个品种中是基本一致;SoCBL3在抗寒的GT28品种中表达量出现明显下降,在YL6品种则呈先上升后急剧下降趋势;SoCBL5的表达水平在两个品种总体出现下降趋势,而SoCBL6基因在GT28和YL6品种在低温胁迫下的表达趋势为上升,即使是继续低温,基因的表达水平有所下降,但仍高于对照。CBL家族成员中起作用的关键基因有可能是SoCBL6和SoCBL5。以上基因都在甘蔗低温胁迫下有一定的应答反应,其基因的功能不同,所在低温胁迫过程中参与的防御途径也不相同,为加强甘蔗抵御低温胁迫及其它非生物胁迫提供了重要的理论基础。
Sugarcane (Saccharum officenarum L.) belongs to gramineous genus, originated from tropical and subtropical areas, which has high photosynthetic efficiency, high light saturation point while low co2compensation point, low photorespiration rate and high photosynthetic intensity, and its harvest organ is stalk, so sugarcane crop has high biomass yield and economic productivity. But it has certain requirement for natural resources, especially for temperature and moisture. In China, different degrees of economic losses have been recorded every year in recent years due to abnormal climate damage, especially frequent occurrences of extreme low temperature during late growth stage, which have severely hampered the sustainable development of sugar cane and sugar industry. This study investigated the cold tolerance of different sugarcane varieties and the relationshiop between the cold resistance and physiological and biochemical characteristics, and two typical sugarcane varieties with different cold resistance were selected for proteome comparison, and some differentially expressed cold resistance genes were cloned by using homology-based cloning techniques. The main results obtained were as follows:
     1. Under natural low temperature conditions in field,21sugarcane varieties were used as materials to study the changes of morphological physiological and biochemical characters. The results showed that the leaves, growing point, lateral bud and cane of sugarcane were damaged in different degrees under long duration of naturally decreasing low temperature stress. The physiological parameters in different sugarcane varieties are different during the natural cooling process. Chlorophyll was found to be decomposed slowly at early stage, and faster later. Soluble sugar content was different with different cold hardiness of sugarcane varieties, which showed insensitive under continous low temperature stress. The content of proline and malondialdehyde (MDA) increased during low temperature, but the accumulation was different in the sugarcane varieties with different hardiness. Based on multiple physiological and biochemical parameters, subordinate function was employed to evaluated the cold resistance of the21sugarcane varieties, and they were divided into3levels.
     2. By using2-DE technology, two sugarcane varieties, GT28with high cold resistance and YL6with low cold resistance, were selected as materials to study the differential expressions of stem tip proteins under stress at the late growth stage. The results showed that more than1000effective protein spots were detected by analyzing the2-DE mapping with PDQuest software, and45protein spots were found changed more than2times in protein abundance. Parts of the differential protein spots were up-regulated while others were down-regulated, depending on variety resistance. It is speculated that sugarcane protein abundance showed dynamic change under low temperature stress.
     3. The45differentially expressed protein spots in sugarcane stem tip at late growth stage were identified with mass spectrometry, and analyzed with bioinformatics. The results showed that35protein spots were identified successfully. The identified proteins were divided into seven categories according to their functions. And7of them involved in the free radical scavenging,3involved in photosynthesis,3participated in signal transduction,5participated in protein processing,2involved in cell growth and division,11participated in the basal metabolisms including carbon metabolism, nitrogen metabolism, sugar metabolism, energy metabolism, secondary metabolism and RNA processing, etc., and4remained unknown in their functions. The mechanism of sugarcane responses to low-temperature stress is an integrated process which involve multi-systems and multi-levels.
     4. The cDNA full-length of the genes SoPOD1, So20S, SoTUA, and5SoCBL family genes SoCBL1, SoCBL3, SoCBL5, SoCBL6and SoCBL9was cloned by RT-PCR and RACE techniques. The dynamic expressions of these genes in different resistant sugarcane varieties under cold stress were studied with qRT-PCR techniques. Under cold stress, the expression levels of SoPODl gene in two sugarcane varieties increased at first and then decreased, but that in the strong cold resistance variety GT28rose faster than that the cold sensitive variety YL6. The expression of So20S gene was different between the two varieties, which showed increasing at first and then decreasing while it showed slowly increasing in YL6.The expression tendency of SoTUA gene in two sugarcane varieties was the same, but the content was significantly higher in GT28than in YL6. The expressions of SoCBLl gene and SoCBL9gene were basically identical. The expression of SoCBL3gene showed significant decrease in GT28, but firstly increase and then sharp decrease in YL6. SoCBL5gene showed an overall declining trend in two sugarcane varieties. The expression trend of SoCBL6gene was increasing in both varieties GT28and YL6dunder cold stress, and it always higher than the control even when the expression level showed slight decrease after continuous cold stress. It was likely that the key genes in CBL family members were the genes SoCBL6and SoCBL5. All these genes in sugarcane had certain responses to cold stress, but the functions of these genes were different, and the defense pathways they involved were also different under the process of cold stress, which provide important molecular basis to strengthen sugarcane against cold stress and other abiotic stress.
引文
[1]白宝璋,任永信,白嵩.植物生理生化.第2版,北京:中国农业科技出版社,2003,257-279
    [2]波钦诺克XH著,荆家海译.植物生物化学分析方法.北京:科技出版社,1981,95-101
    [3]曹琴,孔维府,温鹏飞.植物抗寒及其基因表达研究进展.生态学报,2004,24(4):806-811
    [4]曾淑华,郭仕平,刘飞虎.零度低温对转SOD或POD基因烟草的影响.中国烟草科学,2009,30(4):21-25
    [5]曾昭座,韦坚,韦日辉,等.柳江县甘蔗低温冻害情况调查及分析.甘蔗糖业,2008,(4):16-18
    [6]陈禅友,汪汇东,丁毅.低温胁迫下长豇豆幼苗可溶性蛋白质和细胞保护酶活性的变化.园艺学报,2005,32(5):911-913
    [7]陈贵林,包兰春,李建文,等.低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报,2000,16(1):42-45.
    [8]陈虎.龙眼种质资源遗传多样性分析及低温对石硖龙眼影响研究[博士学位论文].南宁:广西大学,2012,10-50
    [9]陈欢星.宜州蔗区甘蔗冻害及对策.广西甘蔗学会论文集,2008,193-194
    [10]陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响.华南农业大学学报,1999,20(3):54-58
    [11]陈梅,唐运来.低温胁迫对玉米幼苗叶片叶绿素荧光参数的影响.内蒙古农业大学学报,2012,33(3):20-24
    [12]陈能武,杨荣仲,吴才文.甘蔗品种抗寒性鉴定技术研究.甘蔗糖业,1996,(4):1-9
    [13]陈青君,张福馒.不同品种黄瓜在低温弱光胁迫和恢复过程中的光合特性.中国农业大学报,2000,5(5):30-35
    [14]陈荣敏,杨学举,梁凤山,等.利用隶属函数法综合评价冬小麦的抗旱性.河北农业大学学报,2005,25(2):7-9
    [15]陈少裕.甘蔗叶片衰老与膜脂过氧化.作物学报,1992a,18(2):111-115
    [16]陈少裕.甘蔗低温胁迫与膜脂过氧化.福建农学院学报,1992b,21(2):22-26
    [17]陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    [18]陈香玲.低温胁迫下甘蔗生理生化变化及基因差异表达研究[博士学位论文].南宁:广西大学,2010a
    [19]陈香玲,李杨瑞,杨丽涛,等.低温胁迫下甘蔗抗寒相关基因的cDNA-SCOT差异显示.生物技术通报,2010b,(8):120-124
    [20]陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,1995,3(4):79-86
    [21]陈钰,郭爱华,姚延祷.低温胁迫对杏电解质外渗率的影响.河南农业科学,2008,(2):85-87
    [22]程华,李琳玲,王燕.程水源银杏过氧化物酶基因POD1的克隆及表达分析.华北农学报,2010,25(6):44-51
    [23]戴玉池,邓霞玲,姜孝成,等.不同水稻品种幼苗期的耐寒生理鉴定及其利用.湖南师范大学自然科学学报,2004,27(3):86-89
    [24]邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能.植物学通报,2001,18(5):521-530
    [25]邓雪柯,乔代蓉,于听,等.低温胁迫对紫花首蓓生理特性影响的研究.四川大学学报(自然科学版),2005,42(1):190-194
    [26]丁灿.电导率及游离脯氨酸的测定在甘蔗野生种质资源抗寒性鉴定中的应用[硕士学位论文].昆明:云南农业大学,2001
    [27]丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展.中国农学通报,2003,19(6):33-39
    [28]杜永吉,于磊,孙吉雄,等.结缕草3个品种抗寒性的综合评价.草业学报,2008,17(3):6-16
    [29]樊怀福,蒋卫杰,郭世荣.低温对番茄幼苗植株生长和叶片光合作用的影响.江苏农业科学,2005,(3):89-91
    [30]樊治成,贾洪玉,郭洪芸,等.西葫芦耐冷性生理指标研究.园艺学报,1999,26(5):309-313
    [31]范月仙,李生泉,冯文新.棉苗抗冷性与其可溶性糖含量变化关系的研究.棉花学报,1995,7(2):126-127
    [32]盖英萍.棉花、烟草响应低温胁迫的差异蛋白质组学研究[博士学位论文].泰安:山东农业大学,2008
    [33]高安宁,陈见,李生艳,等.2008年华南西部罕见低温冷害天气成因分析.热带气象学报,2009,25(1):110-116
    [34]顾志敏,王建飞,黄骥,等.水稻胞质糖体蛋白基因OsRPS7的克隆与序列分析.遗传,2004,26(2):181-185
    [35]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 1995,31(4):293-297
    [36]郭春芳,孙云,赖呈纯,等.聚乙二醇胁迫下茶树叶片的蛋白质组分析.茶叶科学,2009,29(2):79-88
    [37]郭延平,张良诚,洪双松,等.温州蜜柑叶片气体交换和叶绿素荧光对低温的响应.植物生理学报,2000,26(2):88-94
    [38]韩瑞宏,卢欣石,高桂娟,等.紫花苜蓿抗旱性主成分及隶属函数分析.草地学报,2006,14(2):142-146
    [39]何洁,刘鸿光,王发柔,等.低温与植物的光合作用.植物生理学通讯,1986,(2):1-6.
    [40]何雪银,文仁来,吴翠荣,等.模糊隶属函数法对玉米苗期抗旱性的分析.西南农业学报,2008,21(1):52-56
    [41]何燕,谭宗琨,李政,等.基于GIS的广西甘蔗低温冻害区划研究.西南大学学报,2007,29(9):81-85
    [42]胡永红,张启翔,王奎玲,等.低温对切花菊叶片细胞器超微结构的影响.莱阳农学院学报,2000,17(1):3843
    [43]黄海杰,陈雄庭.植物泛素/26S蛋白酶体途径研究进展.中国生物工程杂志,2008,28(7):127-132
    [44]黄海涛,余继忠,王贤波,等.不同种类基肥对茶树生长和抗寒性的影响研究.茶叶,2012,38(3):142-145
    [45]黄荣峰,杨宇红,王学臣.植物对低温胁迫响应的分子机理.农业生物技术学报,2001,9(1):92-96
    [46]黄杏,杨丽涛,张保青,等.甘蔗脱落酸胁迫成熟诱导蛋白基因(SoASR)的克隆和表达分析.生物技术通报,2013(2):93-99
    [47]黄杏.外源ABA提高甘蔗抗寒性的生理及分子机制研究[博士学位论文].南宁:广西大学,2012,16-37
    [48]黄有总,徐建云,陈超君,等.几个甘蔗新品种的抗旱性和抗寒性比较研究.广西农业生物科学,2002,21(2):101-104
    [49]贾虎森,潘秋红,蔡世英.水分胁迫下油梨幼苗活性氧代谢对光合作用的影响.热带作物学报,2001,22(1):48-55
    [50]贾麦娥,苏雪痕,董丽.诱导植物抗寒基因得到充分表达的条件.河北林果研究,2002,17(1):66-71
    [51]简令成,卢存福,李积宏.适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础.作物学报,2005,31(8):971-976
    [52]简令成,王红.逆境植物细胞生物学.科学出版社,2009,159-167
    [53]简令成.植物抗寒性机理研究的新进展.植物学通报,1992,9(3):15-22
    [54]蒋江照,王建友,毛金梅,等.低温胁迫对扁桃休眠枝条电解质渗出率的影响.新疆农业科学,2012,49(11):1985-1989
    [55]蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用.植物生理学报,1997,23(4):347-352
    [56]蒋选利,李振岐,康振生.过氧化物酶与植物抗病性研究进展.西北农林科技大学学报:自然科学版,2001,29(6):124-129
    [57]康俊梅,李燕,沈静,熊军波,杨青川.低温胁迫对野牛草幼苗渗透调节物与根系活力的影响,中国畜牧兽医,2010,37(12):18-22
    [58]康俊梅.低温胁迫下野牛草生理生化响应及蛋白质组学研究[博士学位论文].北京:中国农业科学院,2008
    [59]孔芳,毛善婧,杜坤,等.转烟酰胺合酶基因甘蓝型油菜盐碱胁迫下叶片蛋白质差异的研究,科学通报,2011,56(18):1440-1447
    [60]李春明.杨树品系低温生理响应及相关差异蛋白分析[博士学位论文].北京:北京林业大学,2011
    [61]李春燕,应朝阳,林永生,等.低温胁迫对度然花生质膜透性、可溶性蛋白质和保护酶系初步研究.农区草业论坛论文集,2008,302-305
    [62]李国龙,孙亚卿,吴海霞,等.水分胁迫下甜菜幼苗过氧化物酶cprx1基因的半定量表达模式分析.作物杂志,2012,(2):47-51
    [63]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    [64]李慧,丛郁,常有宏,等.杜梨类钙调磷酸酶B亚基蛋白PbCBL10基因的克隆和表达特性研究果树学报,2012,29(4):550-556
    [65]李静,陈秀龙,李志阳,等.低温胁迫对10个油棕新品种生理生化特性的影响.华南农业大学学报,2013,34(1):62-66
    [66]李茂枝.浅谈甘蔗抗寒性及防寒措施.中国糖料,1998,(2):42-45
    [67]李平,王以柔,陈贻竹,等.低温对杂交水稻乳熟期剑叶光合作用和光合产物运输的影响.植物学报,1994,36(1):45-52
    [68]李素丽.不同冷敏感型甘蔗品种对低温的响应机制[博士学位论文].南宁:广西大学,2011
    [69]李晓毓.低温胁迫下菊花蛋白质组的双向电泳分析与质谱鉴定[硕士学位论文].贵阳:贵州大学,2006
    [70]李杨瑞,方锋学,吴建明,等.2010/2011榨季广西甘蔗生产冻害调查及防御对策.南方农业学报,2011,42(1):37-42
    [71]李杨瑞,杨丽涛.20世纪90年代以来我国甘蔗产业和科技的新发展.西南农业学报,2009,22(5):1469-1476
    [72]李杨瑞.对加入WTO后广西蔗糖业发展的几点意见.广西农业生物科学,2003,(1):1-4
    [73]李杨瑞主编.现代甘蔗学.北京:中国农业出版社,2010,10-421
    [74]李轶冰,杨顺强,任广鑫,等.低温处理下不同禾本科牧草的生理变化及其抗寒性比较.生态学报,2009,29(3):1341-1347
    [75]李永才,安黎哲,毕阳.微管骨架在植物适应低温胁迫中的功能研究进展,西北植物学报,2006,26(7):1500-1504
    [76]利容千,王建波.植物逆境细胞及生理学.武汉:武汉大学出版社,2002,160-164
    [77]林善枝,李雪平,张志毅.低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响.林业科学,2002,38(6):137-141
    [78]林争春.沟叶结缕草(Zoysiagrass matrella (L.) merr.)响应温度胁迫的比较蛋白组学研究[硕士学位论文].福州:福建农林大学,2009
    [79]刘大林.低温胁迫下番石榴叶片生理生化变化的探讨.林业科学,2003,39(1):38-41
    [80]刘光玲.低温胁迫对甘蔗幼苗根系生长和生理生化代谢的影响[硕士学位论文].南宁:广西大学,2011.
    [81]刘国华,栾以玲,张艳华.自然状态下竹子的抗寒性研究.竹子研究汇刊,2006,25(2):10-14
    [82]刘海浩,吴立柱,岳智亮,等.拟南芥TUA2参与ABA胁迫下的种子萌发过程.中国农业科学,2012,45(21):4343-4350
    [83]刘慧英,朱祝军,吕国华,等.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究.中国农业科学,2003,36(11):1325-1329
    [84]刘建祥.干旱诱导水稻雄性不育的生理和蛋白质组学研究[博士学位论文].杭州:浙江大学,2003
    [85]刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994,369
    [86]娄慧玲,高巍,周素娟.真核细胞三个微管蛋白新成员的生物学特征.生物学教学,2006, 31(12):4
    [87]卢太白,吕金印,陆和平,等.越冬及返青期冬小麦叶片中可溶性蛋白质、氨基酸含量与抗寒性的关系.西北农业学报,2009,18(1):56-59
    [88]罗焕亮,徐位力,李建忠,等.马占相思对低温胁迫适应性的研究.华南农业大学学报(自然科学版),2002,23(2):51-53
    [89]马春平,宋丽萍,崔国文.紫花苜蓿抗寒生理指标的比较研究.黑龙江畜牧兽医,2006,(6):47-48
    [90]马英姿,梁文斌,陈建华.经济植物的抗寒性研究进展.经济林研究,2005,23(4):89-94.
    [91]苗芳,张嵩午,王长发,等.低温小麦种质叶片结构及某些生理特性.应用生态学报,2006,17(3):408-412
    [92]潘杰,简令成.植物寒害和抗寒机制中膜与蛋白质研究的进展.植物学通报,1990,7(1):1-5
    [93]丘立杭.不同甘蔗品种低温胁迫下的生理生化特性及其蛋白质表达分析[硕士学位论文].南宁:广西大学,2010
    [94]任旭琴,陈伯清.低温下辣椒幼苗光合特性的初步研究.江苏农业科学,2006,(6):243-244
    [95]沈静.野牛草响应低温胁迫的生理机制和蛋白质组学初步研究,硕士学位论文,甘肃农业大学,2010,50-62
    [96]沈文鹰,叶茂炳,徐朗莱,等.小麦旗叶自然衰老过程中清除活性氧能力的变化.植物学报,1997,39(7):634-640
    [97]孙富.低温胁迫对甘蔗叶绿体生理代谢及其蛋白质表达的影响[硕士学位论文].南宁:广西大学,2011
    [98]孙清鹏,许煌灿,张方秋,等.低温胁迫对大叶相思和马占相思某些生理特性的影响.林业科学研究,2002,15(1):34-40
    [99]孙正龙.低温胁迫下高山离子芥差异蛋白质组学研究,兰州大学,博士学位论文,2011:1-46
    [100]谭宏伟,李杨瑞,周柳强,等.霜冻天气对桂中地区主栽甘蔗品种生长及蔗糖分的影响.广西农业科学,2010,41(4):326-328
    [101]谭宗琨,丁美花,杨鑫,等.利用MODIS监测2008年初广西甘蔗的寒害冻害气象,2010,36(4):116-119
    [102]谭宗琨,欧钊荣,何燕.广西蔗糖发展主要气象灾害分析及蔗糖产业优化布局的研究.甘蔗糖业,2006,(1):17-21
    [103]王国春,吴东海.PA28相关蛋白酶体的分离纯化及其特征.生物化学与生物物理学报, 2001,33(3):320-324
    [104]王国莉,郭振飞.水稻不同耐冷品种光呼吸对低温的反应.作物学报,2005,31(5):673-676
    [105]王红星,古红梅,周琳,等.不同生长时期叶片中可溶性糖含量与抗寒性关系.周口师范学院学报,2003,20(5):51-52
    [106]王鉴明.中国甘蔗栽培学.北京农业出版社,1985:292-296.
    [107]王连敏,王立志,张国民,等.苗期低温对玉米体内脯氨酸电导率及光合作用的影响.中国农业气象,1999,20(2):28-30.
    [108]王琳,王林嵩,马剑敏.萝卜过氧化物酶的稳定性研究.河南师范大学学报(自然科学版),2004,32(3):81-83.
    [109]王玲丽.低温胁迫下不同百合的抗寒生理研究[硕士学位论文].武汉:华中农业大学,2012
    [110]王淑杰,王家民,李亚东,等.可溶性蛋白、可溶性箱含量和葡萄抗寒性关系的研究.北方园艺,1996,107(2):13-14
    [111]王旭.PEG分级沉淀方法及其在拟南芥低温胁迫蛋白质组学研究中的应用[硕士学位论文].长春:吉林大学,2007
    [112]王勋陵,王静.植物的形态结构与环境.兰州:兰州大学出版社,1989,105-138
    [113]王以柔,刘鸿先,李平,等.在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响.植物生理学报,1986,12(3):244-251
    [114]王毅,方秀娟,徐欣.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响.园艺学报,1995,22(3):29-30
    [115]王震宇,张福锁,王贺等.缺硼与低温对黄瓜幼苗一些生理反应的影响.植物生理学报,1998,24(1):59-64
    [116]魏永胜,梁宗锁,山仑,等.利用隶属函数值法评价苜蓿抗旱性.草业科学,2005,(6):33-36
    [117]乌凤章.白桦低温胁迫响应与叶绿体RNA结合蛋白的蛋白质组学研究[博士学位论文].沈阳:东北林业大学,2008
    [118]吴娜.卫矛科三种常绿阔叶植物抗寒性研究[硕士学位论文].保定:河北农业大学,2006
    [119]武琦,邹德堂,赵宏伟,等.不同生育时期低温胁迫下水稻耐冷指标变化的研究.作物杂志,2012,5:95-101
    [120]向旭,傅家瑞.脱落酸应答基因的表达调控及其与逆境胁迫的关系,植物学通报,1998,15(3):11-16
    [121]谢延林,黄天昆.甘蔗受冻害后发芽试验总结.广西甘蔗学会论文集,2008
    [122]徐传保,戴庆敏.低温胁迫对竹子3种渗透调节物质的影响.河南农业科学,2011,40(1):127-130
    [123]徐浪.小麦TaCBL3基因的克隆及其遗传转化[硕士学位论文].武汉:华中科技大学,2011
    [124]徐跃进,李艳春,俞振华.西葫芦抗冷性生理生化指标分析.湖北农业科学,2006,45(2):211-213
    [125]许桂芳,张朝阳,向佐湘.利用隶属函数法对4种珍珠菜属植物的抗寒性综合评价.西北林学院学报,2009,24(3):24-26
    [126]许文花,杨清辉.甘蔗抗寒性研究进展.甘蔗,2003,10(3):8-12
    [127]许文龙,李赛声,缪世宁,等.广西蔗区霜冻影响规律及预防措施.贵州农业科学,2009,37(12):90-91
    [128]杨春雪,孙博道,苏小霞.光照对一串红、金鱼草、彩叶草种子萌发特性的影响.东北林业大学学报,2008,36(5):31-32
    [129]杨璞,陈晓鸣,朱家颖,等.白蜡虫p1-微管蛋白基因cDNA克隆及序列分析.林业科学研究,2011,24(4):423-427
    [130]杨荣仲,李杨瑞,王维赞,等.干旱霜冻条件下甘蔗耐寒性评价分析.西南农业学报,2011,24(1):52-57
    [131]杨荣仲.几个甘蔗品种自然受冻后品质变化浅析.甘蔗,1999,6(2):1-5
    [132]姚明华,徐跃进,李晓丽,等.茄子耐冷性生理生化指标的研究.园艺学报,2001,28(6):527-531
    [133]尹会男,柴家科.泛素一蛋白酶体途径研究进展.医学分子生物学杂志,2004,1(1):47-50
    [134]余洋,安新民,郝瑞芝,等.铅胁迫对毛白杨组培生根苗生理生化及根尖细胞微管骨架的影响.核农学报,2011,25(6):1268-1273
    [135]张保青,杨丽涛,李杨瑞.自然条件下甘蔗品种抗寒生理生化特性的比较.作物学报,2011,37(3):496-505
    [136]张春霞.Na2CO3胁迫下甜高粱CBL基因家族的表达模式分析及功能初探[硕士学位论文],长春:吉林大学,2011
    [137]张和臣.逆境条件下胡杨CBL-CIPK信号途径转导的分子机制研究[博士学位论文],北京:北京林业大学,2010
    [138]张吉立,刘振平,毕海,等.冬季自然条件下4种彩叶植物抗寒生理研究.山西农业科学,2009,37(7):44-47
    [139]张木清,陈如凯,吕建林.甘蔗低温胁迫对叶绿索a荧光诱导动力学的影响.福建农业大学学报,1999,28(1):1-7
    [140]张木清,陈如凯.甘蔗抗寒性的研究Ⅱ.种茎低温处理幼苗叶片几种酶的变化.福建农学院学报,1993,22(1):23-27.
    [141]张石城.植物的抗寒生理.北京:中国农业出版社,1990
    [142]张文娥,王飞,潘学军.应用隶属函数法综合评价葡萄种间抗寒性.果树学报,2007,24(6):849-853
    [143]张有福,陈银萍,张满效,等.两种圆柏属植物不同季节显微和超微结构变化与耐寒性的关系.应用生态学报,2006,17(8):1393-1397
    [144]张子学,张蕊,隋益虎,等.温度胁迫对辣椒部分生理特性的形响.安徽科技学院学报,2007,21(3):1-6
    [145]赵宝昌,崔秀云.蛋白酶体的结构与功能,生命的化学,2002,22(3):215-218
    [146]赵海霞,李成磊,白悦辰,陈惠,吴琦.苦荞类异黄酮还原酶基因(FtIRL)的克隆及序列分析,食品科学,2012,33(11):210214
    [147]赵晋锋,余爱丽,田岗,等.谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析,作物学报,2013,39(2):360-367
    [148]赵娟娟,洪伟.我国桉树抗寒性研究进展.福建林学院学报,2005,25(3):284-288
    [149]赵琪,戴绍军.蛋白质组学研究揭示的植物根盐胁迫响应机制.生态学报,2012,32(1):274-283
    [150]赵天宏,孙加伟,付宇.逆境胁迫下植物活性氧代谢及外源调控机理的研究进展.作物杂志,2008,(3):10
    [151]赵昕.冷胁迫下拟南芥MAPK4蛋白及基因表达差异变化[硕士学位论文].长春:吉林大学,2009
    [152]郑路,傅玉兰,陈树桃,等.菊花抗寒性与营养特性的研究.园艺学报,1994,21(2):185-188.
    [153]周玉萍,郑燕玲,田长恩,等.脱落酸、多效唑和油菜素内酯对低温期间香蕉过氧化物酶和电导率的影响.广西植物,2002,22(5):444-448
    [154]周蕴薇.翠南报春抗寒生理生态学研究[博士学位论文].沈阳:东北林业大学,2001,18-28
    [155]朱秋珍.甘蔗抗寒性鉴定方法研究.广西农业科学,1995,(6):264-265
    [156]邹琦.植物生理学实验指导.北京:中国农业出版社,2000,113
    [157]Aina R, Labra M, Fumagalli P, et al. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environmental and Experimental Botany,2007,59: 381-392
    [158]Allen D J, Ort D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science,2001,6(1):36-42
    [159]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany,2002,53(372):1331-1341
    [160]Antikainen M, Pfliaskaski S. Cold induced changes in the polysome pattern and protein synthesis in winter rye(Secale c ereal) leaves. Plant Physiol,1993,89:111-116
    [161]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology,2004,55:373-399
    [162]Artus N N, Uemura M. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15-a gene affects both chloroplast and protoplast freeing tolerance. Proc Natl Acad Sci,1996, 93:13404-13409
    [163]Barreneche T, Bahrman N, Kremer A. Two dimensional gel electrophoresis confirms the low level of genetic differentiation between Quercus robur and Quercus petraea. Forest Genetics,1996, 3,89-92
    [164]Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta,2004,219(6):915-924
    [165]Baumeister W, Walz J, Zuhl F, et al. The proteasome:Paradigm of a self-compartmentalizing protease. Cell,1998,92(3):367-380
    [166]Borsani O, Valpuesta V, Botella M A. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology,2001, 126(3):1024-1030
    [167]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein dyebinding. Analy Biochem,1976,72:248-254
    [168]Burd G C, Dreyfuss G. Conserved structure and diversity of ftinctions of RNA-binding protein. Science,1994,265:615-621
    [169]Chen S B, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings:effect of genotype and exogenous application of glycinebetaine. Journal of Experimental Botany,2009,60(7):2005-2019
    [170]Cheng Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell,2003,15:1833-1845
    [171]Cheng Y H, Sung S J, Kim B G, et al. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells,2010,29(2):159-165
    [172]Costa P, Bahrman N, Frigerio J M, et al. Water-deficit responsive proteins in maritime pine. Plant Mol Biol,1998,39:587-596
    [173]Cyr R J, Palevitz B A. Organization of cortical microtubules in plant cells. Current opinion in cell biology.1995,7:65-71
    [174]Danyluk J, Rassart E, Sarhan F. Gene expression during cold and heat shock in wheat. Biochem Cell Biol,1991,69(5-6):383-391
    [175]Dasgupta J, Ananyev G M and Dismukes G C. Photoassembly of the water-oxidizing complex in photosystem Ⅱ. Chemistry Reviews,2008,252(3-4):347-360
    [176]Degand H, Faber A M, Dauchot N, et al. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics,2009,9(10):2903-2907
    [177]Ding C K, Wang C Y, Gross K C, et al. Reduction of chilling injury and transcript accumulation of heats hock proteins In tomato fruit by methyl jasmonate and methyl salicylate. Plant Sci,2001, 161(6):1153-1159
    [178]Droillard M J, Paulin A, Massot J C. Free radical production, catalase and super oxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Physiol Plant,1987,71(2):197-202
    [179]Du Y C, Nose A, Wasano K. Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant, Cell and Environment,1999,22(3):317-324
    [180]Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Science,2000,5(5):193-198.
    [181]Eun SO, Youn I I S, Lee Y. Lead dislurbs microlubule organization in the root meristern of zea mays. Physiology plant,2000,110:357-365.
    [182]Fuglsang AT, Guo Yan, Cuin TA, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. The Plant Cell,2007,19: 1617-1634.
    [183]Gang D R, Dinkova-Kostova A T, Davin L B, et al. Phylogenetic links in plant defense system:lignans isoflavonoids and their reductases. In:American Chemical Society (Ed). Phytochemicals for Pest Control,1997, pp58-89
    [184]Garavito R M, Ferguson-Miller S. Detergents as tools in membrane biochemistry. J Biol Chem, 2001,276:32403-32406.
    [185]Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimicsmultiple biochemical changes associated with cold acclimation. Plant Physiology,2000,124:1854-1865
    [186]Goldgerg A L. Protein degradation and protection against misfolded or damaged proteins. Nature,2003,426:895-899
    [187]Gorg A, Obermaier C, Boguth G, et al. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis,1997,18, 328-337
    [188]Gupta A S, Heinen J L, Holaday A S, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA,1993, 90:1629-1633
    [189]Guy C L, Haskell D. Detection of polypeptides associated with the cold acclimation process in spinach. Electrophoresis,1988,9(11):787-96
    [190]Hajduch M, Ganapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol,2005,137 (4):1397-1419
    [191]Hammond J W, Cai D, Verhey K J.2008. Tubulin modifications and their cellular functions. Current Opinion in Cell Biology,20 (1):71-76
    [192]Hankamer B, Barber J, Boekema EJ. Structure and membrane organization of photosystem H in green plants. Annu Rev Plant Physiol Plant Mol Biol,1997,48:641-671.
    [193]Hashimoto M, Komatsu S. Proteomics analysis of rice seedling during cold stress. Proteomics, 2007,7(8):1293-1302
    [194]Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant systems and 02-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology,2001,127(3):81-831
    [195]Hincha D K, Neukamm B, Sror H A, et al. Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiol.,2001,125,835-846.
    [196]Hodges D M, Andrews C J, Jonson D A, et al. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot,1997,48(5):1105-1113
    [197]Hong Z. Removal of feedback inhibition of ΔI-Pyrroling-5-carboxylate synthase results in inerease proline accumulation and protection of plants from osmotic stress. Plant Physiol,2000, 122:1129-1136.
    [198]Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol,2000,43(1):103-111
    [199]Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature. J Exp Bot,1996,47(296):291-305
    [200]Ingvardsen C, Veierskov B. Ubiquitin and proteasome-dependent proteolysis in plants. Physiol Plant,2001,112:451-459
    [201]Jiang X, Li D H, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+transporter AKT1 in Arabidopsis. Cell,2006,125:1347-1360
    [202]Kim J S, Jung H J, Lee H J. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant J,2008,55:455-466.
    [203]Kim J Y, Kim W Y, Kwak K J, et al. Zinc finger-containingglycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell and Environment,2010,33:759-768
    [204]Kisselev A F, Akopian T N, Castillo V et al. Proteasome active sites allosterically regulate each other, suggesting a eyclical bite-chew mechanism for protein breakdown. Molecular Cell,1999,4: 395-402
    [205]Kjellsen T D, Shiryaeva L, Schroder W P, et al. Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata). Journal of proteomics,2010,73(5):965-975
    [206]Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol,2004,134(1): 43-58
    [207]Kosova K, Vitamvas P, Prasil L T, et al. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics,2011,74(8):1301-1322
    [208]Kudla J, Xu Q, Harter K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci U S A,1999,96(8):4718-4723
    [209]LI Y R. Springing up of sugarcane and sugar industry in China. Guangxi Agricultural Science, 2005,36(1):79-81
    [210]Liu D H, Xue P, Meng Q M, et al. Pb/Cu effects on the organization of microtubule cytoskeleton in interphase 300 and mitotic cells of Allium sativum L. Plant Cell Rep,2009,28:695-702
    [211]Liu Q, Kasuga M, Kanluma Y, et al. Two transcription factors,DREB1 and DREB2,with 8/1EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression respectively, in Arabidopsis. Plant Cell, 1998,10:1390-1406
    [212]Lyons J M. Chilling injury in plants. Ann Rev plant physiol,1973,24:445-466
    [213]Mahajan S, Sopory S K, Tuteja N. Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J,2006,273(5):907-925
    [214]Manabu I, Zhu J K. SOS3 Function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell,2000,12:1667-1678.
    [215]Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nature reviews molecular cell biology.2005,6 (11):862-871
    [216]Marrs K A. The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:127-158.
    [217]Maupin-Furlow J A, Humbard M A, Kirkland P A, et al. Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol,2006,75:125-169
    [218]Mazzucotelli E, Mastrangelo A, Crosatti C, et al. Abiotic stress response in plant:When post-transcriptional and post-translational regulations control transcription. Plant Sci.2008, 174:420-431
    [219]Mead J F. Freeradical Mechanism of lipid damage, a consequence for cellular membranes. In: proyor W A. (ed), Free Radicals in Biology, New York:Academic press,1976, pp 185-210
    [220]Menossi M, Silva-Filho M C, Vincentz M, et al. Sugarcane Functional Genomics:Gene Discovery for Agronomic Trait Development. International Journal of Plant Genomics,2008, 1155-1166
    [221]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7(9): 405-410
    [222]Molloy M P, Herbert B R, Walsh B J, et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis,1998 19(5):837-844
    [223]Nogueira F T S, De Rosa V E, Menossi M, et al. RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol,2003,132(4):1811-1824
    [224]Pandey G K, Cheong Y H, Kim K N, et al. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell,2004,16:1912-1924
    [225]Pribyl P, Cepak V, Zachleder V. Cyloskelelal alleralions in interphase cells of the green alga Spiogyra decimina nickel and copper. Toxicology in Vitro,2008,22:1160-1168
    [226]Renaut J, Francois J, Hausman, et al. Proteomics and low-temperature studies:bridging the gap between gene expression and metabolism. Physiologia Plantarum,2005,126:97-109
    [227]Renaut J, Lutts S, Hoffmann L, et al. Responses of poplar to chilling temperature:proteomics and physiological aspects. Plant Biol,2004,6(1):81-90
    [228]Riccardi F, Gazeau P, de Vienne D, et al. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol,1998,117(4): 1253-1263
    [229]Robert R C, Bewlery J D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol,1980,65:245-248
    [230]Roberts E, Kutchan T, Kolahukudy P E. Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Molecular Biology,1988,11:15-26.
    [231]Sanders D, Pelloux J, Brownlee C, et al. Caleium at the crossroads of signaling. Plant Cell,2002, 14:5401-5417
    [232]Semane B, Dupae J, Cuypers A, et al. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. Journal of Plant Physiology,2010,167:247-254
    [233]Senaratna T, Mackay C E, Mckersie B D, et al. Uniconazole induced chilling to tomato and its relationship to antioxidant content. Plant Physiol,1988,133:56-61
    [234]Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull,2003,26: 129-36
    [235]Simon E W. Phospholipids and plant membrane permeability. New Phytol,1974,73:377-420
    [236]Singh O, Ralham N. A review of low temperatures stress resistance in sugarcane. Indian Sugar, 1999,49 (3):177-186
    [237]Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004,55:55-60
    [238]Stefanowska M, Kuras M, Kacperska A. Low temperature-induced modifications in cell ultastructure and localization of phenolics in winter oilseed rpae (Brassica napus L. var. oleifera L.) leaves. Annals of Botany,2002,90:637-645
    [239]Steponkus P L, Uemura M, Joseph R A, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA,1998,95:14570-14575
    [240]Stewart C R, Larher F. Accumulation of amino acids and related compounds in relation to environmental stress. Biochem Plant,1980,5:609-635
    [241]Thomashow M F. So what's new in the field of plant cold acclimation? Lots! Plant Physiol,2001, 125(1):89-93
    [242]Tongaonkar P, Chen L, Lambertson D, et al. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol,2000,20(13):4691-4698.
    [243]Valrio L, De Meyer M, Penel C, et al. Expression analysisof the Arabidopsis peroxidase multigenic family. Phytochemistry,2004,65(10):1331-1342.
    [244]Vassao D G, Kim S J, MillhollanI J K, et al. A pinoresinollariciresinol reductase homologue from the creosote bush catalyzes the efficient in vitro conversion of alcohol esters into the allyphenols chavicol. Archives of Biochemistry and Biophysics,2007,465(1):209-218.
    [245]Wasteneys G O. Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol,2004,7:651-660.
    [246]Wasteneysr G O, Galwayr M E. Remodeling the cytoskeleton for growth and form:An overview with some new views. Annual Review of Plant Biology,2003,54:691-722.
    [247]Welinder K G. Superfamily of plant, fungal and bacterial peroxidases. Curropin Struct Biol,1992, 2:388-393.
    [248]Williams K L, Gooley A A. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis,1998,19:837-844.
    [249]Wise R R, Naylor A W. Chilling-enhanced photo oxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physio 1, 1987,83(2):278-282
    [250]Xin Z, Browse J. Cold comfort farm:the acclimation of plants to freezing temperatures. Plant Cell and Environment,2000,23:893-902
    [251]Xiong L M, Karen S. Schumaker, Zhu J K. Cell signaling during cold, drought and salt stress. The Plant Cell,2002,165-183
    [252]Yan S P, Zhang Q Y, Tang Z C, et al. Comparative proteomic analysis provides new insight into chilling stress response in rice. Mol Cell Proteomics,2006,5(3):484-496
    [253]Yang L T, Hong L, Takahashi Y, et al. Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiol Mol Plant Pathol,2011,75(3):90-99
    [254]Yang L, Felix FB, Lin H, et al. Identification and characterization of proteomic expression of grapevines in response to Xylella fastidiosan. The annual meeting of the American Society of Plant Biologists, August 5-9, Boston, Massachusetts.2006, pp174
    [255]Yong X, Huang Y M, Xiong L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol,2007,144(3):1416-1428
    [256]Yoon S, Park J, Kim K. Calcineurin B-like proteins in rice can bind with calcium ion and associate with the Arabidopsis CIPK family members. Journal Plant Science,2009,177:577-583
    [257]Zhang J H, Huang W D, Pan Q, et al. Improvement of chilling tolerance and accumulation of heat shock proteins in grape berry by heat-pretreatment. Postharv Biol Technol,2005,38(1):80-90
    [258]Zhao Y, Du H, Wang Z, et al. Identification of proteins associated with water deficit tolerance in C4 perennial grass species, Cynodon dactylon x Cynodon transvaalensis and Cynodon daetylon. Physiologia Plantarum,2010,141:40-55
    [259]Zhu J H, Fu X M, Koo Y D, et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Molecular and Cellular Biology, 2007,27(14):5214-5224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700