用户名: 密码: 验证码:
水氮调控对棉花根系生长及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根土界面是土壤水分和养分进入植物体内的主要通道,根系是根土界面的核心内容与物质基础,其分布与功能直接或间接地影响着地上部生长以及整个植株的生存和发展。在作物赖以生存的农田土壤环境中,水肥是对作物根系影响最经常、也是最易被人工调控的因素。棉花是我国干旱区绿洲农业最重要的经济作物,研究通过改进灌溉技术和施肥方式,变动根土界面水肥状况及其在剖面的分布,以优化棉花根系形态与结构,调节生理特性,增强棉株对水肥的吸收能力,提高利用效率,对干旱区棉花大面积节水高产高效栽培具有重要意义。本研究在管栽条件下,从根域容积与滴灌深度两方面入手,设置不同的水氮用量,采用膜下滴灌随水施肥技术模式,研究了棉花根系生长空间受限条件下植株形态与生理的适应性变化及与产量形成的关系;同时进行大田试验,研究了不同产量水平下棉花根系形态生理及叶片生理特性的变化趋势;在综合研究的基础上,探讨了改变根系生长环境对根系形态生理的影响及与地上部生长发育的关系。主要研究内容与结果如下:
     1、研究了根域限制条件下不同水氮供应量对棉花根系形态特征的影响。根域限制条件下,棉花各土层根系根表面积指数(RAI)、根长密度(RLD)、根体积密度(RVD)、根质量密度(RMD)、根系生物量与根冠比均低于对照。不同水氮处理间上述各参数均表现为W_0N_0(水氮亏缺)>W_1N_0(氮素亏缺)>W_0N_1(水分亏缺)>W_1N_1(水氮适量),根域限制与水氮供应均使各土层根量减少。
     2、研究了根域限制条件下不同水氮供应量对棉花根系生理活性的影响。根域限制条件下,根系抗氧化保护酶系(SOD、POD、CAT)活性均显著低于对照。水氮供应能有效调节根系生理特性,不同水氮处理间棉花根系抗氧化保护酶系活性表现为W_1N_1>W_0N_1>W_1N_0>W_0N_0。在棉花根系生长受限条件下,优化生育期间水氮供应,可以增强根系抗氧化保护酶系活性,延缓根系衰老。
     3、研究了根域限制条件下不同水氮供应量对棉花叶片生理特性及产量的影响。与对照相比,相同水氮供应条件下,根域限制处理棉花从开花期至盛絮期叶片抗氧化保护酶系(SOD、POD、CAT)活性、叶片净光合速率(Pn)、气孔导度(Gs)和光化学猝灭系数(qp)均显著降低,但潜在最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)未受到影响;盛花期和盛絮期根系生物量均显著降低,但地上部生物量、蕾铃生物量及籽棉产量均显著高于对照。根域限制条件下适量水氮供应处理的地上部生物量和蕾铃生物量均显著增加,最终单株铃数、单铃重和籽棉产量均显著高于其它处理。棉花根域容积受限条件下,通过优化生育期水氮供应,可以改善叶片光合性能、增加地上部干物质积累量及其向生殖器官分配比例。
     4、研究了不同灌溉深度条件下不同水氮供应量对棉花根系形态特征的影响。0-40cm土层根系RVD、RMD、RAI与RLD均表现为CK(地表滴灌)>H_0(滴灌深为地下20cm)>H_1(滴灌深为地下40cm),而在40-80cm与80-120cm土层,上述各参数均表现为CK<H_0<H_1。水氮供应显著(P<0.05)减小根量,不同水氮处理间根系各形态参数、根系生物量与根冠比均表现为W_0N_0>W_1N_0>W_0N_1>W_1N_1。在土壤上层(0-40cm土层),随滴灌深度的增加及水氮供应均使根量减小,其中滴灌深度是主效因子。在灌溉深度下的各土层,水氮供应是根量减小的主效因子。
     5、研究了不同灌溉深度条件下不同水氮供应量对棉花根系生理特性的影响。不同灌溉深度间各土层根系抗氧化保护酶系(SOD、POD与CAT)活性均表现为H_0>CK>H_1,不同水氮供应间均表现为W_1N_1>W_0N_1>W_1N_0>W_0N_0。表明地下浅层滴灌与水氮供应均有助于提高根系抗氧化保护酶系活性,从整体上能延缓根系衰老。水氮供应是决定根系保护酶系活性的主效因子,适度水氮供应(W_1N_1)配合灌溉深度20cm(H_0)处理下根系保护酶系活性最高。
     6、研究了不同灌溉深度条件下不同水氮供应量对棉花叶片生理特性及产量的影响。灌溉深度、水氮处理对棉花叶片抗氧化保护酶系(SOD、POD与CAT)活性、叶片气体交换参数(Pn、Gs)、叶绿素荧光参数(Fv/Fm、ΦPSⅡ、qP)的影响与根系保护酶系活性的影响结果一致,灌溉深度与水氮供应的具有互作效应。植株地上部生物量与产量在各处理间表现均与Pn相同;而根系生物量、根冠比的表现与之相反。表明浅层滴灌配合适宜的水氮运筹有利于协调棉花植株地上部与地下部生长、缓解营养生长与生殖生长之间的矛盾,使资源达到最优化。
     7、研究了不同产量水平条件下大田棉花根系生长发育特性。在规模化种植的膜下滴灌棉田,随产量水平的提高,全土层RLD、RAI、RVD与RMD降低;根系与叶片抗氧化保护酶系(SOD、POD与CAT)及硝酸还原酶(NR)活性均随产量水平提高而增加;根冠比和根系生物量随产量水平的提高而降低,而地上部生物量、产量各构成因子均随产量水平提高而增加。在产量水平较高的棉田,根冠比降低与根系生理活性增强均能促进地上部的生长发育,优化产量结构与形成,最终提高产量。
     结合管栽试验与大田试验结果,综合分析棉花根系形态生理特征与地上部生物量及产量的关系,认为在干旱区膜下滴灌条件下,棉花产量水平提高,需要较高的地上部生物产量,但不一定需要较大的根系生长,根系适度缩小,可以降低根系冗余。从本文结果来看,大田棉花的根冠比以0.21-0.32为宜。通过膜下滴灌水肥调控,控制根系大小,提高根系生理(SOD、POD、CAT与NR)活性可作为棉花高产栽培的主攻方向,也是棉花品种遗传改良的根系形态与生理选择指标。
Root-soil interface is the main channels for soil water and nutrients into plants. Root isthe core content of the root-soil interface and the material basis, whose distribution andfunction directly or indirectly influence the growth of the aboveground and the survival anddevelopment of the whole plant. Cotton is the most important economic crop in oasisagriculture in arid areas in China. In the research, through improving irrigation andfertilization ways, changing root soil water status and its distribution in the section tooptimize the cotton root morphology, structure, and physiological characteristics. In turn, toenhance cotton plants water and fertilizer absorption and utilization efficiency, furthermore, torealize the high-efficient and high-yield and water-saving cultivation of cotton in arid areas isvery important. This research was conducted in pipe cultivation condtion and focused on twoaspects of the root domain volume and the irrigation depth, different water and nitrogenamount were set and the model of drip irrigation under membrane with fertilization wasadopted to study the relationship of morphological and physiological adaptations and yieldformation on cotton under the condition that root growth space is confined. At the same timethe field test experiment was carried out and the change trend of root morphological andphysiological and leaf physiological characteristics under different yield levels were observed.On the basis of comprehensive study, the influence of changing root growth environment onroot morphological and physiological traits and its relationship with the aboveground growth.
     The main research contents and results were as follows:
     1. Influence of water and nitrogen supply amount on root morphological characteristicsof cotton in root restriction was studied. Root surface area index (RAI), the root lengthdensity (RLD) and root volume density (RVD) and root mass density (RMD), root systembiomass and root shoot ratio were lower than controls in the root restriction. The aboveparameters among different water and nitrogen treatments were rank in the orde of W_0N_0(water and nitrogen deficit)>W_1N_0(nitrogen deficit)>W_0N_1(water deficit)>W_1N_1(water andnitrogen in moderation). The root restriction and water and nitrogen supply all reduce the rootquality.
     2. Influence of water and nitrogen supply amount on root physiological activity of cottonin root restriction was studied. Root antioxidant protective enzymes (SOD, POD, CAT)activity were significantly lower than control. Water and nitrogen supply effectively adjustedthe root growth. The activity of root protective enzyme system among different water andnitrogen treatments were rank in the orde of W_1N_1>W_0N_1>W_1N_0>W_0N_0. Under the conditionof root restriction, optimization of water and nitrogen supply during growth stages, enhancethe activity of root antioxidant protective enzyme system, postpone root senescence.
     3. Influence of water and nitrogen supply amount on leaf physiological characteristics and yield of cotton in root restriction was studied. Compared to the control, at the same waterand nitrogen supply, from flowering to full boll openning stage, leaf antioxidant protectiveenzymes (SOD, POD, CAT) activity, leaf net photosynthetic rate (Pn), stomatal conductance(Gs) and light chemical quenching coefficient (qP) were significantly lower, but the potentialmaximal photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII) werenot affected. At both full flowering stage and full boll openning stage, root biomass weresignificantly lower, but the aboveground biomass, bud and boll biomass and seed yield wereall significantly higher than the control. At the treatment of root restriction cooperatingmoderate water and nitrogen supply, the aboveground biomass, bud and boll biomass weresignificantly increased. Consequently, the boll number per plant, single boll weight and seedyield were all significantly higher than other treatments. Under the condition of root domainvolume limited, optimizing the water and nitrogen supply at growth stages, can improve leafphotosynthetic performance, increase dry matter accumulation aboveground and allocationproportion to the reproductive organs.
     4. Influence of different water and nitrogen supply on root morphological characteristicsof cotton under different irrigating depth was studied. In the0-40cm soil layer, RVD, RMD,RAI and RLD were in the order of CK(drip irrigation on the soil surface)> H_0(irrigationdepth was20cm underground)> H_1(irrigation depth was40cm underground). While in the40-80cm and80-120cm soil layers, the above parameters were shown as CK W_1N_0> W_0N_1> W_1N_1. In upper soil layer (0-40cm soil layer),root quality was reduced with the increase of the irrigation depth and the supply of water andnitrogen, and the depth of the irrigation was the main effect factor. In the soil layers underirrigation depth, the water and nitrogen supply became the main factor to reduce root amount.
     5. Influence of different water and nitrogen supply on root physiological characteristicsof cotton under different irrigating depth was studied. At different irrigating depths, rootantioxidant protective enzymes (SOD, POD and CAT) activity in each soil layer were shownas H_0> CK> H_1. At the different supply of water and nitrogen, root protective enzymesactivity performed W_1N_1> W_0N_1> W_1N_0> W_0N_0. This showed that shallow undergrounddrip irrigation and the supply of water and nitrogen were beneficial to improve the rootantioxidant activity of protective enzyme system, postpone root senescence on the whole.Water and nitrogen supply was the main effect factor to determine the root protective enzymesactivity. At the treatment of moderate water and nitrogen supply (W_1N_1) cooperating withirrigation depth20cm underground (H_0), root protective enzymes activity was the highest.
     6. Influence of different water and nitrogen supply on leaf physiological characteristics and yield of cotton under different irrigating depth was studied. The response of leafantioxidant protective enzymes (SOD, POD and CAT) activity, leaf gas exchangeparameters(Pn, Gs), and chlorophyll fluorescence parameters (Fv/Fm, Φ PS Ⅱ, qP) toirrigation depth, interaction among irrigation depth and water and nitrogen supply were allconsistent with root protective enzymes activity. Among all treatments, aboveground biomassof plant and yield were consistent with Pn, but the performance of root biomass androot-shoot ratio is on the contrary. This showed that shallow irrigation undergroun withappropriate water and nitrogen management is advantageous to the coordination of the growthaboveground and underground of cotton plant, alleviate the contradiction between vegetativegrowth and reproductive growth, to achieve optimization in resource.
     7. Using the cotton under-mulch-drip irrigation in the field in large scale as experimentalmaterial, the change of root system growth and development in the fields with different yieldlevels was studied. With the increase of yield levels, the total soil RLD, RAI, RVD and RMDdecreased; root and leaf antioxidant protective enzymes (SOD, POD and CAT) and nitratereductase (NR) activity increased. While the root-shoot ratio and root biomass reduced,aboveground biomass, yield and its components increased with the increase of yield levels. Incotton production with higher levels of yield, both the decrease of root-shoot ratio and theincrease of root physiological activity promoted the growth aboveground, optimized the yieldstructure and components, increased production eventually.
     Through the comprehensive analysis of the root morphological and physiologicalcharacteristics and the relationship with aboveground biomass and yield of cotton, theconclusion was drawn that in the condition of under-mulch-drip irrigation in arid areas, highaboveground biomass was necessary to improve the cotton yield level, but great root growthwas not necessary, root moderately shrinking reduced root redundancy. According to theresults from this paper, the root-shoot ratio of0.21-0.32of cotton in the field is optimum.Through the regulation of water and fertilizer under-mulch-drip irrigation to control the sizeof root system, increase root physiological activity (SOD, POD, CAT and NR) can be used asthe main direction of high yield cultivation and the selection indicators of root morphologyand physiology in genetic improvement of cotton varieties.
引文
[1]朱永官.土壤-植物系统中的微界面过程及其生态环境效应.环境科学学报,2003,23(2):205-210.
    [2] Mandal. Wheat-based intercropping and effects of irrigation and mulch on growth and yield. Indian Journal ofAgronomy,1991,36:23-29.
    [3]胡兆璋.积极促进兵团优质商品棉基地建设.新疆农垦科技,2007,(6):3-8.
    [4] Ferree D C,Myers S C,Schupp J R. Root pruning and root restriction of fruit trees-current review. Acta Horticulturae,1992,322(17): p.153-166
    [5]危常州,马富裕,雷咏雯,李俊华,冶军,张福锁.棉花膜下滴灌根系发育规律的研究.棉花学报,2002,14(4):209~214.
    [6] Lilley J M, Fukai S. Effect of timing and severity of water deficit on four diverse rice cultivars I. Rooting patern andsoil water extration. Field Crops Research,1994,37(3):205-213.
    [7]李话,张大勇.半干旱地区春小麦根系形态特征与生长冗余的初步研究.应用生态学报,1999.10(1):26-30.
    [8]李杰,张洪程,常勇,龚金龙,胡雅杰,龙厚元,戴其根,霍中洋,许轲,魏海燕,高辉.高产栽培条件下种植方式对超级稻根系形态生理特征的影响.作物学报,2011,37(12):2208-2220.
    [9]马富裕,严以绥.棉花膜下滴灌技术理论与实践.乌鲁木齐:新疆大学出版社,2002:74-81.
    [10] Waisel Y, Eshel A, Kafkafi U. Plant Root. NewYork: Marcel Dekker Press,2003.
    [11] Eissenstat D M, Yanai R D. The ecology of root life span. Advances in Ecological Research,1997,27:1-60
    [12] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and theirrelationships with shoot growth in super rice. Field Crops Research,2009,113:3140.
    [13]蔡昆争,骆世明,段舜山.水稻群体根系特征与地上部生长发育和产量的关系.华南农业大学学报(自然科学版),2003.24(3):1-4.
    [14] Fan J B, Zhang Y L, Turner D, Duan Y H, Wang D S, Shen Q R. Root physiological and morphologicalcharacteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere,2010,20:446-455.
    [15] Yoichiro K, Midori O. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobicand flooded conditions. Field Crops Research,2010,117:9-17.
    [16]郑圣先,聂军,戴平安,郑颖俊.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响.植物营养与肥料学报,2006,12(2):188-194.
    [17]刘岩,孙涛,李晶,魏湜.超稀植栽培不同处理对水稻根系的生长动态和氧化力及POD酶活性影响.黑龙江农业科学,2010,(6):21-23.
    [18] Thomas R B, strain B R. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown inelevated carbon dioxide. Plant Physiology,1991,96(2):627-634.
    [19]杨洪强,李林光,接玉玲.园艺植物的根系限制及其应用.园艺学报,2001,28(增刊):705-710.
    [20] Rieger Mark. Responses of young peach trees to root confinement. Journal of the American Society for HorticulturalScience,1994,119(2):223-228.
    [21] Peterson T A, Reinsel M D, Krizek D T. Tomato (Lycopersicon esculentum Mill., cv.‘Better Bush’) Plant Responseto Root Restriction. Journal of Experimental Botany,1991,42(10):1233-1240.
    [22] Whitfield C P, Davison A W, Ashenden T W. Interactive effects of ozone and soil volume on plantago major. NewPhytologist1996,134(2):287-294.
    [23] Mandre O. Interaction of root confinement and fruiting in peach. Journal of the American Society for HorticulturalScience,1995,120(2):228-234
    [24] Thomas T H. Effects of root restriction and growth regulator treatments on the growth of carrot (Daucus carota L.)seedlings. Plant Growth Regulation,1993,13(1):95-101.
    [25]张永清,苗果园.根土空间对高粱根系生理特性及产量的影响.应用生态学报,2006,17(4):635-639.
    [26]蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报,2003,23(6):1109-1116.
    [27]盛承发.生长的冗余—作物对于虫害超越补偿作用的一种解释.应用生态学报,1990,1(1):26-30.
    [28] Passioura J B. Roots and drought resistance. Agricultural Water Management,1983,7(1-3):265-280.
    [29] Ismaila M R, Daviesb W J. Root restriction affects leaf growth and stomatal response: the role of xylem sap ABA.Scientia Horticulturae,1998,74(4):257–268.
    [30] Hsu Y M, Tseng M J, Lin C H. Container Volume Affects Growth and Development of Wax-apple. Hortscience,1996,31(7):1139–1142
    [31] Marcvan I. Root restriction effects on growth and development of Salvia (Salvia splendens). HortScience1997,32(7):1186-1190.
    [32] Haver D, Schuch U, Influence of root restriction and ethylene exposure on apical dominance of petunia (Petunia xhybrida Hort. Vilm.-Andr.). Plant Growth Regulation,2001,35(2):187-196.
    [33] Xu G, Kafkafi U. Nutrient supply and container size effects on flowering, fruiting, assimilate allocation, and waterrelations of sweet pepper. Acta Horticulturae,2001,554:113-120.
    [34] Kimura K, Kikuchi S, Yamasaki S. Accurate root length measurement by image analysis. Plant Soil,1999.216(1-2):117-127.
    [35] Yong J W H, Stuart L D, Chin W S, Farquhar G D. Effects of root restriction on growth and associated cytokininlevels in cotton (Gossypium hirsutum). Functional Plant Biology,2010,37(10):974–984.
    [36]安慧,上官周平.根域限制和氮素水平对连翘幼苗生长的影响.生态学报,2007,27(4):1323-1332.
    [37] Will R E, Teskey R O. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis,water relations and foliar carbohydrate status of loblolly pine seedlings. Tree Physiology,1997,17(10):655-661.
    [38] Menzel C M, Turner D W, Doogan V J, Simpson D R. Root shoot interactions in passionfruit (Passiflora sp.) underthe influence of changing root volumes and soil temperatures. Journal of Horticultural Science,1994,69(3):553-564.
    [39] Dong H Z, Niu Y H, Li W J, Zhang D M. Effects of cotton rootstock on endogenous cytokinins and abscisic acid inxylem sap and leaves in relation to leaf senescence. Journal of Experimental Botany,2008,59(6):1295-1304.
    [40]马守臣,徐炳成,李凤民,黄占斌.根修剪对黄土旱塬冬小麦(Triticum aestivum)根系分布、根系效率及产量形成的影响.生态学报,2008.28(12):6172-6179.
    [41]王法宏,王旭清,刘素英,王晓理.根系分布与作物产量的关系研究进展.山东农业科学,1999,(4):48-51.
    [42]何华,康绍忠,曹红霞.地下滴灌埋管深度对冬小麦根冠生长及水分利用效率的影响.农业工程学报.2001,17(6):31-33.
    [43] Taylor H M, Nguyen H T. Opportunities for manipulating root system to reduce drought stress in wheat. UnitedKingdom: Chichester,1987:289-295.
    [44]李运生,王菱,刘士平,王吉顺.土壤-根系界面水分调控措施对冬小麦根系和产量的影响.生态学报,2002,22(10):1680-1687.
    [45]马瑞昆,蹇家利,贾秀领,刘淑贞.供水深度与冬小麦根系发育的关系.干旱地区农业研究,1991,(3):1-10.
    [46]韩建秋,王秀峰,张志国.表土干旱对白三叶根系分布和根活力的影响.农业工程科学,2007,23(3):458-461.
    [47]李凤民,郭安红,雒梅,赵松岭.土壤深层供水对冬小麦干物质生产的影响.应用生态学报,1997,8(6):575-579.
    [48]郭安红,魏虹,李凤民,赵松岭.土壤水分亏缺对春小麦根系干物质累积和分配的影响.生态学报,1999,19(2):179-184.
    [49]王小彬,代快,赵全胜,武雪萍,张丁辰,冯宗会,贾树龙,杨云马,蔡典雄.农田水氮关系及其协同管理.生态学报,2010,30(24):7001-7015.
    [50]詹其厚,陈杰.水肥配合对玉米产量及其利用效率的影响.土壤肥料,2005(4):14-18.
    [51]刘新永,田长彦.棉花膜下滴灌水氮耦合效应研究.植物营养与肥料学报,2007,13(2):286-291.
    [52]谢志良,田长彦,卞卫国.膜下滴灌水氮对棉花根系构型的影响.棉花学报,2009,21(6):508-514.
    [53]李志勇,陈明灿,王璞,翟志席.几种水氮模式处理下冬小麦根系生长的差异.麦类作物学报,2008,28(6):1031-1035.
    [54]张凤翔,周明耀,周春林,钱晓晴.水肥耦合对水稻根系形态与活力的影响.农业工程学报,2006,22(5):197-200.
    [55]顾东祥,汤亮,徐其军,雷晓俊,曹卫星,朱艳.水氮处理下不同品种水稻根系生长分布特征.植物生态学报,2011,35(5):558–566.
    [56]刘瑞显,陈兵林,王友华,郭文琦,周治国.氮素对花铃期干旱再复水后棉花根系生长的影响.植物生态学报,2009,33(2):405-413.
    [57]郝云红,胡艳丽,沈向,毛志泉,王元征,苏立涛,杨树泉.外源硝态氮提高淹水甜樱桃根系糖含量及蔗糖相关酶活性.园艺学报,2009,36(7):937-944.
    [58]王闯,胡艳丽,高相彬,沈向,郝云红,毛志泉.硝态氮对淹水条件下甜樱桃根系呼吸速率及相关酶活性的影响.植物营养与肥料学报,2009,15(6):1433-1438.
    [59] Kaiser W M,Weiner H,Huber S C. Nitrate reductase in higher plants: A case study for transduction of environmentalstimuli into control of catalytic activity. Planta,1999,105:385-390.
    [60]刘殿英,石立岩,黄炳茹,董庆裕.栽培措施对冬小麦根系及其活力和植株性状的影响.中国农业科学,1993,26(5):51-56.
    [61]李培岭,张富仓.不同滴灌方式下棉花生物量和产量的水氮调控效应.应用生态学报,2010,21(11):2814-2820.
    [62]郭文琦,赵新华,陈兵林,刘瑞显,周治国.氮素对花铃期短期渍水棉花根系生长的影响.作物学报,2009,35(6):1078-1085.
    [63]刘瑞显,王友华,陈兵林,郭文琦,周治国.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响.作物学报,2008,34(4):675-683.
    [64]周秀杰,王海红,束良佐,祝鹏飞,申建波,李忠正,梁陈.局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响.应用生态学报,2010,21(8):2017-2024.
    [65]陈德华,肖书林,王志国.棉花超高产群体质量与产量关系研究.棉花学报,1996,8(4):199-203.
    [66]张宏芝,干秀霞,虎晓兵,李善龙,罗宏海,张旺锋.膜下滴灌水氮运筹方式对棉花叶片衰老及产量和品质的影响.石河子大学学报(自然科学版),2010,28(6):661-668.
    [67]刘小刚,张富仓,田育丰,李志军.水氮处理对玉米根区水氮迁移和利用的影响.农业工程学报,2008,24(11):19-24.
    [68]刘新永,田长彦,马英杰,刘宏萍.南疆膜下滴灌棉花耗水规律以及灌溉制度研究.干旱地区农业研究,2006,24(1):108-112.
    [69] Hebbar K B, Perumal N K, Khadi B M. Photosynthesis and plant growth response of transgenic Bt cotton(Gossypium hirsutum L.) hybrids under field condition. Photosynthetica,2007,45(2):254-258
    [70]张耗,黄钻华,王静超,王志琴,杨建昌.江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系.作物学报,2011,37(6):1020-1030.
    [71]柴世伟,刘文兆,李秧秧.伤根对玉米光合作用和水分利用效率的影响.应用生态学报,2002,13(12):1716-1718.
    [72]王法宏,王旭清,李松坚,于振文,余松烈.小麦根系扩展深度对旗叶衰老及光合产物分配的影响.麦类作物学报,2003,23(1):53-57.
    [73] Blum A, Johnson J W. Wheat cultivars respond differently to a drying top soil and a possible non-hydraulic rootsignal. Journal of Experimental Botany,1993,44:1149-1153.
    [74] Gallardo M, Turner N C, Ludwig C. Water relation, gas exchange and abscisic acid content of Lupinus cosentiniileaves in response to drying different proportions of the root system. Journal of Experimental Botany,1994,45:909-918.
    [75] Schurr U. Xylem sap sampling—new approaches to an old topic. Trends in Plant Science,1998,3(8):293-298.
    [76] Itoh S. In situ measurement of rooting density by micro-rhizotron. Soil Science and Plant Nutrition,1985,31(4):653-656.
    [77] Weaver J E. Root Development of Field Crops. New York: Mc Graw-Hill Book Company,1926.
    [78]宋海星,李生秀.玉米生长空间对根系吸收特性的影响.中国农业科学,2003,36(8):899-904.
    [79]苗果园,高志强,张云亭,尹钧,张爱良.水肥对小麦根系整体影响及其与地上部相关的研究.作物学报,2002,28(4):445-450.
    [80] Bonser A M, Lynch J P, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in phaseolusvulgaris. New Phytologist,1996,132:281-288.
    [81] Marschner H, Kirkby E A, Cakma K T. Effect of mineral nutritional status on shoot root partitioning of photoassilatesand cycling of mineral nutrients. The Journal of Experimental Botany,1996,47:1255-1263.
    [82]张立桢,曹卫星,张思平,周治国.棉花根系生长和空间分布特征.植物生态学报,2005,29(2):266-273.
    [83]阎素红,杨兆生,王俊娟,李铁庄,王海峰.不同类型小麦品种根系生长特性研究.中国农业科学,2002,35(8):906-910.
    [84] Casper B B, Jackson R B. Plant competition underground. Annual Review of Ecology and Systematics,1997.28(1):545-570.
    [85] Gerntson G M. Modelling root architecture: are there tradeoffs between efficiency and potential of resourceacquisition. New Physiologist,1994,127(3):483-493.
    [86]张大勇,姜新华,赵松龄.再论生长的冗余.草业学报,1995,4(3):17-22.
    [87]马守臣,徐炳成,李凤民,黄占斌.根修剪对黄土旱塬冬小麦(Triticum aestivum)根系分布、根系效率及产量形成的影响.生态学报,2008,28(12):6172-6179.
    [88]卢彩玉,黄春辉,郑小艳,贾惠娟,卢如国,滕元文.根域限制对巨玫瑰葡萄果实外观色素及内在品质的影响.果树学报,2009,26(5):719-724.
    [89]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:169-172.
    [90] Yang J C, Zhang J H, Wang Z Q. Abscisic acid and cytokinins in the root exudates and leaves and their relationship tosenescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta,2002,215(4):645-652.
    [91]魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究.应用生态学报,2004,15(9):1565-1569.
    [92]王忠.植物生理学.北京:中国农业出版社,2000:422-423.
    [93]潘庆民,于振文,王月福,王瑞英.小麦开花后不同土层根系的两种衰老指标与iPAs及ABA含量的变化.植物生理学通讯,1999,35(6):449-451.
    [94]刘建军,陈燕华,李明思.膜下滴灌棉花植株耗水率与土壤水分的关系.棉花学报,2002,14(4):200-203.
    [95] Beevers L, Schrader L E, Flesher D, Hageman R H. The role of light and nitrate in the induction of nitrate reductasein radish cotyledons and maize seedlings. Plant Physiology,1965,40:691-698.
    [96]范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响.土壤学报,2005,42(5):875-879.
    [97] Kharkina T G, Ottosen C O, Rosenqvist E. Effects of root restriction on the growth and physiology of cucumberplants. Physiologia Plantarum,1999,105(3):434–441.
    [98] Markewitz D, Devine S, Davidson E A. Brando P, Nepstad D C. Soil moisture depletion under simulated drought inthe Amazon: impacts on deep root uptake. The New Phytologist,2010,187(3):592–607.
    [99] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of invivo photosynthesis. In: Schulze E D, Caldwell M M, eds. Ecophysiology of Photosynthesis. Berlin, Germany:Springer-Verlag,1994.
    [100]许明,贾德涛,马殿荣,王嘉宇,苗微,陈温福.北方超级粳稻根系生理、叶片光合性能特点及其相互关系.作物学报,2010,36(6):1030-1036.
    [101]李少昆,王崇桃,汪朝阳,张旺锋.北疆高产棉花根系构型与动态建成的研究.棉花学报,2000,12(2):67-72.
    [102] Liu R X, Zhou Z G., Guo W Q, Chen B L, Oosterhuis D M. Effects of N fertilization on root development andactivity of water-stressed cotton (Gossypium hirsutum L.) plants. Agricultural Water Management,2008,95(11):1261-1270.
    [103]刘瑞显,郭文琦,陈兵林,周治国.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响.作物学报,2008,34(9):1598-1607.
    [104] Dodd Ian C. Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signallingin planta. Plant Soil,2005,274(1-2):251–270.
    [105] Tschaplinski T J, Blake T J. Effects of root restriction on growth correlations, water relations and senescence of alderseedlings. Physiologia Plantarum,1985,64(2):167-176.
    [106] Thomas R B, strain B R. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown inelevated carbon dioxide. Plant Physiology,1991,96(2):627-634.
    [107]宋海星,李生秀.限根条件下供氮对玉米光合作用有关生理特性的影响.干旱地区农业研究,2004,22(4):28-32.
    [108]罗宏海,张宏芝,杜明伟,黄建军,张亚黎,张旺锋.膜下滴灌下土壤深层水分对棉花根系生理及叶片光合特性的调节效应.应用生态学报,2009,20(6):1337-1345.
    [109]谢志良,田长彦,卞卫国.膜下滴灌水氮对棉花根系构型的影响.棉花学报,2009,21(6):508-514.
    [110]宋海星,李生秀.玉米生长空间对根系吸收特性的影响.中国农业科学,2003,36(8):899-904.
    [111]刘瑞显,郭文琦,陈兵林,周治国.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响.作物学报,2008,34(9):1598-1607.
    [112] Johnson G N, Youn G A J, Scholes J D, Horton P.The dissipation of excess excitation energy in British plant species.Plant, Cell&Environment,1993,16(6):673-679.
    [113]张旺锋,勾玲,王振林,李少昆,余松烈,曹连莆.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响.中国农业科学,2003,36(8):893–898.
    [114] Siddique K H M, Belford R K, Tennant D. Root:shoot ratio of old and modern,tall and semi-dwarf wheats in amediterranean environment. Plant and Soil,1990.121:89-98.
    [115]何华,康绍忠.灌溉施肥深度对玉米同化物分配和水分利用效率的影响.植物生态学报,2002,26(4):454-458.
    [116]李运生,王菱,刘士平,王吉顺.土壤-根系界面水分调控措施对冬小麦根系和产量的影响.生态学报,2002,22(10):1680-1687.
    [117] Entz M H, Gross K G, Fowler D B, Root growth and soil water extraction by winter and spring wheat. CanadianJournal of Plant Science,1992,72:1109-1120
    [118] Pearson R W. Significance of rooting pattern to crop production and some problems of root research. In: Carson E. V.ed. The plant root and its environment. Charlottesville University Press of Virginia,1974:247-270.
    [119]王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响.农业工程学报,2006,22(2):27-32.
    [120]王永华,王玉杰,冯伟,王晨阳,胡卫丽,轩红梅,郭天财.两种气候年型下不同栽培模式对冬小麦根系时空分布及产量的影响.中国农业科学,2012,45(14):2826-2837.
    [121]杨荣,苏永中.水氮供应对棉花花铃期净光合速率及产量的调控效应.植物营养与肥料学报,2011,17(2):404-410.
    [122] Zhang D Y, Wang G. Evolutionarily stable reproductive strategies in sexual organisms: an integrated approach to lifehistory evolution and sex allocation. American Naturalist,1994,144:65-75.
    [123]刘洪光,郑旭荣,王振华,李玉芳.地下滴灌不同灌水量对棉花耗水量和产量影响研究.节水灌溉,2009,(2):12-13.
    [124]王亚琴,梁承邺,黄江康.植物叶片衰老的特性基因表达及调控.华南农业大学学报(自然科学版),2002,23(3):87-91.
    [125]汤玉玮,林振武,陈敬祥.硝酸还原酶与作物耐肥性的相关性及其在生化育种上应用的探讨.中国农业科学,1985(6):39-45.
    [126]马守臣,徐炳成,李凤民,黄占斌,王锐.根修剪对黄土旱塬冬小麦群体结构、土壤水分及产量形成的影响.水土保持学报,2008,22(3):192-195.
    [127]张宪政.植物叶绿素含量测定——丙酮乙醇混合液法.辽宁农业科学,1986,(3):26-28.
    [128] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transportand quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta,1989,990(1):87-92.
    [129] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiologyand Plant Molecular Biology,1991,42:313-349.
    [130]吴岳轩,吴振球.杂交稻根系代谢活性与叶片衰老进程相关研究.杂交水稻,1992(6):36-39.
    [131]葛体达,隋方功,白莉萍,吕银燕,周广胜.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响.中国农业科学,2005,38(5):922-928.
    [132]阎红丽,邹养军,马锋旺,刘丙花.不同深度滴灌对苹果幼苗生长及生理特性的影响.节水灌溉,2012,(3):29-32.
    [133] Tardieu F, Davis W J. Integration of hydraulic and chemical signaling in the control of stomatal conductance andwater status of droughted plants. Plant, Cell and Environment,1993,16:341-349.
    [134]林世青,许春晖,张其德,徐黎,毛大璋.匡廷云叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16.
    [135] Maxwell K, Johnson G N. Chlorophyll fluorescence-A practical guide. Journal of Experiment Botany,2000,51:659-668.
    [136] Lilley J M, Fukai S. Effect of timing and severity of water deficit on four diverse rice cultivars I. Rooting pattern andsoil water extraction. Field Crops Research,1994.37(3):205–213.
    [137]赵松岭,李凤民,张大勇,段舜山.作物生产是一个种群过程.生态学报,1997,17(1):100-104.
    [138]吴冬秀,韦文珊,张淑敏.陆地生态系统生物观测规范.北京:中国环境科学出版社.2007:191-193.
    [139]刘连涛,李村东,孙红春,张永江,白志英,冯丽肖.氮素营养水平对棉花衰老的影响及其生理机制.中国农业科学,2009,42(5):1575-1581.
    [140]宋海星,李生秀.限根条件下供氮对玉米光合作用有关生理特性的影响.干旱地区农业研究,2004,22(4):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700