用户名: 密码: 验证码:
黑木耳黑色素对细菌群体感应调控行为的抑制及其抗氧化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑木耳(Auricularia auricula)以“黑”而出名,但有关黑木耳子实体中黑色素的研究目前却鲜见报道。黑色素是一类结构复杂多样的多聚芳香族化合物的总称,它不仅是一类光保护剂、抗辐射剂、鳌合剂、生物抗氧化剂和免疫促进剂,而且还可用作生物半导体材料和光电传递材料,黑色素还具有抗蛇毒、抗癌、抑制艾滋病毒复制、治疗帕金森症等作用,因此黑色素在医药、化妆品、食品、电子等方面有着广泛的应用前景。目前,黑色素的生产主要依靠化学合成,而源自动植物的天然色素由于受到季节、气候及地理区域限制等,不能满足实际需求。黑木耳是我国珍贵的药食两用菌,其黑色素安全性极高,应用范围很广,开展黑木耳色素的提取纯化及其生物活性研究,特别是对群体感应调控行为的抑制作用及抗氧化活性研究,无论是对黑木耳的高附加值综合利用和深加工开发,还是对黑色素的深入研究都具有十分重要的理论意义和实用价值。主要研究结果如下:
     1.采用超声波辅助的碱提酸沉法提取黑木耳子实体黑色素,并采用强酸水解、有机溶剂洗涤和反复沉淀的方法得到了纯化的黑木耳黑色素。对纯化后的黑木耳黑色素通过化学测试、紫外光谱分析、红外光谱分析、电子顺磁共振波谱分析和元素分析进行了鉴定。结果表明,黑木耳黑色素不溶于水和常见的有机溶剂,但在1.5mol/L NaOH溶液中完全溶解;黑木耳黑色素的最大吸收波长在210nm,黑木耳黑色素的吸光度的对数对波长作图斜率为-0.0028;红外光谱中在3287.6cm-1附近和1619.4cm-1附近各有一个强的吸收带;电子顺磁共振波谱为典型的单线一次微商波谱,无超精细结构,g=2.0042;黑色素的S:N为0.08。
     2.采用报告平板检测法和紫色杆菌素提取法研究了黑木耳黑色素对紫色杆菌(Chromobacterium violaceum CV026)群体感应系统的抑制作用。结果表明,黑木耳黑色素可以有效抑制C.violaceum CV026紫色杆菌素的产生,其抑制作用与黑色素浓度呈明显的量效关系,但是对C.violaceum CV026的生长无明显的抑制。
     3.铜绿假单胞菌(Pseudomonas aeruginosa PAO1)浮游现象已经被公认是群体感应调控的行为。我们采用双层平板法研究了黑木耳黑色素对铜绿假单胞菌浮游现象的影响。结果表明,黑木耳黑色素在低于P. aeruginosa PAO1最低抑菌浓度下,可以有效抑制P. aerugionsa PAO1的浮游现象。随着浓度的增大,抑制率从21.06%到94.25%。
     4.通过定性和定量两种方法检测了黑木耳黑色素对大肠杆菌(Escherichia coli K-12、.铜绿假单胞菌(P.aeruginosa PAO1)以及荧光假单胞菌(P.fluorescens P-3)形成生物膜能力的影响。结果表明,黑木耳黑色素在低于最低抑菌浓度下(sub-MIC),可以明显抑制3株细菌生物膜的形成,其抑制作用与黑色素浓度呈现明显的量效关系。当黑木耳黑色素浓度达到80μg/mL时,其对E. coli K-12、P. aeruginosa PAO1和P.fluorescens P-3生物膜形成的抑制率分别达到73.78%、53.01%和55.58%。
     5.研究了黑木耳黑色素结合防腐剂山梨酸钾、ε-多聚赖氨酸和Nisin同时使用对E. coli K-12、P. aeruginosa PAO1以及P.fluorescens P-3生物膜的影响,结果表明,在低于最低抑菌浓度下,黑木耳黑色素可显著降低防腐剂对3株供试菌的最低生物膜消除浓度。采用激光共聚焦显微镜观察证实,80μg/mL的黑木耳黑色素对大肠杆菌、铜绿假单胞菌和荧光假单胞菌成熟生物膜有不同程度的破坏作用,其破坏率分别达到41.99%、36.28%和40.25%。
     6.通过DPPH自由基、超氧自由基以及羟自由基的清除试验发现黑木耳黑色素具有清除体外自由基的活性,其活性在一定浓度范围内随着浓度的增大而增强,对羟基自由基清除活性尤为明显。
     综上所述,采用超声波辅助的碱提酸沉法提取并采用强酸水解、有机溶剂洗涤和反复沉淀纯化的黑木耳黑色素是一种真黑色素(Eumelanins),具有典型的天然真黑色素溶解性、紫外光谱、红外光谱、电子顺磁共振波谱特征。纯化的黑木耳黑色素对细菌群体感应调控行为(紫色杆菌色素产生、铜绿假单胞菌浮游现象以及细菌生物膜形成)有显著抑制作用并对体外DPPH自由基、超氧自由基以及羟自由基有明显清除效果。因此,黑木耳黑色素有作为天然的群体感应抑制剂和抗氧化剂的潜力,有望应用于食品和医药等工业领域。
Auricularia auricula is well known for black, but there is sparse for the characterization and biological activity studies on A. auricula melanin. Melains are not only a kind of photoprotectants, chelators, bio-antioxidants and immuno-stimulators but also a kind of amorphous organic semiconductors, photoconductors and electrical conductors. They have many bio-activities such as anti-venom, antitumor, inhibiting HIV replication and protection against Parkinson disease. So they have a vast range of prospects for making use in functional food industry, cosmetic, medicine, pharmacy, bioelectronics and other fields. At present, the production of melanin is mainly rely on the synthesis, and natural melanin that is got from plants and animals can not meet the actual demand because of seasonal, climatic and geographical constraints. A. auricula is a precious edible fungus both for medicine and food. A. auricula has widely application and high security. To study the extraction, purification and biological activity of A. auricula melanin is of great importance in theoretical and practical. It can improve its added-value and deep processing, and it is also useful for further investigations of melanin. The main results were as follows:
     1. A. auricula melanin was extracted with NaOH and HCl. Purified melanin was obtained by using strong acid hydrolysis and washing by organic solvents. It was characterized by chemical tests, ultraviolet-visible (UV) absorption spectrum, infrared (IR) spectroscopy, electron paramagnetic resonance (EPR) and elemental analysis. The melanin was insoluble in both water and organic solvents, and dissolved in1.5mol/L NaOH. The overall characteristic absorption peak was showed at210nm, and the log of optical density of the melanin solution when plotted against wavelength produces a linear curve with negative slopes of-0.0028. The IR spectrum of the melanin exhibited broad absorption band at3287.6cm-1and1619.4cm-1. The EPR spectrum was a typical single first derivative spectrum, and the melanin did not have hyperfine structure. The peak at2.0042(G value) of the pigment indicated it is melanin. The S:N of the melanin is0.08.
     2. The biological methods of reporter agar diffusion assay and extraction of violacein were used to determine the capacity of QSI for A. auricula melanin. The results showed that A. auricula melanin did not inhibit the growth of C. violaceum CV026, but it can inhibit the production of violacein. Inhibition with the concentration of the melanin showed significant dose-effect relationship.
     3. The swarming motility in P. aeruginosa PAO1was recognized as QS regulation of behavior. It was screened using agar diffusion method. The results showed that A. auricula melanin reduced swarming motility in P. aerugionsa PAO1at sub-MIC. As the concentration increases, the inhibition rate was from21.06%to94.25%.
     4. The influence on biofilm formation of E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3by A. auricula melanin was checked. The results of qualitative and quantitative methods showed that the A. auricula melanin can inhibit biofilm formation of E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3at sub-MIC. Furthermore, we studied the inhibition of biofilm formation of E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3by A. auricula melanin at different concentrations and found that inhibition with the concentration of the melanin showed significant dose-effect relationship. The percentage inhibition of biofilm formation by A. auricula melanin at a concentration of80μg/mL were73.78%,53.01%and55.58%, respectively.
     5. The influence on mature biofilm of E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3by A. auricula melanin with potassium sorbate, ε-polylysine and Nisin was checked. Sub-MIC of A. auricula melanin can reduce the minimum biofilm bacterium elimination concentration (MBEC) of the preservative to E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3significantly. The confocal laser scanning microscopy (CLSM) images showed that the80μg/mL of A. auricula melanin can damage the mature biofilm of E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3. The failure rate were41.99%,36.28%and40.25%, respectively.
     6. Using DPPH, superoxide and hydroxyl radical scavenging assay, the A. auricula melanin exhibited a moderate antioxidant activity. It is clearly demonstrated that free radical scavenging increases with increasing melanin concentration. A. auricula melanin had strong scavenging activity on hydroxyl radical.
     Therefore, A. auricula melanin that was extracted with NaOH and HC1and purified by using strong acid hydrolysis and organic solvent was eumelanins. It had the typical characteristics of the natural melanin (including solubility, UV spectroscopy, IR spectroscopy, EPR). Purified A. auricula melanin can inhibit the production of violacein of C, violaceum CV026, reduce swarming motility in P. aerugionsa PAO1and inhibit biofilm formation of E. coli K-12, P. aeruginosa PAO1and P. fluorescens P-3. A. auricula melanin also can scavenge DPPH, superoxide and hydroxyl. A. auricula melanin can be used as a natural QSI and antioxidant in food and pharmaceutical industries.
引文
[1]Fogarty RV, Tobin JM. Fungal melanins and their interactions with metals [J]. Enzyme and Microbial Technology,1996,19(4):311-317.
    [2]Alois AB, Michael HW. Biosynthesis and functions of fungal melanins [J]. Annual Review of Phytopathology,1986,24:411-451.
    [3]Kolloas N. New trends in photobiology phytoprotection by melanins [J]. Photochem Photobiol,1991, 9:135-160.
    [4]张莲姬,张敬爱.黑木耳中黑色素的提取及其稳定性研究[J].山东农业大学学报(自然科学版),2006,37(3):369-371.
    [5]孙玲,张名位,池建伟,等.黑芝麻色素的提取条件和稳定性研究[J].中国粮油学报,1998,20(4):39-41.
    [6]Sava V, Yang SM, Hong MY, et al. Isolation and characterization of melanin pigments derived from tea and tea polyphenols [J]. Food Chemistry,2001,73(2):337-343.
    [7]王恒山,潘英明.桂花种子皮黑色素的提取及其抗氧化活性研究[J].云南大学学报,2004,26(6A):55-57.
    [8]Harki E, Talou T, Dargent R. Purification, characterization and analysis of melanin extracted from Tuber melanosporum Vitt [J]. Food Chemistry,1997,58(1/2):69-73.
    [9]Prota G. Melanins and melanogenesis [M]. San-Diego:Academ Press,1992,1-290.
    [10]Reedy MV, Parichy DM, Erickson CA, et al. The Pigmentary System:Physiology and Pathophysiology [M]. Oxford:Oxford University Press,1998,75-95.
    [11]蒋丽金.天然色素和色素蛋白生物光化学[C].北京:中国科学院感光化学研究所.1983,231-240.
    [12]陈运中.天然色素的生产及应用[M].北京:中国轻工业出版社,2007:159-172.
    [13]霍夫里特M,斯泰因比希尔A.生物高分子:第一卷木质素、腐殖质和煤[M].郭圣荣,译.北京:化学工业出版社,2004:251-273.
    [14]Stevens LH, Davelaar E, Kolb RM, et al. Tyrosine and cysteine are substrates for blackspot synthesis in potato [J]. Phytochemistry,1998,49:703-707.
    [15]Bell AA, Wheeler MH. Biosythesis and functions of melanins [J]. Annual Review of Phytopathology,1986,24:411-451.
    [16]Butler MJ, Day AW. Fungal melanins:A review [J]. Canadian Journal of Microbiology,1998, 44(12):1115-1136.
    [17]Vanden BH, Stevens DA. Host-Fungus Interplay [M]. Bethesda:National Foundation for Infectious diseases,1997:81-93.
    [18]Henson JM, Butler MJ, Day AW. The Dark Side of the Mycelium:Melanins of Phytopathogenic Fungi [J]. Annual Review of Phytopathology.1999,37:447-471.
    [19]McKeown TA, Moss ST, Jones EBG.Ultrastructure of the melanized ascospores of Corollospora fusca [J]. Canadian Journal of Botany,1996,74(1):60-66.
    [20]Frederick BA, Caesar-Tonthat TC, Wheeler MH, et al. Isolation and characterization of Gaeumannomyces graminis var. graminis melanin mutants [J]. Mycological Research,1999,103: 99-110.
    [21]Coon SL, Kotob S, Jarvis B B, et al. Homogentisic acid is the product of Mel A, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D [J]. Applied and Environmental Microbiology,1994,60(8):3006-3010.
    [22]Coyne VE, Al-Harthi L. Induction of melanin biosynthesis in Vibrio cholerae [J]. Applied and Environmental Microbiology,1992,58(9):2861-2865.
    [23]Mercado-Blanco J, Garcia F, Fernandez-L6pez M, et al. Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b:cloning, sequencing, and expression of the tyrosinase gene mepA [J]. Journal of Bacteriology,1993,175(17):5403-5410.
    [24]Agodi A. Study of a Melanic Pigment of Proteus mirabilis [J]. Research in Microbiology,1996, 147:167-174.
    [25]Nicolaus RA. Melanins [M]. Paris:Hermann press,1968:1-310.
    [26]Hertz W, Grisenbach H, Kirby GW. Fortschritte der chemie Organische Naturstoffe [M]. Wein: Springer Verlag,1974:522-582.
    [27]Prota G. Recent advances in the chemistry of melanogenesis in mammals [J]. Journal of Investigative Dermatology,1980,75(1):122-127.
    [28]Mayer AM, Harel E. Polyphenoloxidases in plants [J]. Phytochemistry,1979,18:193-215.
    [29]王琴,陈晓东.天然黑素结构分析进展[J].江西中医学院学报,2006,18(2):78-80.
    [30]付湘晋.我国天然黑色素资源研究概况[J].粮食与油脂,2005,12:42-45.
    [31]Bonner TG, Duncan A. Infrared spectra of some melanins [J]. Nature,1962,194:1078-1079.
    [32]Shurygina EA, Larina NK, Chubarova MA, et al. Differential thermal analysis (DTA) and thermogravimetry (TG) of soil humus substances [J]. Geoderma,1971,6(3):169-177.
    [33]Filip Z, Haider K, Beutelspacher H, et al. Comparisons of IR-spectra from melanins of microscopic soil fungi, humic acids and model phenol polymers [J]. Geoderma,1974,11(1):37-52.
    [34]Pierce JA, Rast DM. A comparison of native and synthetic mushroom melanins by fourier-transform infrared spectroscopy [J]. Phytochemistry,1995,39(1):49-55.
    [35]Bilinska B, Kolczynska U, Wilczok T. Infrared studies of melanin-iron complexes [J]. Studio Biophysica,1987,122:157-163.
    [36]Stainsack J,Mangrich AS, Maia CMBF, et al. Spectroscopic investigation of hard and soft metal binding sites in synthetic melanin [J]. Inorganica Chimica Acta,2003,356:243-248.
    [37]Turick CE, Caccavo F, Tisa LS. Electron transfer from Shewanella algae BrY to hydrous ferric oxide is mediated by cell-associated melanin [J]. FEMS Microbiology Letters,2003,220(1): 99-104.
    [38]陈晓东,万仁甫,徐伟亚.泰和乌骨鸡黑色素及其Cu2+、Fe3+配合物的红外光谱研究[J].中药材,2006,29(6):537-539.
    [39]Bilinska B. On the structure of human hair melanins from an infrared spectroscopy analysis of their interactions with Cu2+ ions [J]. Spectrochimica Acta Part A,2001,57:2525-2533.
    [40]Hong L, Simon JD. Insight into the binding of divalent cations to sepia eumelanin from IR absorption spectroscopy [J]. Photochemistry and Photobiology,2006,82(5):1265-1269.
    [41]Enochs WS, Nilges MJ, Swartz HM. Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra:Characterization by electron paramagnetic resonance spectroscopy [J]. Journal of Neurochemistry,1993,61(1):68-79.
    [42]Enochs WS, Nilges MJ, Swartz HM. The minocycline-induced thyroid pigment and several synthetic models:identification and characterization by electron paramagnetic resonance spectroscopy [J]. Journal of Pharmacology and Experimental Therapeutics,1993,266(3): 1164-1176.
    [43]Enochs WS, Nilges MJ, Swartz HM. A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy [J]. Pigment Cell Research, 1993,6(2):91-99.
    [44]Mosca L, Blarzino C, Coccia R, et al. Melanins from tetrahydroisoquinolines:Spectroscopic characteristics, scavenging activity and redox transfer properties [J]. Free Radical Biology and Medicine,1998,24(1):161-167.
    [45]Fan J, Wu BX, Sarna T, et al.9-cis retinal increased in retina of RPE65 Knockout mice with decrease in coat pigmentation [J]. Photochemistry and Photobiology,2006,82(6):1461-1467.
    [46]王玉洁,符坚,刘楠,等.重要的生物资源黑色素及其功能的机理[J].氨基酸和生物资源,2003,25(1):12-14.
    [47]田禾,苏建华,孟凡顺,等.功能性色素在高新技术中的应用[M].北京:化学工业出版社,2000:144-200.
    [48]Menter JM, Willis I. Electron transfer and photoprotective properties of melanins in solution [J]. Pigment Cell Research,1997,10:214-217.
    [49]Cesarini JP. Melanins and their possible roles through biological evolution [J]. Advances in SpaceResearch,1996,18(12):35-40.
    [50]Knorle R, Schniz E, Feuerstein TJ. Drug accumulation in melanin:an affinity chromatographic study [J]. Journal of Chromatography. B, Biomedical Sciences and Applications,1998,714(2): 171-179.
    [51]Zecca L, Mecacci C, Seraglia R, et al. The chemical characterization of melanin contained in substantia nigra of human brain [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,1992,1138(1):6-10.
    [52]Krol ES, Liebler DC. Photoprotective actions of natural and synthetic melanins [J]. Chemical Research in Toxicology,1998,11:1434-40.
    [53]Vitkin IA, Woolsey J, Wilson BC, et al. Optical and thermal characterization of natural (Sepia officinalis) melanin [J]. Photochemistry and Photobiology,1994,59(4):455-462.
    [54]Mizutani U, Massalski TB, McGinness JE, et al. Low temperature specific heat anomalies in melanins and tumour melanosomes [J]. Nature,1976,259(5543):505-507.
    [55]Jastrzebska MM, Stepien K, Wilczok J, et al. Semiconductor properties of melanins prepared from catecholamines [J]. General Physiology and Biophysics,1990,9(4):373-383.
    [56]Niecke M, Heid M, Kruger A. Correlations between melanin pigmentation and element concentration in feathers of White-tailed Eagles (Haliaeetus albicilla) [J]. Journal of Ornithology, 1999,140(3):355-362.
    [57]Koch PB, Kaufmann N. Pattern specific melanin synthesis and DOPA decarboxylase:activity in a butterfly wing of Precis coenia Hubner [J]. Insect Biochemistry and Molecular Biology,1995,25(1): 73-82.
    [58]Bonser RHC. Melanin and the Abrasion Resistance of Feathers [J]. The Condor,1995,97(2): 590-591.
    [59]Wiernasz DC. Male choice on the basis of female melanin pattern in Pieris butterflies [J]. Animal Behaviour,1995,49(1):45-51.
    [60]Benedito E, Jimenez-Cervantes C, Perez D, et al. Melanin formation in the inner ear is catalyzed by a new tyrosine hydroxylase kinetically and structurally different from tyrosinase [J]. Biochimica et Biophysica acta,1997,1336(1):59-72.
    [61]Hung YC, Sava VM, Makan SY, et al. Antioxidant activity of melanins derived from tea: comparison between different oxidative states [J]. Food Chemistry,2002,78:223-240.
    [62]Sava VM, Galkin BN, Hong MY, et al. A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity [J]. Food Research International,2001,34(4):337-343.
    [63]Hung YC, Sava V, Hong MY, et al. Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn [J]. Life Sciences,2004,74(16):2037-2047.
    [64]El-Obeid A, Al-Harbi S, Al-Jomah N, et al. Herbal melanin modulates tumor necrosis factor alpha (TNF-a), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production [J]. Phytomedicine,2006,13(5):324-333.
    [65]Kerestes JJR, Kerestes J, Venger LA. Biologically active fraction of vegetable melanin, process for its production and its use:USA,6576268 [P].2003.
    [66]Berliner, David L, Erwin, et al. Methods of treating Parkinson's disease using melanin: USA,5210076 [P].1993.
    [67]Guerra, Elidia M. Electro-chromic and conductivity properties:A comparative study between melanin-like/V2O5-nH2O and polyaniline/V2O5-nH2O hybrid materials [J]. Journal of Non-Crystalline Solids,2000,273:193-197.
    [68]Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system [J]. Journal of Bacteriology,1970,104(1):313-322.
    [69]Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulator [J]. Journal of Bacteriology,1994,176(2):269-275.
    [70]Whitehead NA, Barnard AM, Slater H, et al. Quorum-sensing in Gram-negative bacteria [J]. FEMS Microbiology Reviews,2001,25(4):364-404.
    [71]Fuqua C, Winans SC, Greenberg EP. Census and consensus in bacterial ecosystems:the LuxR-LuxI family of quorum-sensing transcriptional regulators [J]. Annual Review of Microbiology,1996,50: 727-751.
    [72]Eberl L, Molin S, Givskov M. Surface motility of Serratia liquefaciens MG1 [J]. Journal of Bacteriology,1999,181(6):1703-1712.
    [73]綦国红,董明盛,陈晓红,等.食源假单胞菌群体感应信号分子的研究[J].微生物学通报,2007,34(1):18-51.
    [74]Latifi A, Winson MK, Foglino M, et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 [J]. Molecular Microbiology,1995,17(2):333-343.
    [75]刘晓岚,宋志军,孔晋亮,等.群体感应系统对铜绿假单胞菌生物膜形成的影响[J].现代药卫生,2006,22(20):3081-3082.
    [76]綦国红,董明盛,王岁楼.N-酰基-高丝氨酸内酯类群体感应信号分子检测方法的建立[J].业生物技术学报,2007,15(4):694-699.
    [77]McClean KH, Winson MK, Fish L, et al. Quorum sensing and Chromobacterium violacium: exploitation of violaceum production and inhibition for the detection of N-acyl-homoserine lactones [J]. Microbiology,1997,143(12):3703-3711.
    [78]Winson MK, Camara M, Latifi A, et al. Multiple N-acyle-L-honosefne lactone signal molecules regulate production of virulence determinants and second metabolites in Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences USA.1995,92:9427-9431.
    [79]Lin Xu, Hualin Li, Cuong Vuong, et al. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylocaccus epidermidis [J]. American Society for Microbiology, 2006,74(1):488-496.
    [80]李宪臻,栾娈.群体感应效应的抑制及在抗微生物感染中的应用[J].大连工业大学学报,2008,27(3):197-200.
    [81]Kaplan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibroficheri luminescence system [J]. Journal of Bacteriology,1985,163:1210-1214.
    [82]Cha C, Gao P, Chen Y C, et al. Production of acyl-Homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria [J]. Molecular Plant-Microbe Interactions,1998,11(11): 1119-1129.
    [83]Winson MK, Swift S, Fish L, et al. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing [J]. FEMS Microbiology Letters,1998,163:185-192.
    [84]Graciela Brelles-Marino, Eulogio JB. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria [J]. Journal of Biotechnology,2001, 91:197-209.
    [85]Shaw PD, Gao P, Daly SL, et al. Detecting and characterizing N-acylhomoserine lactone signal molecules by thin layer chromatography [J]. Proceedings of the National Academy of Sciences USA.1997,94:6036-6041.
    [86]Michiel K, Luis EQ. Peptide pheromone-dependent regulation of antimicrobial peptide production in gram positive bacteria:a case of multicellular behavior [J]. Peptides,2001,22:1579-1596.
    [87]Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships [J]. Infection and Immunity,2000,68(9):4839-4849.
    [88]Miller MB, Bassler BL. Quorum sensing in bacteria [J]. Annual Review of Microbiology,2001,55: 165-199.
    [89]Bassler BL. How bacteria talk to each other:regulation of gene expression by quorum sensing [J]. Current Opinion in Microbiology,1999,2:582-5871.
    [90]Paik SH, Chakicherla A, Hansen JN. Identification and characterization of the structural and transporter genes for a novel lantibiotic produced by Bacillus subtilis [J]. Journal Biology Chemistry,1998,273:23134-23142.
    [91]Motta OV, Ribeirob PD, Silva WD, et al. RNAIII inhibiting peptide (RIP) inhibits agrregulated toxin production [J]. Peptides,2001,22(10):1621-1627.
    [92]Konings WN, Kok J, Kuipers OP, et al. Lactic acid bacteria:the bugs of the new millennium [J]. Current Opinion in Microbiology,2000,3(3):276-282.
    [93]Fernandez L, Beerthuyzen MM, Brown J, et al. Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis [J]. Applied and Environmental Microbiology,2000,66(4):1360-1368.
    [94]Morrison DA, Lee MS. Regulation of competence for genetic transformation in Streptococcus pneumoniae:a link between quorum sensing and DNA processing genes [J]. Research in Microbiology,2000,151(6):445-451.
    [95]Bassler BL, Wright M, Showalter RE, et al. Intercellular signaling in Vibrio harveyi:sequence and function of genes regulating expression of luminescence [J]. Molecular Microbiology,1993,9(4): 773-786.
    [96]Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi [J]. Journal of Bacteriology,1997,179(12):4043-4045.
    [97]Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron [J]. Nature,2002,415(6871):545-549.
    [98]Freeman JA, Bassler BL. Sequence and function of LuxU:a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi [J]. Journal of Bacteriology,1999,181(3): 899-906.
    [99]Ohtani K, Hayashi H, Shimizu T. The luxS gene is involved in cell-cell signaling for toxin production in Clostridium perfringens [J]. Molecular Microbiology,2002,44(1):171-179.
    [100]Derzelle S, Duchaud E, Kunst F, et al. Identification, characterization, and regulation of a clusterofgenes involved in carbapenem biosynthesis in Photorhabdus luminescens [J]. Applied and Environmental Microbiology,2002,68(8):3780-3789.
    [101]McNab R, Ford SK, El-Sabaeny A, et al. LuxS-based signaling in Streptococcus gordonii:autoinducer-2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis [J]. Journal of Bacteriology,2003,185(1):274-278.
    [102]Walters M, Sperandio V. Autoinducer 3 and epinephrine signaling in the kinetics of locus of entterocyte effacement gene expression in enterohemorrhagic Escherichia coli [J]. Infection and Immunity,2006,74:5445-5455.
    [103]Kaper JB, Sperandio V. Bacterial cell-to-cell signaling in the gastrointestinal tract [J]. Infection and Immunity,2005,73:3197-3209.
    [104]Dong YH, Xu JL, Li XZ, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora [J]. Proceedings of the national academy of sciences USA,2000,9(7):3526-3531.
    [105]Von Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria [J]. Annual Review of Phytopathology,2003,41:455-482.
    [106]Lin YH, Xu JL, Hu J, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes [J]. Molecular Microbiology, 2003,47(3):849-860.
    [107]McDowell P, Affas Z, Reynolds C, et al. Structure, activity and Evolution of the group I thiolactone peptide quorum sensing system of Staphylococcus aureus [J]. Molecular Microbiology, 2001,41(2):503-512.
    [108]Kaufmann G F, Sartorio R, Lee SH, et al. Revisiting quorum sensing:Discovery of additional chemical and biological functions for 3-oxo-N-acyl-homoserine lactones [J]. Proceedings of the national academy of sciences USA,2005,102(2):309-314.
    [109]Holden M t G, Chhabra SR, De NR, et al. Quorum-sensing cross talk:isolation and chemical characterization of cyclic dieptides from Pseudomonas aeruginosa and other Gram-negative bacteria [J]. Molecular Microbiology,1999,33(6):1254-1266.
    [110]Sperandio V, Torres AG, Jarvis B, et al. Bacteria-hoste conununieation:the language of hormones [J]. Proceedings of the national academy of sciences USA,2003,100(15):8951-8956.
    [111]Sehilling U. Isolation and identification of lactobacilli from Novel-type probiotie and mild yoghurts and their stability during refrigerated storage [J]. International Joumal of Food Microbiology,1999,47:79-87.
    [112]Taga ME, Semmelhack JL, Bassler BL. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium [J]. Molecular Microbiology,2001,42:777-793.
    [113]Alfaro JF, Zhang T, Wynn DP, et al. Synthesis of LuxS inhibitors targeting bacterial cell-cell communication [J]. Organic letters,2004,6(18):3043-3046.
    [114]Ren D, Sins JJ, Wood TK. Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-buty-2(5H)-furanone [J]. Letters in Applied Microbiology, 2001,34:293-299.
    [115]Klars W, Kim RH. LuxS:its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone [J]. Microbiology,2002,148:909-922.
    [116]Lu L, Hume ME, Pillai SD. Autoinducer-2-like activity associated with foods and its interaction with food additives [J]. Journal of Food Protection,2004,67:1457-1462.
    [117]Novak JS, Fratamico PM. Evaluation of ascorbic acid as a quorum-sensing analogue to control growth, sporulation, and enterotoxin production in clostridium perfringens [J]. Journal of Food Science,2004,69(3):73-78.
    [118]Klars W, Kim RH. LuxS:its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone [J]. Microbiology,2002,148:909-922.
    [119]Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target [J]. The Journal of Clinical Investigation,2003,112 (10):1460-1465.
    [120]Reimmann C, Ginet N, Michel L et al. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1 [J]. Microbiology,2002,148 (4):923-932.
    [121]Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections [J]. The Journal of Clinical Investigation,2003,112 (9):1300-1307.
    [122]Hoang TT, Schweizer HP. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI):a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis [J]. Journal of Bacteriology,1999,181:5489-5497.
    [123]Pearson JP, Delden C Van, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals [J]. Journal of Bacteriology,1999,181:1203-1210.
    [124]Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases [J]. Nature Reviews Microbiology,2004,2:95-108.
    [125]石磊.无处不在的生物膜[J].世界科学,2005,11:18-23.
    [126]Costerton, JW, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections [J]. Science,1999,284(5418):1318-1322.
    [127]Donlan RM. Biofilms:microbial life on surfaces [J]. Emerging infectious diseases,2002,8(9): 881-90.
    [128]Stoodley P, Sauer K, Davies DG, et al. Biofilms as complex differentiated communities [J]. Annual Review of Microbiology,2002,56(1):187-209.
    [129]Sauer K. The genomics and proteomics of biofilm formation [J]. Genome Biology,2003,4(6): 219.
    [130]Labbate M, Queck SY, Koh KS, et al. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1 [J]. Journal of Bacteriology,2004,186(3):692-698.
    [131]Van Houdt R, Michiels CW. Role of bacterial cell surface structures in Escherichia coli biofilm formation [J]. Research in Microbiology,2005,156(5-6):626-633.
    [132]O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Molecular Microbiology,1988,30(2):295-304.
    [133]O'Toole GA, Kaplan HB, Kolter R. Biofilm formation as microbial development [J]. Annual Review of Microbiology,2000,54:49-79.
    [134]Sauer K, CamperAK, Ehrlich GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm [J]. Journal of Bacteriology,2002,184(4):1140-1154.
    [135]Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development [J]. Nature,2001, 412(6845):422-445.
    [136]干霞芳,李蒙英.生物膜和生物膜形成菌的研究[J].安徽大学学报,2007,30(6):91-93.
    [137]欧美珍,凌均棨.牙菌斑生物膜密度感应信号的研究进展[J].国际口腔医学杂志,2007,34(1):10-12.
    [138]O'Toole GA, Kolter R. Innitiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathway:a genetic analysis [J]. Molecular Microbiology,1998,28(3):449-461.
    [139]Burton E, Yakandawala N, Lovetri K, et al. A microplate spectrofluorometric assay for bacterial biofilms [J]. Journal of Industrial Microbiology and Biotechnology,2007,34(1):1-4.
    [140]Head NE, Yu H. Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa:biofilm formation, virulence, and genome diversity [J]. Infection and Immunity,2004, 72(1):133-144.
    [141]Musk DJ, Banko DA. Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudoomonas aeruginosa [J]. Chemistry and Biology,2005,12(7):789-796.
    [142]Ceri H, Olson ME, Stremick C, et al. The Calgary biofilm device:new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms [J]. Journal of Clinical Microbiology,1999,37(6):1771-1776.
    [143]Parohitiyawa NB, Samaranayake YH, Samaranayake LP, et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device [J]. Acta Pathologica, Microbiologicaet, Immunologica Scandinavica,2006,114(4):298-306.
    [144]Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development [J]. Nature,2001, 412(6845):422-445.
    [145]Carmen JC, Nelson JL, Beckstead BL, et al. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli [J]. Journal of Infection and Chemotherapy,2004,10(4):193-199.
    [146]Tsai YP, Pai TY, Qiu JM. The impacts of the AOC concentration on biofilm formation under higher shear force condition [J]. Journal of Bactechnology,2004,111(2):155-167.
    [147]Bagge N, Schuster M, Hentzer M, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-Lactamase and alginate production [J]. Antimicrobial Agents and Chemotherapy,2004,48(4):1175-1187.
    [148]Stoodley P, deBeer D, Lewandowski Z. Liquid flow in biofilm systems [J]. Applied and Environmental Microbiology,1994,60(8):2711-2716.
    [149]Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas asruginosa [J]. Applied and Environmental Microbiology,2003,69(4):2313-2320.
    [150]Mah TF, Pitts B, Pellock B, et al. A genetic basis for Pseudomonas asruginosa biofilm antibiotic resistance [J]. Nature,2003,426:306-310.
    [151]Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas asruginosa cells in a biofilm [J]. Applied and Environmental Microbiology,2006,72(3): 2064-2069.
    [152]Kaplan JB, Ragunath C, Velliyagounder K, et al. Enzymatic detachment of Staphylococcus epidermidis biofilms [J]. Antimicrob Agents Chemother,2004,48(7):2633-2636.
    [153]Webb JS, Thompson LS, James S, et al. Cell death in Pseudomonas asruginosa biofilm development [J]. Journal of Bacteriology,2003,185(15):4585-4592.
    [154]Kaplan JB, Velliyagounder K, Ragunath C, et al. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms [J]. Journal of Bacteriology,2004,186(24):8213-8220.
    [155]Thurnheer T, Gmur R, Guggenheim B. Multiplex FISH analysis of a six-species bacterial biofilm [J]. Journal of Microbiological Methods.2004,56(1):37-47.
    [156]Bloemberg GV, O'Toole G, Lugtenberg BJ, et al. Green fluorescent protein as a marker for Pseudomonas spp [J]. Applied and Environmental Microbiology,1997,63(11):4543-4551.
    [157]Kaplan JB, Meyenhofer MF, Fine DH. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans [J]. Journal of Bacteriology,2003,185:1399-1404.
    [158]Stickler D, Morris N, Moreno MC, et al. Studies on the formation of crystalline bacterial biofilms on urethral catheters [J]. European Journal of Clinical Microbiology and Infectious Diseases,1998, 17(9):649-652.
    [159]Dufrene YF. Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology [J]. Current Opinion in Microbiology,2003,6(3):317-323.
    [160]White JG, Amos WB. Confocal microscopy comes of age [J]. Nature,1987,328:183-184.
    [161]Daims H, Lucker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research [J]. Environmental Microbiology,2006,8(2):200-213.
    [162]Heydom A, Nielsen AT, Hentzer M, et al. Quantification of biofilm structures by the novel computer program COMSTAT [J]. Microbiology,2000,146:2395-2407.
    [163]邹彬彬,漆勇,伍勇.细菌群体感应系统与生物薄膜形成的研究进展[J].临床检验杂志,2009,27(1):69-71.
    [164]Gustafsson E, Nilsson P, Karlsson S, et al. Characterizing the dynamics of the quorum-sensing system in Staphylococcus aureus [J]. Journal of Molecular Microbiology and Biotechnology,2004, 8(4):232-242.
    [165]贾宁,徐志凯,袁云娥,等.表皮葡萄球菌全面调节子的表达在生物被膜耐药性中的作用[J].第四军医大学学报,2007,28(7):600-602.
    [166]Garo E, Eldridge GR, Goering MG, et al. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin [J]. Antimicrobial Agents and Chemotherapy, 2007,51(5):1813-1817.
    [167]Sauer K, Camper AK, Ehrlich GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm [J]. Journal of Bacteriology,2002,184(4):1140-1154.
    [168]Wu H, Song Z, Givskov M et al. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection [J]. Microbiology,2001,147 (5): 1105-1113.
    [169]Dong YH, Wang LH, Xu JL, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase [J]. Nature,2001,411:813-817.
    [170]Hentzer M, Wu H, Andepsen JB, et al. Attenuation of Pseudomonas aeruginosa vilulence by quorum sensing inhibitors [J]. The EMBO Journal,2003,22(15):3803-3811.
    [1]Alois AB, Michael HW. Biosynthesis and functions of fungal melanins [J]. Annual Review of Phytopathology,1986,24:411-451.
    [2]Fogarty RV, Tobin JM. Fungal melanins and their interactions with metals [J]. Enzyme and Microbial Technology,1996,19 (4):311-317.
    [3]Goncalves RDC, Pombeiro SSR. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans [J]. Biological and Pharmaceutical Bulletin,2005,28 (6):1129-1131.
    [4]Selvakumar P, Rajasekar S, Periasamy K, et al. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa) [J]. World Journal of Microbiology and Biotechnology,2008,24 (10):2125-2131.
    [5]曹志艳,杨胜勇,董金皋.植物病原真菌黑色素与致病性关系的研究进展[J].微生物学通报,2006,33(1):154-158.
    [6]Bassam SE, Benhamou N, Carisse O. The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea [J]. Canadian Journal of Microbiology,2002,48 (4):349-358.
    [7]Harki E, Talou T, Dargent R. Purification, characterization and analysis of melanin extracted from Tuber melanosporum Vitt [J]. Food Chemistry,1997,58(1/2):69-73.
    [8]Choo JH, Rukayadi Y, Hwang JK. Inhibition of bacterial quorum sensing by vanilla extract [J]. Letters in Applied Microbiology,2006,42(6):637-641.
    [9]Blosser RS, Gray KM. Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers [J]. Journal of Microbiol Methods, 2000,40(1):47-55.
    [10]Vattem DA, Mihalik K, Crixell SH, McLean RJC. Dietary phytochemicals as quorum sensing inhibitors [J]. Fitoterapia,2007,78:302-310.
    [11]Girennavar B, Cepeda ML, Soni KA, et al. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria [J]. International Journal of Food Microbiology,2008,125(2):204-208.
    [12]付湘晋.我国天然黑色素资源研究概况[J].粮食与油脂,2005,12:42-45.
    [13]曾盔,黄斌,王洁,等.黑米黑色素的提取与精制[J].食品科学,2006,27(12):304-307.
    [14]Bonner TG, Duncan A. Infrared spectra of some melanins [J]. Nature,1962,194:1078-1079.
    [15]Suryanarayanan TS, Ravishankar JP, Venkatesan G, Murali TS. Characterization of the melanin pigment of a cosmopolitan fungal endophyte [J]. Mycological Research,2004,108(8):974-978.
    [16]Yamaguchi F, Yoshihiro Y, Nakazawa H, et al. Free radical scavenging activity of grape seed extract and antioxidants by electronspin resonance spectrometry in an H2O2/NaOH/DMSO system [J]. Journal of Agricultural and Food Chemistry,1999,47(7):2544-2548.
    [17]Enochs WS, Nilges M J, Swartz HW. A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy [J]. Pigment Cell Research, 1993,6(2):91-99.
    [18]Ito S,& Fujita K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography [J]. Analytical Biochemistry,1985,144:527-536.
    [19]张姬莲,张敬爱.盐酸浸提木耳黑色素最佳工艺参数筛选研究[J].沈阳农业大学学报,2007,38(3):434-436.
    [20]鲁京兰,崔成都,南昌熙.大葱籽黑色素提取工艺研究[J].安徽农业科学,2010,38(13):7162-7164.
    [21]Daniel J. Studies on multiple allelomorphic series in the house mouse. Ⅲ. A spectrophotometric study of mouse melanin [J]. Journal of Genetics,1938,36:139-143.
    [22]王岩,刘学惠,陆懋荪.几种天然黑色素分子结构的红外光谱表征研究[J].分析实验室,1996,15(6):63-65.
    [23]Enochs WS, Nilges MJ, Swartz HM. Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra:Characterization by electron paramagnetic resonance spectroscopy [J]. Journal of Neurochemistry,1993,61(1):68-79.
    [24]Enochs WS, Nilges MJ, Swartz HM. The minocycline-induced thyroid pigment and several synthetic models:identification and characterization by electron paramagnetic resonance spectroscopy [J]. Journal of Pharmacology and Experimental Therapeutics,1993,266(3): 1164-1176.
    [25]Kolloss N. New tsends in photobiology, phytoprotection by metanins [J]. Phytochem Photobiol, 1991,9(2):135-160.
    [26]赵肃清,孙远明.香蕉皮黑色素的鉴定及其抗氧化作用研究[J].中草药,2002,6:496-498.
    [1]Fuqua WC, Winans SC. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulator [J]. Journal of Bacteriology,1994,176:269-275.
    [2]Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system [J]. Journal of Bacteriology,1970,104:313-322.
    [3]Keshavan ND, Chowdhary PK, Haines DC, et al. L-canavanine made by Medicago sativa interferes with QS in Sinorhizobium meliloti [J]. Journal of Bacteriology,2005,187:8427-8436.
    [4]Vattem DA, Mihalik K, Crixell SH, et al. Dietary phytochemicals as quorum sensing inhibitors [J]. Fitoterapia,2007,78:302-310.
    [5]郭嘉亮,陈卫民.细菌群体感应信号分子与抑制剂研究进展[J].生命科学,2007,19(2):224-232.
    [6]黄远帅,尹一兵.细菌密度感应系统的信号干扰及其应用.生命的化学[J],2005,25(2):86-88.
    [7]Alan RS, Paramita MC, Catharine AO, et al. Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis-a pilot randomized controlled trial [J]. Pediatric Pulmonology, 2010,45:356-362.
    [8]Gulgun BT, Seyhan U, Aysel U, et al. Inhibition of quorum sensing-regulated behaviors by Scorzonera sandrasica [J]. Current microbiology,2007,55:114-118.
    [9]Blosser RS, Gray KM. Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers [J]. Journal of Microbiol Methods, 2000,40:47-55.
    [10]Khan MSA., Zahin M, Hasan S, et al. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clover oil [J]. Letters in applied microbiology,2009,49: 354-360.
    [11]Qaseem F, Maryam Z, Mohd SAK, et al. Modulation of quorum sensing controlled behavior of bacteria by growing seedling, seed and seedling extracts of leguminous plants [J]. Indian Journal of Microbiology,2010,50(2):238-242.
    [12]Alan RS, Paramita MC, Catharine AO, et al. Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis-a pilot randomized controlled trial [J]. Pediatric Pulmonology, 2010,45:356-362.
    [13]Choo JH, Rukayadi Y, Hwang JK. Inhibition of bacterial quorum sensing by vanilla extract [J]. Letters in Applied Microbiology,2006,42:637-641.
    [14]朱兰宝.中国黑木耳生产[M].北京:中国农业出版社,2000:4-6.
    [15]陈艳秋,陈丽萍.黑木耳子实体水溶性多糖提取工艺的研究[J].吉林农业大学学报,2003,25(4):470-72.
    [16]Katerna Kramanooli, Stevern E Lindow. Disruption of N-Acyl Homoserine Lactone-Mediated Cell Signaling and Iron Acquisition in Epiphytic Bacteria by Leaf Surface Compounds [J]. Applied and Environmental Microbiology,2006,72 (12):7678-7686.
    [17]Zhu H, Sun SJ. Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract [J]. Current microbiology,2008,57:418-422.
    [18]Gould TA, Schweizer HP, Churchill M. Structure of the Pseudomonas aeruginosa acyl- homoserine lactone synthase LasI [J]. Molecular Microbiology,2004,53:1135-1146.
    [19]Lin YH, Xu JL, Hu J, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes [J]. Molecular Microbiology, 2003,47(3):849-860.
    [20]McDowell P, Affas Z, Reynolds C, et al. Structure, activity and Evolution of the group Ⅰ thiolactone peptide quorum sensing system of Staphylococcus aureus [J]. Molecular Microbiology,2001,41(2): 503-512.
    [21]Kaufmann GF, Sartorio R, Lee SH, et al. Revisiting quorum sensing:Discovery of additional chemical and biological functions for 3-oxo-N-acyl-homoserine lactones [J]. Proceedings of the national academy of sciences USA,2005,102(2):309-314.
    [22]Holden MtG, Chhabra SR, De NR, et al. Quorum-sensing cross talk:isolation and chemical characterization of cyclic dieptides from Pseudomonas aeruginosa and other Gram-negative bacteria [J]. Molecular Microbiology,1999,33(6):1254-1266.
    [23]Sperandio V, Torres AG, Jarvis B, et al. Bacteria-hoste conununieation:the language of hormones [J]. Proceedings of the national academy of sciences USA,2003,100(15):8951-8956.
    [24]Sehilling U. Isolation and ideniification of lactobacilli from Novel-type probiotie and mild yoghurts and their stability during refrigerated storage [J]. International Joumal of Food Microbiology,1999, 47:79-87.
    [25]Mencher JR, Heim AH. Melanin biosynthesis by Streptomyces lavendulae [J]. Journal of General Microbiology,1962,28:665-670.
    [1]Costerton JW, Lewandowski Z, Debeer D, et al. Biofilms, the customized microniche [J]. Journal of Bacteriology,1994,176(8):2137-2142.
    [2]Donlan RM. Biofilms:microbial life on surfaces [J]. Emerging infectious diseases,2002,8(9): 881-90.
    [3]Stoodley P, Sauer K, Davies DG, et al. Biofilms as complex differentiated communities [J]. Annual Review of Microbiology,2002,56(1):187-209.
    [4]Sauer K. The genomics and proteomics of biofilm formation [J]. Genome Biology,2003,4(6):219
    [5]Labbate M, Queck SY, Koh KS, et al. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1 [J]. Journal of Bacteriology,2004,186(3):692-698.
    [6]宋志军,吴红,Michael Givskov,等.细菌生物膜与抗生素耐药[J].自然科学进展,2003,13(10):1015-1020.
    [7]刘晓岚,宋志军,吴红,等laslrhll基因缺陷对铜绿假单胞菌生物膜形成影响的体外实验研究[J].中国医药生物技术,2007,2(3):194-196.
    [8]徐炎安,张健,周爱国.人工合成抗菌肽对大肠杆菌生物膜作用的初步研究[J].重庆医科大学学报,2008,33(12):1492-1494.
    [9]吕建波,彭国庆.浅谈食品防腐剂在食品中的应用[J].食品安全导刊,2010,6:51-52.
    [10]马玉山,梁咏梅.山梨酸钾在肉制品中的应用实例[J].肉制品加工与设备,2006,304(8):3-4.
    [11]李昆瑜.食品防腐剂-山梨酸钾生产与应用[J].中国化工,1997,12:51-52.
    [12]Kobashi K, Takabe S, Sakai T. Utilization of urease for decomposition of urea in sake [J]. Journal of Brewing Society of Japan,1988,83(2):142-144.
    [13]Shima S, Matsuoka H, Iwamoto T, et al. Antimicrobial action of epsilon-poly-L-lysine [J]. Journal of Antibiotics,1984,37(11):1449-1455.
    [14]雷虹,孙艳波,何堃,等.ε-多聚赖氨酸的研究进展[J].中国食品添加剂,2005,4:14-17.
    [15]张玉鑫.天然防腐剂乳酸链球菌素的研究进展[J].农业科技与装备,2010,191(5):27-29.
    [16]李海娜,朱希强,郭学平.天然防腐剂乳链菌肽复配应用的研究进展[J].食品与药品,2010,1(12):51-55.
    [17]Zhu H, Sun SJ. Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract [J]. Current microbiology,2008,57:418-422.
    [18]Berney M, Hammes F, Bosshard F, et al. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry [J]. Applied and Environmental Microbiology,2007,73:3283-3290.
    [19]Rasmussen TB, Bjarnsholt T, Skindersoe ME, et al. Screening for Quorum-Sensing Inhibitors (QSI) by use of a novel genetic system, the QSI selector [J]. Journal of Bacteriology,2005,187: 1799-1814.
    [20]Wang X, Yao X, Zhu Z, et al. Effect of berberine on Staphylococcus epidermidis biofilm formation [J]. International Journal of Antimicrobial Agents,2009,34(1):60-66.
    [21]O'Toole GA, Pratt LA, Watnick PI, et al. Genetic approaches to study of biofilms [J]. Methods Enzymol,1999,310:91-109.
    [22]Morten H, Gail MT, Grant JB, et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function [J]. Journal of Bacteriology,2001,183(18):5395-5401.
    [23]Gilles B, Ulrik H, Serge VC, et al. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia [J]. Research in Microbiology,2009,160:144-151.
    [24]Metzler K, Hansen GM, Hedlin P, et al. Comparison of minimal inhibitory and mutant prevention drug concentrations of 4 fluoroquinolones against clinical isolates of methicillin-susceptible and resistant Staphylococcus aureus [J]. International Journal of Antimicrobial Agents,2004,24: 161-167.
    [25]Ceri H, Olson ME, Stremick C, et al. The Calgary Biofilm Device:new technology for rapid determination of antibiotic susceptibility of bacterial biofilms [J]. Journal of Clinical Microbiology, 1999,37(6):1771-1776.
    [26]Ceri H, Olson M, Morck D, et al. The MBEC assay system:multiple equivalent biofilms for antibiotic and biocide susceptibility testing [J]. Methods in Enzymology,2001,337:377-385.
    [27]Xu Lin, Li Hualin, Cuong Vuong, et al. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis [J]. Infection and Immunity,2006, 74(1):488-496.
    [28]Girennavar B, Cepeda ML, Soni KA, et al. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria [J]. International Journal of Food Microbiology,2008,125(2):204-208.
    [29]刘晓岚,宋志军,孔晋亮,等.铜绿假单胞菌群体感应系统中lasR/rhlR基因缺陷对生物膜形成的影响[J].中华医院感染学杂志,2008,18(2):151-153.
    [30]Arciola CR, Alvi FI, An YH, et al. Implant infection and infection resistant materials:a mini review [J]. International journal of artificial organs,2005,28(11):1119-1125.
    [31]Teughels W, Van Assche N, Sliepen I, et al. Effect of material characteristics and/or surface topography on biofilm development [J]. Clinical oral implants research,2006,17(2):68-81.
    [32]Raad I, Chatzinikolaou I, Chaiban G, et al. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces [J]. Antimicrobial agents and chemotherapy,2003,47(11):3580-3585.
    [33]Danese PN. Antibiofilm approaches:prevention of catheter colonization [J]. Chemistry and Biology, 2002,9(8):873-880.
    [34]Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms [J]. Microbes and Infection,2003,5(13):1213-1219.
    [35]Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents [J]. Microbiology, 2000,146(2000):547-549.
    [1]Namiki M. Antioxidant/antimutagens in food [J]. Critical Reviews in Food Science and Nutrition, 1990,29:273-292.
    [2]Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of aging [J]. Nature,2000,408: 239-247.
    [3]Seifried H E, Anderson D E, Fisher E I, et al. A review of the interaction among dietary antioxidants and reactive oxygen species [J]. Journal of Nutritional Biochemistry,2007,18:567-579.
    [4]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry and Cell Biology,2007, 39:44.84.
    [5]Sakai A, Miyatab N, Takahashi A. Promoting activity of 3-tert-butyl-4-hydroxyanisole (BHA) in BALB/3T3 cell transformation [J]. Cancer Letters,1997,115:213-220.
    [6]Tu YG, Sun YZ, Tian YG, et al. Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson) [J]. Food Chemistry,2009,114:1345-1350.
    [7]张莲姬.泥鳅鱼黑色素抗氧化作用[J].食品研究与开发,2010,8:11-14.
    [8]王立,姚惠源,陶冠军,等.乌饭树树叶中黄酮类色素的抗氧化活性[J].食品与生物技术学报,2006,4:81-84.
    [9]叶明,陈晓,朱立,等.暗盘孢属YM421黑色素稳定性及其抗氧化活性[J].菌物学报,2010,2:254-260.
    [10]Hagerman AE, Riedl KM. Hihg molecular weight plant polyphenoiics (Tannins) as biological antioxidants [J]. Food Chemistry,1998,46(5):1887-1891.
    [11]朱志仁,王凯,潘英明,等.桂花种子皮黑色素还原性、金属螯合性及其金属含量的研究[J].食品工业科技,2007,1:179-180.
    [12]Duan X J, Zhang WW, Li XM, et al. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata [J]. Food Chemistry,2006,95:37-43.
    [13]Liu F, Ooi VEC, Chang ST. Free radical scavenging activities of mushroom polysaccharide extracts [J]. Life Sciences,1997,60:763-771.
    [14]Jin M, Cai Y, Li J, et al.1,10-Phenanthroline-Fe2+ oxidative assay of hydroxyl radical produced by H2O2/Fe2+[J]. Progress in Biochemistry and Biophysics,1996,23:553-555.
    [15]Cakir A, Mavi A, Yildirim A, et al. Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation [J]. Journal of Ethnopharmacology,2003,87:73-83.
    [16]Heinonen M, Rein D, Satue-Gracia MT, et al. Efeect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidant system [J]. Journal of Agricultural and Food Chemistry,1998,46:917-922.
    [17]Shahidi F. Natural antioxidants, chemistry, health effects and applications [M]. Champaign:AOCS Press,1997:1-11.
    [18]张尊听,贺云.分光光度计测定太白山20种中草药的抗氧化活性[J].分析实验室,2002,2:50-53.
    [19]于娅.牡蛎活性肽的制备及生物活性研究[D].无锡:江南大学,2004.
    [20]郭亚力,李聪.3种分光光度法对天然抗氧化物质抗自由基性能的分析检测[J].分析实验室,2004,23(10):43-48.
    [21]Wickens AP. Ageing and the free radical theory [J]. Respiration Physiology,2001,128:379-391.
    [22]Nie SP, Xie MY, Zhou P, et al. In vitro antioxidative and anticancer activities of tea glycoprotein in green tea [J]. European Food Research and Technology,2007,224(4):437-442.
    [23]Sealy RC, Felix CC, Hyde J, et al. Free Radicals in Biology [M]. New York:Academic Press,1980: 209-259.
    [24]Vrchovska V, Sousa C, Valenttao P, et al. Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid [J]. Food Chemistry,2006,98:416-425.
    [25]Wang J, Liu L, Zhang Q, et al. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro [J]. Food Chemistry,2009,114:1285-1290.
    [26]黄池宝,罗宗铭.食品抗氧化剂的种类及其抗氧化作用[J].广东工业大学学报,2001,18(13):77-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700