用户名: 密码: 验证码:
小白菜钼硒交互效应及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼和硒是人体所必需的营养元素,人体钼硒缺乏均会导致生理代谢上的疾病,摄入适量的铝和硒还可以提高人体的抗氧化机能。钼和硒在土壤中有很多相似的化学特性,二者对植物的有效性均随着土壤pH值的下降而降低,缺钼土壤也多伴随着缺硒。中国有大面积的土壤存在着钼硒缺乏的状况,人体从粮食作物中所摄取的钼硒含量就有所不足,因此铝硒配施不但具有实践意义而且还具有人体营养学意义。以往的研究大多关注于钼与硫、钼与磷、硒与硫、硒与磷关系的研究,而对于铝与硒关系的研究尚没有系统性的报道。钼与硒均以阴离子酸根的形态被植物吸收利用,并且都可以通过磷酸盐及硫酸盐转运子进入植物体内,因此研究钼与硒的关系还具有很强的理论研究意义。本文在总结以往既有零星研究的基础上,通过土培试验和水培试验,系统的研究了小白菜钼硒营养机制。得出主要结论如下:
     1.通过土培试验研究了铝硒配施对小白菜产量及品质的影响。结果表明:铝硒配施在一定程度上增加了小白菜的产量,提高了小白菜Vc、可溶性糖、可溶性蛋白、粗蛋白、有机酸及氨基酸的含量,在一定程度上降低了小白菜硝酸盐的含量,进而改善了小白菜的品质;在提升小白菜品质方面,施钼的效果要明显好于施硒的效果。
     2.通过水培试验研究了小白菜对钼、硒养分吸收的影响。结果表明:硒不但能抑制小白菜对钼的吸收,而且还能抑制过多的钼向地上部转移,避免过量的钼对植物体产生毒害作用。当外界硒浓度达到一定水平根硒相对饱和时,小白菜根中硒含量并没有随着施硒的量增加而增加,此时施钼对小白菜硒的吸收没有显著地影响,小白菜对硒的吸收能力仅取决于向地上部的转移能力;当小白菜根硒含量没有达到相对饱和的状态时,施钼对小白菜硒的吸收有着明显的抑制效应。尽管在此水培试验中钼与硒之间表现出了拮抗效应,但是钼与硒仍能容易的从外界转移至植物体,从根中转移至地上部,因此在生产中钼硒配施可以满足生产富铝富硒作物的需求。
     3.通过短期施用钼、硒试验研究小白菜对钼、硒吸收动态的影响。结果表明:在动态吸收试验中,长期缺钼、缺硒生长条件下的小白菜当重新供给铝硒时,施钼对小白菜硒的吸收表现出了抑制效应,尽管所供应的硒浓度在长期培养试验中是使根硒达到饱和状态的浓度,施铝仍然对小白菜硒的吸收也表现出了拮抗作用,但是随着处理时间的延长,施钼对硒吸收的拮抗作用会越来越小,在根硒达到相对平衡状态以后,铝对硒吸收的影响就会减弱。各亚细胞结构的表现特性基本类似,大致呈拮抗效应。在吸收动力学参数方面,施硒对小白菜钼吸收动力学特征参数有负面影响,而施铝对硒吸收动力学参数的影响则有着复杂的两面性,一方面缘于施钼对植物根系的改良作用,Km值和Cmin向着有利于硒吸收的方向发展,另一方面缘于竞争,Vmax又表现出略有降低的趋势。
     4.通过水培试验研究小白菜铝硒配施对小白菜体内铝、硒化学形态的影响。结果表明:施硒能增加小白菜地上部及地下部醇溶态钼、水溶态钼含量,对小白菜地上部及地下部盐溶态及醋酸溶态钼的含量则表现出了拮抗效应,对地上部盐酸溶态钼含量影响不大,但对地下部盐酸溶态钼含量则有着促进作用。施钼对小白菜地上部醇溶态、水溶态硒的含量影响不大,提高了盐溶态及盐酸溶态硒的含量,降低了醋酸溶态硒的含量;施铝对小白菜地下部醇溶态硒含量影响不大,降低了水溶态硒的含量,增加了盐溶态、醋酸溶态及盐酸溶态硒的含量。施用四价硒源对小白菜可食部位硒的有机化较为有利,施钼能促进高硒水平小白菜体内硒的有机化。
     5.通过土培连作试验研究施用钼硒对铝、硒在土壤中后效的影响。结果表明:钼硒配施能增加第1茬小白菜的产量,对第2茬小白菜产量影响不大;铝硒配施可以促进第1茬及第2茬小白菜对钼和硒的吸收,钼在土壤中有一定的后效作用,可以满足两茬作物的需求,施硒仅能满足第1茬作物富硒的需求;铝可以满足两茬小白菜富钼的需求是因为钼在两茬种前都具有较高的有效性,施硒仅可以满足第1茬富硒的需求是因为硒在第1茬种植后有大量水溶态和交换态的硒向低有效性的方向转化。
     6.通过水培试验及土培试验研究铝硒配施对小白菜钼、硒吸收的影响。结果表明:钼硒配施对小白菜钼、硒吸收的影响存在着复杂的两面性,在水培试验中铝与硒之间有着拮抗效应,而在土培试验中二者又有着协同效应。铝为植物所必须的营养元素,在缺钼土壤上施用适量的钼对生长的促进作用所带动的植物对硒的吸收效应可能会大于钼对硒的拮抗效应,此时就表现出钼对硒吸收的促进作用。土壤不缺钼时,施铝对植物生长的促进作用就不是太明显,那么此时钼对硒的拮抗作用就会占主导地位。硒的有益和毒害的界限很窄,当硒对植物产生毒害又或是潜在毒害时,硒会对铝的吸收表现出拮抗作用。试验中土壤钼、硒均较为缺乏,施用低浓度的钼与硒,因此二者表现出了协同效应。水培试验中,钼、硒的有效性均较高,在最低的钼硒浓度时,植物体内钼、硒的含量是土培试验的数十倍,这说明水中的钼硒较易被吸收。此时钼与硒竞争转运子的效应就占了主导地位。
     7.研究了钼硒配施对盐胁迫下小白菜生长的影响。结果表明:施钼、施硒以及钼硒配施均提高了盐胁迫下小白菜的产量,其中以单施钼、钼硒配合施用的效果最佳,均达到了显著性水平;施钼和钼硒配施均增加了盐胁迫下小白菜体内钼的含量,特别是提高了缺钼土壤小白菜的钼营养水平;施钼、施硒以及钼硒配施提高了小白菜抗氧化酶活性,增加了非酶类抗氧化物质的含量,进而增强了小白菜的抗氧化防御能力;施钼、施硒以及钼硒配施增加了小白菜的渗透调节物质含量,改善了小白菜的渗透调节能力;施钼以及钼硒配施对光合速率均有不同程度的提高,单独施钼主要是通过非气孔因素来提高的,而钼硒配施则是通过气孔因素来提高的。在增强小白菜抗盐胁迫的效果上,以单施钼以及钼硒配施的效果较好,单独施硒的效果稍差,但是对缓解盐胁迫也具有一定的作用。
Molybdenum and selenium are both essential trace elements for human health. A low intake of Mo and Se may increase the risk of many diseases, and intake of a certain amount of Mo and Se can also improve the body's antioxidant capacity. There are many similar chemical properties of Mo and Se in the soil. In low soil pH, bioavailability of Mo and Se both trend to decrease. Large areas of soil are Mo deficiency, and most of those areas go with Se deficiency. In China, a large area of the land is Se and Mo deficiency and often results in the lack of Se and Mo in human body in this area. Therefore, co-application of Mo and Se not only has significance of human nutrition but also has significance of practical. Previous studies has focused more on Se-S, Mo-S, Se-P and Mo-P interactions in soil and solution culture, but little has been paid to the possible interactions of Mo-Se. Mo and Se are both absorbed by plants in form of anion, and they were both transported via sulphate and phosphate transporters. Therefore, the study of the relationship between Mo and Se also has a strong theoretical significance. On the basis of previous studies, soil and hydroponics trials were conducted to investigate the interactive effects of Mo and Se and its mechanism of Chinese cabbage. The Main results as follows:
     1. A pot experiment was conducted to determine the effects of co-application of Mo and Se on yield and quality of Chinese cabbage. The results showed that co-application of Mo and Se could increase yield, contents of vitamin C, soluble sugar, soluble protein, crude protein, organic acids and amino acids, as well as decrease nitrate content of Chinese cabbage. The effect of application of Mo is better than the effect of application of Se in improving quality of Chinese cabbage.
     2. A solution culture experiment was conducted to determine the effects of co-application of Mo and Se on nutrition uptake of Chinese cabbage. The results showed that Se decreased Mo concentration and inhibited translocation of excess Mo from roots to shoots in Chinese cabbage. When Se concentration reaches a certain level in the outside, root Se content did not increase with an increasing solution Se concentration, and application of Mo had no significant effect on plant uptake of Se and the capacity of Chinese cabbage uptake of Se depended only on the ability of translocation of Se from root to shoot. When root Se concentration was not saturated, application of Mo significantly decreased Se concentration. Although, there had a strong antagonism between Mo and Se on nutrition uptake, results showed that both Mo and Se could be easily translocated from solution to plants and from roots to edible parts. Therefore, co-application of Mo and Se could meet the need of producing Mo-enriched and Se-enriched crops.
     3. A short-term solution culture experiment was conducted to determine the effects of co-application of Mo and Se on Mo and Se absorption dynamics of Chinese cabbage. The results showed that there had a strong antagonism between Mo and Se on nutrition uptake, especially when Mo and Se deficiency persisted for long periods. Although the solution Se level can make root Se reach saturate, application of Mo decreased Se concentration. However, with the treatment time increasing, the antagonism between Mo and Se will become smaller and smaller. When the root Se concentration was saturated, application of Mo had no effect on Se uptake in Chinese cabbage. The performance characteristics of subcellular structures were similar, there has an antagonism between Mo and Se in subcellular structures. The effect of application of Se on the absorption kinetics parameters of Mo had a trend that it was not conducive to the absorption of Mo. The effects of application of Mo on the absorption kinetics parameters of Se had complex two sides. Due to the positive role of Mo on Chinese cabbage, both Km and Cmin had a trend that it was conducive to the absorption of Se. But due to competition between Mo and Se, Vmax had a slightly decreasing trend.
     4. A solution culture experiment was conducted to determine the effects of co-application of Mo and Se on chemical forms of them. The results showed that application of Se increased alcohol soluble and water soluble Mo concentrations of roots and shoots and decreased salt soluble and acetic acid Mo concentrations of roots and shoots in Chinese cabbage. Application of Se had no significant effect on shoot hydrochloric acid Mo concentration, but application of Se increased root hydrochloric acid Mo concentration. Application of Mo had no significant effects on shoot alcohol soluble and water soluble Se concentrations, application of Mo increased salt soluble and hydrochloric acid Se concentrations and decreased acetate acid Se concentration. Application of Mo had no significant effect on root alcohol soluble Se concentration, and application of Mo decreased water soluble Se concentration and increased salt soluble, acetate acid and hydrochloric acid Se concentrations. Application of tetravalent Se was conducive to the conversion of inorganic Se to organic Se, and application of Mo can promote the transformation of inorganic Se to organic Se in high Se level.
     5. A pot experiment was conducted to determine the effects of application of Mo and Se on soil available Mo and Se contents during two successive planting periods. The results revealed that yield was significantly increased by application of Mo and Se in the first harvest, which was not significantly increased by application of Mo and Se in the second harvest. Both application of Mo and Se could prompt Chinese cabbage uptake of Mo during the two successive planting periods; Soil available Mo maintained high level during the two successive planting periods, and application of Mo could meet the needs of producing Mo-riched cabbage during the two successive planting periods; Though both application of Mo and Se could prompt Chinese cabbage uptake of Se during the two successive planting periods, water souble Se and exchangeable Se were decreased after the first harvest and application of Se could only meet the need of producing Se-riched cabbage in the first harvest.
     6. Soil and solution culture experiments were conducted to determine the effects of application of Mo and Se on Mo and Se nutrition uptake in Chinese cabbage. The results showed that there had a strong antagonism between Mo and Se in solution culture experiment and had synergies between Mo and Se in soil experiment. Mo is an essential micronutrient for plants, and appropriate application of Mo can promote plant growth and then stimulate the absorption of selenium in Mo deficiency soil. Application of Mo had no obvious effect in promoting plant growth in Mo rich soil, and the antagonism between Mo and Se will be dominate. The beneficial and harmful boundaries of Se for plants are very narrow. When plants suffer from Se toxicity or potentially toxicity, Se would decrease Mo uptake. In our experiment, application of Mo and Se in Mo and Se deficiency soil, there had synergies between Mo and Se. In solution culture experiment, both Mo and Se had a very high effectiveness. The contents of Mo and Se of Chinese in the lowest solution Mo and Se levels are few times than the contents of Mo and Se of Chinese cabbage in soil experiment, and the transporters competition between Mo and Se will be dominate.
     7. A pot experiment was conducted to determine the effects of Mo and Se on the growth of Chinese cabbage under salt stress. The results showed that application of Mo and Se increased yield of Chinese cabbage, and the best treatments were combination of Mo and Se. The contents of Mo in Chinese cabbage were increased by application of Mo and combination of Mo and Se, especially when soil Mo deficiency. Mo and combination of Mo and Se increased activities of antioxidant enzymes and the contents of non-enzymatic antioxidants and then increased the capacity to eliminate active oxygen. Application of Mo, Se and combination of them increased osmotic-adjustment products contents and then increased the ability of osmotic-adjustment. Application of Mo and combination of Mo and Se increased photosynthesis rate in varying degrees. Application of Mo increased photosynthesis rate by non-stomatal factors, and combination of Mo and Se increased photosynthesis rate by stomatal factors. Mo and combination of Mo and Se were the best treatments in resisting salt stress of Chinese cabbage. Application of Se played a very small role in enhancing salt stress tolerance in Chinese cabbage.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2008:141-147.
    2.曹恭,梁鸣早.钼-平衡栽培体系中植物必需的微量元素.土壤肥料,2004,3:2-4.
    3.常连生,韩志卿.锌钼微肥对鲜食油菜生长及品质的影响.河北科技师范学院学报,2005,19(3):20-24.
    4.陈灿云,张志军,梁高亮,吴建勋,罗丽红.连续流动分析仪测定环境水样中硝酸盐氮和亚硝酸盐氮.理化检验-化学分册,2004,40(10):613-614.
    5.陈金,潘根兴,王雅玲.土壤硒水平对两种春大豆硒吸收与转化的影响.中国农业科学,2005,38(2):428-432.
    6.陈铭,刘更另.高等植物的硒营养及在食物链中的作用(二).土壤通报,1996,24(4):185-188.
    7.陈萍,冯华卫.温室番茄微量元素缺乏症及其防治.西北园艺,2008,3:42-43.
    8.陈雪龙,王晓龙,齐艳萍.大庆龙凤湿地土壤理化性质与硒元素分布关系研究.水土保持研究,2012,19(4):159-162.
    9.程伯容,鞠山见,岳淑嬉,赫荣臻,盛士骏.我国东北地区土壤中的硒.土壤学报,1980,17(1):55-61.
    10.戴伟,耿增超.土壤硒的研究概况.西北林学院学报,1995,10(3):193-97.
    11.邓桂春,侯松眉,铁梅,张新,孟伟,于桂英,臧树良.富硒蛹虫草试样中硒的形态分析.分析科学学报,2006,22(1):21-24.
    12.邓好生.超级稻施用富Se肥示范田母产超高产.湘西科技,2002,1:4.
    13.丁波,王德炉,蔡磊,罗辉.硒对苦丁茶品质的影响.重庆师范大学学报,2010,27(2):65-68.
    14.董广辉,陈利军,武志杰.植物硒素营养及其机理研究进展.应用生态学报,2002,13(11): 1487-1490.
    15.杜琪珍,方兴汉,沈星荣.茶树累积硒的动态分布和主要形态.中国茶叶,1991,3:8-9.
    16.杜倩,王昌全,李冰,李焕秀,刘杨.硒、锌及其交互作用对春茶亚细胞中硒分布的影.园艺学报,2010,37(5):794-800.
    17.段素梅,杨安中,黄义德.大豆钼营养研究进展.大豆通报,2006,3:40-43.
    18.甘巧巧,孙学成,胡承孝,谭启玲.施铝对不同钼效率冬小麦叶片呼吸作用相关酶的影响.植物营养与肥料学报,2007,13(1):113-117.
    19.高俊凤.植物生理学实验指导.高等教育出版社,2006:224-226.
    20.管致和.植物医学导论.北京:中国农业大学出版社,1996,323-325.
    21.郭锋,樊文华.外源硒对镉胁迫下绿豆幼苗生理特性的影响.水土保持学报,2012,26(4):256-260.
    22.郭庆元,李志玉,徐巧珍,涂学文,沈金雄,孙素云.大豆积硒基因型差异.中国油料作物学报,1997,19(4):69-69.
    23.郭艳,张江萍,刘和.微量元素硒在园艺植物中的生理功能研究进展.中国农学通,2013,29(01):76-79.
    24.果秀敏,牛君仿,方正,纪妹晶.植物中硒的形态及其生理作用.河北农业大学学报,2003,26(z1):142-143.
    25.韩广泉,李俊,宋曼曼,刘慧英.硒对盐胁迫下加工番茄种子萌发及抗氧化酶系统的影响.石河子大学学报,2010,28(4):422-426.
    26.胡华锋,介晓磊,刘芳,化党领,刘世亮,李建平,马闯.硒对紫花苜蓿产草量和品质的影响.草地学报,2008a,16(5):501-505.
    27.胡华锋,马闯,介晓磊,刘世亮,化党领,张炳运.钼对紫花苜蓿草产量及矿质元素含量和吸收量的影响.西南农业学报,2008b,21(5):1333-1337.
    28.胡华锋.硒在土壤—苜蓿—饲料—蛋鸡系统中的迁移效应及其机理研究.[博士学位论文].武汉:华中农业大学图书馆,2011.
    29.黄翠菊,王正福,卢溢,梁兰,常绕林.花椰菜缺铝症防治试验.云南农业科技,2012,2:26-27.
    30.江川,王金英,李清华,郑金贵.早晚季水稻精米和米皮硒含量的基因型差异研究.植物遗传资源学报,2005,6(4):448-452.
    31.焦峰,吴金花,郑树生,叶喜文.大豆钼营养研究进展.中国农学通报,2005,21(9):260-262.
    32.雷红灵,陆海波,蔡金洲,邱松,郑小江,李世荣.硒对藤茶抗氧化酶活性及有效成分的影响.华中农业大学学报,2010a,29(3):321-325.
    33.雷红灵,薛华,朱雄峰,吴永尧.硒与恩施碎米荠叶片谷胱甘肽过氧化物酶活性的相关性.江苏农业科学,2010b,4:406-408.
    34.李春霞和曹慧.植物硒的营养特点及吸收转化机理研究进展.农业科学研究,2006,27(4):72-76.
    35.李登超,朱祝军,徐志豪.不同硫水平下硒对小白菜生长及养分含量的影响.浙江大学学报:农业与生命科学入版,2003,29(4):402-406.
    36.李广元,任瑛云.克山病区儿童钼代谢.地方病通报,1986,10(1): 180.
    37.李合生.植物生理生化实验原理和技术.高等教育出版社,2000: 164-169.
    38.李静,夏建国,张忠,巩发永.茶叶的硒营养研究进展.安徽农业科学,2007,35(1):131-132.
    39.李娜,王旭,万凯,李丽,何舞,杨慧,王富华.硒对植物生长作用的研究进展.广东农业科学,2010,9,38-40.
    40.李彦,史衍玺,张英鹏,董晓霞,孙明.盐胁迫条件下硒对小白菜抗氧化活性及膜脂过氧化作用的影响.植物营养与肥料学报,2008,14(4):749-753.
    41.李永华,王五一.硒的土壤环境化学研究进展.土壤通报,2002,33(3):230-233.
    42.刘斌,吴其祥,朱树标,韦广泼.广西土壤钼的含量及其影响因素.广西农业科学,1996,3:132-134.
    43.刘红恩,胡承孝,孙学成,聂兆君,谭启玲.钼对油菜生长发育的影响.湖北农业科学,2011,50(7):1305-1308.
    44.刘洪恩.甘蓝型油菜钼磷营养互作效应及其机制研究.[博士学位论文].武汉:华中农业大学图书馆,2009.
    45.刘牧.钼对人体健康的影响.中国铝业,25(5):43-45.
    46.刘鹏,杨玉爱.钼,硼对大豆叶片膜脂过氧化及体内保护系统的影响.植物学报,2000,42(5):461-466.
    47.刘鹏,杨玉爱.土壤中的钼及其植物效应的研究进展.农业环境保护,2001,20(4):280-282.
    48.刘松岩,王凡,李才,王丽娟,赵志涛.硒和钼对缺氧性心肌损伤保护作用的研究.中国地方病防治杂志,1989,4(4):196-199.
    49.刘杨,王昌全,李冰,李焕秀,杜倩,张伟.硒锌交互对春茶硒化学形态的影响.茶叶科学,2010,30(5):343-349.
    50.刘铮,朱其清,唐丽华,徐俊祥,尹楚良.我国缺乏微量元素的土壤及其区域分布.土壤学报,1982,19(3):209-223.
    51.刘铮,朱其清,徐俊祥,严楚良.中国土壤中钼的含量与分布规律.环境科学学报,1990,10(2):132-137.
    52.刘遵春,刘用生.盐胁迫对果树生理生化的影响及耐盐性指标的研究进展.安徽农业科学,2006,23(14):3273-3274.
    53.卢广远,谢幸华,寇传喜,陈鑫伟,郝瑞莲.施钼对夏大豆产量及品质的影响.大豆通报,2006,1:20-21.
    54.卢丽萍,管力生,杨果,吴建明,阎晓阳,于大勇.山东省土壤有效钼含量及影响因素.山东农业科学,1991,1:20-23.
    55.陆景陵.植物营养学(上册).第2版.北京:中国农业大学出版社,1994.
    56.马庶晗.锰硼铝肥对大豆产量和品质的影响.农业科技通讯,2011:71-73.
    57.马友华,转可钦.硒对农作物的效应.中国农学通报,1999,15(1):44-46.
    58.梅光泉,应惠芳.微量元素硒与植物有机硒化合物.微量元素与健康研究,2003,20(6):59-61.
    59.聂兆君,胡承孝,孙学成,谭启玲,刘红恩.钼对小白菜抗坏血酸氧化还原的影响.植物营养与肥料学报,2008a,14(5):976-981.
    60.聂兆君,胡承孝,孙学成,谭启玲,刘红恩.钼对小白菜叶色,营养品质及硝酸盐含量的影响.中国蔬菜,2008b,8:7-10.
    61.宁建凤,郑青松,杨少海,邹献中,孙丽丽,陈勇.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,2010,21(2):325-330.
    62.彭克勤,洪亚辉.硒对早稻光合作用和产量性状的影响.湖南农业大学学报,1997,23(5):432-434.
    63.尚庆茂,陈淑芳,张志刚.硒对高温胁迫下辣椒叶片抗氧化酶活性的调节作用.园艺学报,2005,32(1):35-38.
    64.尚庆茂,高丽红,李式军.硒素营养对水培生菜品质的影响.中国农业大学学报,1998,3(30):67-71.
    65.孙学成,胡承孝,谭启玲,魏文学,王运华.施用钼肥对冬小麦游离氨基酸、可溶性蛋白质和糖含量的影响.华中农业大学学报,2002,21(1):40-43.
    66.孙学成,谭启玲,胡承孝,甘巧巧,易长城.低温胁迫下钼对冬小麦抗氧化酶活性的影响.中国农业科学,2006a,39(5):952-959.
    67.孙学成.钼提高冬小麦抗寒力的生理基础及分子机制.[博士学位论文].武汉:华中农业大学图书馆,2006b.
    68.唐巧玉,吴永尧,周大寨,等.硒对大豆根系活力的影响.河南农业科学,2004,7:42-44.
    69.唐巧玉,吴永尧,周大寨,周毅峰.硒对大豆根系活力的影响.河南农业科学,2005,07:42-43.
    70.万耀星,刘雄德,李正艳.土壤有效钼及植物全铝的示波极谱测定.土壤通报,1988,19(1):43-46.
    71.万佐玺,易咏梅,杨兰芳,等.土壤施硒对魔芋含硒量与吸硒特性的影响.华中农业大学学报,2005,24(4):359-363.
    72.王丹,王文全,万春阳,马丽娟,李卫东,魏胜利.钼对甘草幼苗生物量和抗氧化酶活性以及药材质量的影响.中国现代中药,2011,13(3):22-25.
    73.王红娟.铝对油菜和两个品种冬小麦根系生理特性的影响.[硕士学位论文].武汉:华中农业大学图书馆,2008.
    74.王晋民,蔡甲福.不同硒处理对大蒜含硒量及产量和品质的影响.园艺园林科学,2006,22(4):342-344.
    75.王丽霞,汤举红,罗庆熙,段九菊.不同浓度硫、硒处理对茎瘤芥营养元素吸收和营养品质的影响.东北农业大学学报,2012,43(7):131-136.
    76.王梅,张红香,邹志辉,杨冰仪,陈建.原子荧光光谱法测定富硒螺旋藻片中不同形态、价态的硒.食品科学,2011,32(6):179-182.
    77.王荣萍,李淑仪,蓝佩玲,廖新荣.铜钼硅营养对苦瓜产量和品质影响的研究.土壤,2007,39(6):928-931.
    78.王学奎.植物生理生化实验原理和技术(第2版).高等教育出版社,2005:134-270.
    79.王志忠.土壤有效钼的测定.环境保护科学,1990,16(3):17-20.
    80.魏复盛,陈静生,吴燕玉,郑春江.中国土壤环境背景值研究.环境科学,12(4):12-19.
    81.吴军,刘秀芳,徐汉生.硒在植物生命活动中的作用.植物生理学通讯,35(5):417-423.
    82.吴永尧,罗泽民,彭振坤.不同供硒水平对水稻生长的影响及水稻对硒的富集作用.湖南农业大学学报,1998,24(3):176-179.
    83.席承藩.中国土壤.北京:中国农业出版社,1998.
    84.夏永香,刘世琦,李贺,陈祥伟.硒对大蒜生理特性,含硒及品质的影响.植物营养与肥料学报,2012,18(3):733-741.
    85.肖艳辉,何金明,陈韵,朱裕梅,黄履燕.钼对镉胁迫下小白菜镉含量和生理指标的影.安徽农业科学,2009,37(9):3909-3910.
    86.徐文.硒的生物有效性及植物对硒的吸收.安徽农学通报,2009,15(23):46-47.
    87.严小龙,廖红.高级植物营养学.北京:科学出版社,2003.
    88.杨寒文.恩施烤烟硒含量分析及减害作用研究.[硕士学位论文].郑州:河南农业大学图书馆,2009
    89.杨居荣,贺建群,张国祥,毛显强.农作物对Cd毒害的耐性机理探讨.应用生态学报,1995,6(1):87-91.
    90.杨兰芳,万佐玺,易咏梅.叶面施硒对魔芋抗氧化作用的影响.湖北农业科学,2010,49(6):1313-1316.
    91.杨文秀,王萍,杨晓宇,李静.叶面施硒对油菜产量及品质的影响.内蒙古农业大学学报,2010,31(3):88-90.
    92.杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学,2006,37(2):302-305.
    93.余善鸣,邓云,王宝军.硒对人体健康的影响.营养与保健,2001,4:51-52.
    94.余守武,陈合云,郑学强,范天云,马德高,闫川.水稻籽粒硒含量的基因型差异及其与产量性状的相关性分析.核农学报,2011,25(5):993-997.
    95.喻敏,胡承孝,王运华.不同铝效率冬小麦品种铝的吸收和分配.中国农业科学,2004,37(11): 1749-1753.
    96.张彩虹,刘慧英,于秀针.硒对低温胁迫下番茄幼苗叶片光合特性与叶绿素荧光参数的影响.中国农学通报,2010,26(5):152-157.
    97.张纪利,李余湘,罗红香,张西仲,蒙祥旭,赵胜利,李章海.施钼对烟草叶绿素含量、光合速率、产量及品质的影响.中国烟草科学,2011,32(2):24-28.
    98.张继榛.影响安徽省土壤中有效铝含量的因素研究.土壤学报,1994,31(2):153-160.
    99.张木,胡承孝,刘金山,孙学成,陈青云,杨静.叶面喷施微量元素和氨基酸对不同氮水平小白菜产量及品质的影响.长江蔬菜,2011a,10,53-58.
    100.张木,胡承孝,孙学成,刘金山,陈青云,张影.叶面喷施微量元素和氨基酸对小白菜产量及品质的影响.华中农业大学学报,2011b,30(5): 613-617.
    101.张宪政,陈凤玉,王荣富.植物生理学实验技术.沈阳:辽宁科学技术出版社,1994:150-151.
    102.张学林.硒的世界地理分布.国外医学:医学地理分册,1992,1:1-4.
    103.张英鹏,杨运娟,杨力,李彦卜,高弼模,王学君,董晓霞.草酸在植物体内的累积代谢及生理作用研究进展.山东农业科学,2007,6:61-67.
    104.赵京,胡华峰,介晓磊,刘世亮,刘红恩,鲁剑巍,郭孝.基施硒肥对紫花苜蓿草产量及农艺性状的影响.草叶科学,2012,29(7):1127-1131.
    105.赵秋芳.两个冬小麦基因型根系生理特征对铝营养效率的影响.[硕士学位论文].武汉:华中农业大学图书馆,2012
    106.赵文恩,张软爱,高荣鹤.铝辅因子.生命化学,1992,12(5):12-15.
    107.赵艳红,陈怀珠,杨守臻,李初英.钼营养拌种处理对大豆主要农艺性状的影响.大豆科学,2010,29(5):894-896.
    108.郑达贤,李日邦,王五一.初论世界低硒带[J].环境科学学报,2(3):241-250.
    109.郑艺梅,胡承孝,华平,张奎,郑晶.钼对小白菜叶绿素和抗坏血酸含量及其硝酸盐累积的影响.食品安全的理论与实践-安徽食品安全博士科技论坛论文集,2005.
    110.中国国家标准化管理委员会.GB 21729-2008茶叶中硒含量的检测方法.北京:中国标准出版社,2008.
    111.中国科学院南京土壤研究所.中华人民共和国土壤图.北京:中国地图出版社,1986.
    112.周牮君,王校常,吴文彬.根系分泌物对几种难溶磷活化作用的研究.西南农业大学学报,2001,23(5):401-403.
    113.朱凤林.铝、硼对花椰菜产量及品质的影响.园艺学报,2005,32(2):310-313.
    114.朱英,王锝,熊玉祥.土壤中有效硒的提取和测定方法.资源环境与工程,2009,23(6):859-862.
    115.Aihendawi RA, Kirkby EA, Pilbeam DJ. Evidence that sulfur deficiency enhances molybdenum transport in xylem sap of tomato plants. J Plant Nutr,2005,28, 1347-1353.
    116.Anderson J. Selenium interactions in sulfur metabolism. Sulfur Nutrition and Assimilation in Higher Plants:Regulatory Agricultural and Environmental Aspects (De Kok I.S. Et al., eds). SPB Academic Publishing,1993.
    117.Arinola OG, Charles-davies MA. Micronutrient leves in the plasma of nigerian females with breast cancer. Afr J Biotechnol,2008,7(11):1620-1623.
    118.Arvy MP. Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). Journal of Experimental Botany,1993,44:1083-1087.
    119.Arvy MP. Some aspects of selenium relationships in soils and plants. Communications in Soil Science and Plant Analysis,1992,23(13-14):1397-1407.
    120.Ashraf MA and Ashraf M. Salt-induced variation in some phtential physiochemical attributes of two genetically diverse spring wheat (Triticum Aestivum L.)cultivars:Photosynthesis. Park J Bot,2012,44(1):53-64.
    121.Atsunori Fukuda, Atsuko Nakamura, Akemi Tagiri, Hiroshi Tanaka. Function, Intracellular Na+/H+ Antiporter from Rice. Plant Cell Physiol,2004,2:146-159.
    122.Bais H, Weir T, Perry L, Gilroy S and Vivanco J. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology,2006,57:233-266.
    123.Baxter I, Muthukumar B, Park H, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford M and Guerinot M. Variation in molybdenum content across broadly distributed poprlations of Arabidopiss thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genetics,2008,4:e1000004(online).
    124.Beilstein MA, Whanger PD, Yang GQ. Chemical forms of selenium in corn and rice grown in a high selenium area of China. Biomedical and Environmental Sciences,1991,4 (4):392-398.
    125.Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology,2000,12:431-434.
    126.Bogden JD, Chung HR, Kemp FW, Holding K, Bruening K, Naveh Y. Effect of selenium and molybdenum on methylbenzyhlnitrosamine-induced esophageal lesions and tissue trace metals in the rat. The Journal of Nutrition,1986,116(12): 2432-2442.
    127.Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol,1996,14:89-97.
    128.Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M and Tucker M. Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society 2006,65:169-181.
    129.Brodrick SJ, Giller KE. Root Nodules of Phaseolus:Efficient Scavengers of Molybdenum for N2-fixation. Journal of Experimental Botany,1991,42 (5): 679-686.
    130.Brown J and Clark R. Differential response of two maize inbreds to molybdenum stress. Soil Science Society of America Journal,1974,38:331-333.
    131.Bussler W. Entwicklungsstorungen bei Molybdanmangel. Landw Forsch,1970, 25:31-38.
    132.Campbell WH. Nitrate reductase structure, function and regulation:bridging the gap between biochemistry and physiology. Annual review of plant biology,1999, 50:277-303.
    133.Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annals of Applied Biology,2010,156 (2):297-307.
    134.Chatterjee C, Nautiyal N, Agarwala SC. Metabolic changes in mustard plants associated with molybdenum deficiency. New phytologist,1985,100:511-518.
    135.Das A, Chakraborty R, Cervera M, Dela-Guardia M. A review on molybdenum determination in solid geological samples. Talanta,2007,71:987-1000.
    136.Dilworth GL and Bandurski RS. Activation of Selenate by adenosine 5-triphosfate from Saccharomyces cerevisiae. J Biochem,1977,163:521-529.
    137.Dudev T, Lim C. Oxyanion selectivity in sulfate and molybdate transport proteins: an ab initio/CDM study. Journal of the American Chemical Society,2004,126(33): 10296-10305.
    138.Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hansch R and Mendel RR. Identification and biochemical characterization of Arabidopis thaliana sulfite oxidase:a new player in plant sulfur metabolism. Journal of Biological Chemistry,2001,276:46989-46994.
    139.Farquhar GD and Sharkey TD. Stomatal conductance and photosynthesis. Ann Re Plant Physiol,1982,33:317-345.
    140.Fitzpatrick KL, Tyerman SD, Kaiser BN. Molybdate transport through the plant sulfate transporter SHST1. FEBS Letters,2008,582(10):1508-1513.
    141.Flexas J, Bota J, Galme's J, Medrano H and Ribas-Carbo'M. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiol Plantarum,2006,127(3):343-352.
    142.Fu XP, Dou CM, Chen YX, Chen XC, Shi JY, Yu MG, Xu J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials,2011,186:103-107.
    143.Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytologist,2007,173(3):517-525.
    144.Gasber A, Klaumann S, Trentmann O, Tranmpczynska A, Clemens S, Schneider S, Sauer N, Feifer I, Bittner F and Mendel R. Identification of an Arabidopis solute carrier critical for intracellular transport and inter-organ allocation of molybdeate. Plant Bilolgy,2011,13:710-718.
    145.Giri B and Mukerji KG. Mycorrhizal inoculant alleviates salt in Sesbania aegyptiaca and Sesbania grandiflora under field conditions:evidence for reduced sodium and improved magnesium uptake. Mycorrhiza,2004,14:307-12.
    146.Goodson CC, Parker DR, Amrhein C, Zhang Y. Soil selenium uptake and root system development in plant taxa differing in Se-accumulating capability. New Phytologist,2003,159(2):391-401.
    147.Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment,2005,28(7):834-849.
    148.Gunes A and Post WHK. Effect of various levels and combinations of molybdenum and tungstem on the growth and nitrate accmulation in lettuce (Lactuca sativa L.) gown in nutrient solution. Agrochimica,1996,40:166-172.
    149.Gustafsson JP and Johnsson L. Selenium retention in the organic matter of Swedish forest soils. Journal of Soil Science,1992,43(3):461-472.
    150.Gustafsson JP, Jacks G, Stegmann B. Soil acidity and adsorbed anions in Swedish forest soils-long term changes. Agriculture, Ecosystem & Environment,1993, 47(2):103-115.
    151.Hashimoto K, Yamasaki S. Effects of molybdenum application on the yield, nitrogen nutrition and nodule development of soybeans. Soil science and plant nutrition,1976,22(4):435-443.
    152.Hesberg C, Hansch R, Mendel RR and Bittner F. Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana:differential gene expression and enzyme activities. Journal of Biological Chemistry,2004,279: 13547-13554.
    153.Heuwinkel H, Kirkby EA, Bot JL and Marschner H. Phosphorous deficiency enhances molybdenum uptake by tomato plants. Journal of Plant Nutrition,1992, 15:549-568.
    154.Hewitt EJ, Agarwala SC and Jones EW. Effect of Molybdenum Status on the Ascorbic Acid Content of Plants in Sand Culture. Nature,1950,166:1119-1120.
    155.Hille R, Nishino T and Bittnerc F. Molybdenum enzymes in higher organisms. Coordination Chemistry Reviews,2011,255:1179-1205.
    156.Hopper JL, Parker DR. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil,1999,210,199-207.
    157.Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T and Tyerman SD. The role of molybdenum in agricultural plant production. Annual of Botany,2005,96: 745-754.
    158.Kassis EE, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N and Davidian JC. Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiology,2007,143(3): 1231-1241.
    159.Kisker C, Schindelin H and Rees DC. Molybdenum-cofactor-containning enzymes:Structure and Mechanism. Annual Review of Biochemistry,1997,66(1): 233-267.
    160.Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany,2006,56:136-146.
    161.Kumar V and Singh M. Sulfur, phosphorus, and molybdenum interactions in relation to growth, uptake, and utilization of sulfur in soybean. Soil Science, 1980a,129(5):305-310.
    162.Kumar V, Singh M. Interactions of sulfur, phosphorus and molybdenum in relation to uptake and utilization of phosphorus by soybean. Soil Science,1980b, 130,26-31.
    163.Lee S, Woodard HJ and Doolittle JJ. Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Science and Plant Nutrition, 2011a,57(5):696-704.
    164.Lee S, Woodard HJ, Doolittle JJ. Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Science and Plant Nutrition,2011b,56(6):823-832.
    165.Leustek T, Martin MN, Bick JA and Davies JP. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol,2000,51:141-165.
    166.Leustek T, Murillo M and Cervantes M. Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol,1994,105:897-902.
    167.Li HF, McGrath SP, Zhao FJ. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol,2008,178(1),92-102.
    168.Li TQ, Yang XE, Yang JY and He ZL. Zn accumulation and subcellular distribution in the Zn hyper-accumulator sedum alfredii Hance. Pedosphere,2006, 16(5):616-623.
    169.Liming Xiong, Manabu Ishitani, Hojoung Lee, Zhu Jian Kang. The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold stress-and Osmotic Stress-Responsive Gene Expression. Plant Cell,2001,13: 2063-2083.
    170.Liu HE, Hu CX, Hu XM, Nie ZJ, Sun XC, Tan QL and Hu HF. Interaction of molybdenum and phosphorus supply on uptake and translocation of phosphorus and molybdenum by Brassica napus. Journal of Plant Nutrition,2010a,33: 1751-1760.
    171.Liu HE, Hu CX, Sun SC, Tan QL, Nie ZJ, Hu XM. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedings and grain yield of Brassica napus. Plant Soil,2010b,326,345-353.
    172.Liu Q, Wang DJ, Jiang XJ, Cao ZH. Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza Sativa). Environmental Gechemistry and Health,2004,26:325-330.
    173.Longchamp M, Angeli N and Castrec-Rouelle M. Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant and Soil, 2013,362(1-2):107-117.
    174.Lyons GH, Gene Y, Soole K, Stangoulis JCR, Liu F, Graham RD. Selenium increases seed production in Brassica. Plant Soil,2009,318:73-80.
    175.Maas EV, Grieve CM. Sodium-induced calcium deficiency in salt-stressed corn. Plant Cell and Environment,1987,10:559-564.
    176.Maathuis FJ, Amtmann A. K+nutrition and Na+toxicity:the basis of cellular K+/Na+ratios. Annals of Botany,1999,84:123-133.
    177.Maathuis FJ and Diatloff E. Roles and functions of plant mineral nutrients. Plant Mineral Nutrients,2013,953:1-21.
    178.Malcolm J, Hawkesford FZ. Strategies for increasing the selenium content of wheat. J Cereal Sci,2007,46:282-292.
    179.Marin E and Marion-Poll A. Tomato flacca mutant is impaired in ABA aldehyde oxidase and xanthine dehydrogenase activities. Plant physiology and biochemistry, 1997,35(5):369-372.
    180.Mendel RR, Hansch R. Molybdoenzymes and molybdenum cofactor in plant. J Exp Bot,2002,53:1689-1698.
    181.Mora ML, Pinilla L, Rosas A and Cartes P. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant and Soil,2008,303(1-2):139-149.
    182.Neuhierl B and Bock A. On the mechanism of selenium tolerance inselenium-accumulating plants-purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur J Biochem, 1996,239:235-238.
    183.Neuhierl B, Thanbichler M, Lottspeich F and Bock A. A family of S-methylmethionine-dependent thiol/selenol methyltransferases role in selenium tolerance and evolutionary relation. Journal of Biological Chemistry,1999,274: 5407-5414.
    184.Nie ZJ, Hu CX, Sun XC, Tan QL and Liu HE. Effects of molybdenum on ascorbate-glutathione cycle metabolism in Chinese cabbage (Brassica campestris L.ssp.pekinensis). Plant and Soil,2007 (295):13-21.
    185.Palmgren MG, Harper JF. Pumping with plant P-type ATPases. Journal of Experimental Botany,1999,50,883-893.
    186.Parida AK and Das AB. Salt tolerance and salinity effects on plants:a review. Ecotoxicol [J]. Ecotoxicology and environmental safety,2005,60:324-349.
    187.Parida AK and Jha B. Salt tolerance mechanisms in mangroves:a review. Trees, 2010,24:199-217.
    188.Pilon-Smits EA and Quinn CF. Selenium metabolism in plants. Cell Biology of Metals and Nutrients,2010,17:225-241.
    189.Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M. Physiological functions of beneficial elements. Current Opinion in Plant Biology,2009,12(3): 267-274.
    190.Possingham JV. The Effect of Molybdenum on the Organic and Inorganic Phosphorus of Plants. Austrialian Journal of Biological Sciences,1954,7(3): 221-224.
    191.Ramos SJ, Rutzke MA, Hayes RJ, Faquin V, Guilherme L, Li L. Selenium accumulation in lettuce germplasm. Planta,2011,233,649-660.
    192.Rashid MM, Kang Y and Sakurai K. Selenium in amorphous iron (hydr) oxide-applied soil as affected by air-drying and pH. Soil Science and Plant Nutrition,2002,48(2):243-250.
    193.Rengel Z. Root exudation and microflora populations in rhizosphere of crop genotypes differing in tolerance to micronutrient deficiency. Plant and Soil,1997, 196:255-260.
    194.Saleh B. Ion partitioning and Mg+/Na+ratio under salt stress application in cotto. Journal of Stress Physiology & Biochemistry,2011,7(4):292-300.
    195.Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae,2004,103(1):93-99.
    196.Schiavon M, Pittarello M, Pilon-Smits EAH, Wirtz M, Hell R and Malagoli M. Selenate and molybdate alter sulfate transport and assimilation in Brassica juncea L. Czern.:Implications for phytoremediation. Environmental and Experimental Botany,2012,75:41-51.
    197.Schwarz G and Mendel RR. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annual Review of Plant Biology,2006,57:623-647.
    198.Schwarz G, Mendel RR and Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature,2009,460:839-847.
    199.Schwarz G. Molybdenum cofactor biosynthesis and deficiency. Cellular and molecular life sciences,2005,62:2792-2810.
    200.Seo M and Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends in Plant Science,2002,7:41-48.
    201. Shaw WH and Anderson JW. Comparative enzymology of the adenosine triphosphate sulphurylase from leaf tissue of selenium accumulator and non-accumulator plants. Biochem J,1974,139:37-42.
    202.Sheen J. Ca2+-Dependent Protein Kinases and Stress Signal Transduction in Plants. Science,1996,274(5294):1900-1902.
    203.Shibagaki N, Rose A, McDermoott JP, Fujiwara T, Hayashi H, Yoneyama T and Davies JP. Selenate-resistant mutants of Arabidopsis thaliana identify Sultrl;2, a sulfate transporter required for efficient transport of sulfate into roots. The Plant Journal,2002,29(4):475-486.
    204.Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP and Hawkesford MJ. Influence of Sulfur Deficiency on the Expression of Specific Sulfate Transporters and the Distribution of Sulfur, Selenium, and Molybdenum in Wheat. Plant Physiology,2010,153(1):327-336.
    205.Sors TG, Ellis DR and Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research,2005a,86:373-389.
    206.Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. The Plant Journal,2005b,42(6):785-797.
    207.Stillwell W and Tien HT. Protection of chlorophyll by phospholipids from photooxidation. Biochemical and Biophysical Research Communications,1997, 76(2):232-238.
    208.Stroud JL, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K and Scott P. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil,2010a,332(1-2):19-30.
    209.Stroud JL, Li HF, Lopez-Bellido FJ, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H. Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil,2010b,332(1-2):31-40.
    210.Sun XC, Hu CX, Tan QL, Liu JS, Liu HE. Effects of molybdenum on cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low temperature stress. Annals of Botany,2009, 104:345-356.
    211.Tejada-Jimenez M, Llamas A, Sanz-Luque E, Galvan A and Fernandez E. A high-affinity molybdate transporter in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America,2007,104(50): 20126-20130.
    212.Terry N, Zayed A M, de Souza M P, Tarun A S. Selenium in higher plants. Annu. Rev. Plant Physilo. Plant Mol Biol,2000,51,401-432.
    213.Togay Y, Togay N, Dogan Y. Research on the effect of phosphorus and molybdenum applications on the yield and yield parameters in lentil (Lens culinaris Medic.). African Journal of Biotechnology,2008,7(9):1256-1260.
    214.Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N and Fujiwara T. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proceedings of the National Academy of Sciences,2007,104:18807-18812.
    215.Tripathy BC, Pattanayak GK. Chlorophyll Biosynthesis in Higher Plants. Photosynthesis,2012,34(2):63-94.
    216.Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B. The effects of calcium sulphate on growth, membranestability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany,2007, 59(2):173-178.
    217.Ventura Y, Wuddineh WA, Ephrath Y, Shpigel M and Sagi M. Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L. Scientia Horticulturae,2010,126(3):395-401.
    218.Walker-Simmons M, Kudrna DA and Warner RL. Reduced Accumulation of ABA during Water Stress in a Molybdenum Cofactor Mutant of Barley. Plant Physiology,1989,90 (2):728-733.
    219.White PJ, Bowen HC, Marshall B and Broadley MR. Extraordinarily high leaf selenium to sulfur ratios define'Se-accumulator'plants. Annals of Botany,2007, 100(1),111-118.
    220.White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meachan MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B and Broadley MR. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot,2004,55:1927-1937.
    221.Wilson LG and Bandurski RS. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem,1958,233:975-981.
    222.Wu CA, Guo DY, Qing WM, Cheng CZ. The Cotton GhNHXl Gene Encoding a Novel Putative Tonoplast Na+/H+ Antiporter Plays an Imporant Role in Salt Stress. Plant Cell Physiol,2004,5:600-607.
    223. Yu XY, Gu JD. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environmental Science and Pollution Research,2008,15(6):499-508.
    224.Zayed AM and Terry N. Selenium volatilization in roots and shoots:effects of shoot removal and sulfate level. Journal of Plant Physiology,1994,143:8-14.
    225.Zhang M, Hu CX, Zhao XH, Tan QL, Sun XC, Cao AY, Cui M and Zhang Y. Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage(Brassica campestris L. ssp. Pekinensis). Plant Soil, 2012a,355:375-383.
    226.Zhang M, Hu CX, Zhao XH, Tan QL, Sun XC, Li Na. Impact of molybdenum on Chinese cabbage response to selenium in solution culture. Soil Science and Plant Nutrition,2012b,58(5):595-603.
    227.Zhang Y, Pan G, Chen J and Hu Q. Uptake and transport of selenite and selenate by soybean seedings of two genotypes. Plant Soil,2003,253:437-443.
    228.Zhu YG, Huang YZ, Hu Y, Liu YX, Christie P. Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil, 2004,261,99-105.
    229.Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN and Meharg AA. Selenium in higher plants:understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science,2009,14(8):436-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700