用户名: 密码: 验证码:
人工阔叶林木材材质材性预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国森林资源总量虽然逐年增加,但大径级可采优质木材却在不断减少,天然林保护工程等重点生态工程的实施,使得国内木材资源的供给压力集中到了人工林。人工林存在单产低、质量差、林龄结构不合理等问题,因此培育人工林获得优质木材已受到世界各国森林培育和木材科学研究者的普遍重视。人工林木材材质材性预测模型的研究,有助于合理确定人工林轮伐期和天然林的更新选择,也有助于木材节约、高效、合理利用。
     本文以东北主要人工林树种核桃楸和水曲柳的生长轮材质材性特征和木材物理力学特征为研究对象,主要进行三个方面研究:(1)根据生长轮材质材性的径向变异规律,采用有序聚类最优分割法、主成分聚类法、BP神经网络法和支持向量机法等分类方法,分别界定树木幼龄材与成熟材的分界点,对分类结果进行比较分析,明确每种分类方法特点和分类准确度;(2)在得到幼龄材与成熟材分界点的情况下,采用回归方程法、时间序列法、BP神经网络法和支持向量机法等预测方法,根据幼龄材材质材性预测成熟材材质材性,从成熟预测相对误差和标准差与整体预测相对误差和标准差四个方面进行比较分析,明确每种预测方法的特点和预测精准度;(3)在明确支持向量机法具有良好的回归拟合能力和泛化能力的基础上,首先建立生长轮材质材性特征因子间的关系模型,其次建立木材物理力学特征因子间的关系模型,最后建立生长轮材质材性与木材物理力学特征因子间的关系模型,以相关系数R大于0.83的特征因子为核心,最终建立木材材质材性关系模型。
     通过研究,本文主要得出如下结论:
     (1)以生长轮材质材性综合指标为研究对象,采用支持向量机法界定核桃楸幼龄材与成熟材的分界点为树木生长的第18年,材质材性训练集的选择以树木生长前6-10年与后2-6年组合为主;界定水曲柳幼龄材与成熟材的分界点为树木生长的第23年,材质材性训练集的选择以树木生长前10-14年与后2-10年组合为主。
     (2)以生长轮材质材性综合指标和单项指标为研究对象,界定核桃楸和水曲柳幼龄材与成熟材,采用支持向量机法得到的分类结果与主成分聚类法和BP神经网络法基本相同;综合指标与有序聚类最优分割法得到的分类结果差别年限较大,单项指标与有序聚类最优分割法得到的分类结果基本相同。
     (3)在界定树木幼龄材与成熟材的过程中,有序聚类最优分割法以单项指标为研究对象得到分类结果的准确性优于综合指标;BP神经网络法和支持向量机法以综合指标为研究对象得到分类结果的准确性优于单项指标;主成分聚类法以生长轮材质材性综合指标为研究对象,能够得到单项材质材性指标的贡献率,采用2个主成分能够概括生长轮材质材性,能够用图解法直观给出聚类结果。
     (4)在成熟材材质材性的预测过程中,采用回归方程法得到的预测值对部分实测值的离散点拟合不好,能够体现幼龄材材质材性变化趋势,但不能表现成熟材材质材性变化趋势;采用时间序列法得到的预测值能够拟合幼龄材实测值的离散点,对成熟材部分实测值的离散点拟合不好,预测曲线能够体现幼龄材材质材性变化趋势,但对成熟材材质材性变化趋势表现不足;采用BP神经网络法得到的预测值与实测值偏差小、但对部分实测值的离散点拟合不好,预测曲线对成熟材材质材性变化趋势表现不足;采用支持向量机法得到的预测值能够拟合实测值的离散点,对成熟材部分实测值的离散点拟合不好,预测曲线能够体现生长轮材质材性整体变化趋势,但对成熟材材质材性局部上下波动变化表现不足。
     (5)根据幼龄材材质材性预测成熟材材质材性,回归方程法操作简便、预测精准度属中下等、回归拟合结果不够理想;时间序列法步骤多、操作复杂,预测精准度属中等、回归拟合结果比较好;BP神经网络法操作简便、预测精准度属中上等,只能得到成熟材预测趋势,不能得到整体预测趋势;支持向量机法操作简便、预测精准度属中上等,预测泛化能力强,回归拟合能力强,对变异规律性不强的材质材性指标进行预测时,也能得到较低的预测相对误差和标准差。
     (6)核桃楸木纤维长度、生长轮密度、木材基本密度、抗弯强度和顺纹抗压强度间存在很高的相关性,相关系数R大于0.9310;水曲柳木纤维长度、木纤维胞腔直径、胞壁率、生长速率、木材基本密度和抗弯强度间存在很高的相关性,相关系数R大于0.8674。核桃楸解剖特征因子间的径向变异规律主要以第7和14年为界,分两部分变化,物理力学特征因子间的径向变异规律不显著,大致以距髓心处的第4块试材为界,分两部分变化;水曲柳解剖特征因子间的径向变异规律主要以第11和20年为界,分两部分变化,物理力学特征因子间的径向变异规律不显著,大致以距髓心处的第4-5块试材为界,分两部分变化。
In recent years, in spite of the increasing amount of forest resources, the high quality wood with large diameter grade is decreased. Implementation of natural forest protection project has concentrated the wood resources supply pressure on planted forest. However, the planted forest was puzzled by the low production rate, poor quality and unreasonable forest age distribution. Therefore, forest cultivation and wood science researchers from the whole world have put their eyes on high quality planted forest breeding. Researches on predictive models of wood characteristics of planted forest will contribute to the reasonable time to fell planted forest, the update selection of natural forest, and the economical, efficient and reasonable utilization.
     The paper had focused on wood properties and physical and mechanical characteristics between growth rings of walnut (Juglans mandshurica Max.) and ash (Fraxinus mandshurica Rupr.) plantation. There are three main aspects:(1) On the basis of radial variation rules on wood properties between growth rings, sequential clustering optimal segmentation, principal component clustering, BP neural network and support vector machine(SVM) methods were used respectively for the demarcation of juvenile and mature wood. A comparison of the results, including characteristic and accuracy, were analyzed and confirmed.(2) After demarcated of the juvenile and mature wood, prediction methods of the regression equation, time series, BP neural network and support vector machine(SVM) were compared on the relative deviation and standard deviation of mature period prediction and the whole period prediction respectively based on the prediction of mature wood properties from the juvenile wood properties. The characteristic and accuracy of each predicted methods were analyzed.(3) After confirm that SVM method has the best regression and fitting capacity and generalization capability, firstly, relational models among wood properties' characteristic factors were established; secondly, relational models among wood physical and mechanics characteristic factors were established; finally, relational models between wood properties and wood physical and mechanics characteristic factors were established. In core of the characteristic factors which with the correlation coefficient R more than0.83, wood characteristic models were established in the end.
     The main conclusions of the paper were listed below:
     (1) Comprehensive indexes of wood properties among the growth rings were acted as the research object. The demarcation of juvenile and mature walnut wood determined by SVM method was the18th-year. The training sets were selected mainly on the group of earlier6to 10years and the later2to6years. The demarcation of juvenile and mature ash wood was the23th-year. The training sets were selected mainly on the group of earlier10to14years and the later2to10years.
     (2) Walnut and ash juvenile and mature wood were demarcated with the research objuect of comprehensive indexes and single index of wood properties among the growth rings. The classification result of SVM method was primarily the same to the result of the principal component clustering and BP nueral network methods; while it was obviously different to the result of sequential clustering optimal segmentation method based on comprehensive indexes; it was primarily the same to the result of the sequential clustering optimal segmentation method based on single index.
     (3) In the process of juvenile and mature wood demarcation, the sequential clustering optimal segmentation method had better classification result with single index as research object than that with comprehensive indexes; BP neural network and SVM methods had better classification result with comprehensive indexes as research object than that with single index; with the comprehensive indexes of wood properties among growth rings as the research object, principal component clustering method can get the contribution from the single index of wood properties. Two pingcipal components can be used to summarize the wood properties among growth rings and the classification result can be directly showed by the graphical method.
     (4) In the process of mature wood properties prediction, the predicted value using the regression equation method had poor fitting effect to part of the discrete point of measured value; and the predicted curve could reflect the variation trend of juvenile wood but mature wood. The predicted value using the time series method could fit the juvenile wood discrete point of measured value, but part of the mature wood discrete point of measured value; and the predicted curve could reflect the variation trend of juvenile wood but mature wood. The deviation between predicted value and measured value of mature wood was small using the BP neural network method; but the fitting of discrete points was bad in part of the measured value. The prediction curve has poor reflection on the overall variation trend of mature wood properties. The predicted value using SVM method could fit the discrete point of measured value, but part of the mature wood discrete point of measured value; and the predicted curve could reflect the overall variation trend, while it has poor reflection on partly ups and downs of mature wood.
     (5) To predict the mature wood properties from juvenile wood properties, the regression equation method is easy handling, low or middle level prediction accuracy, and low fitting effect; the time series method is multi-steps, complicated handling, middle or high level prediction accuracy, and good fitting effect; the BP neural network method is easy handling, middle or high level prediction accuracy, and capacity to get mature wood predicted trend insteading of the overall trend prediction; SVM method is easy handling, middle or high level prediction accuracy, high predicted generalization capability, high fitting effect, and low predicted relative error and standard deviation when predicting from the indexes with insignificant variation relationship.
     (6) There was high relevance with correlation coefficient R more than0.9310among wood fiber length, density among growth rings, wood basic density, bending strength, and compressive strength parallel to grain of walnut. There was high relevance with correlation coefficient R more than0.8674among wood fiber length, wood fiber lumen diameter, wood cell walls percentage, growth rate, wood basic density and bending strength of ash wood. The radial variation rule among anatomy characteristics factors of walnut wood was separated into two parts mainly in the7th-year or the14th-year. There was insignificant radial variation rule among physical and mechanics characteristic factors, which was separated into two parts approximately in the4th specimen from the pith. The radial variation rule among anatomy characteristics factors of ash wood was separated into two parts mainly in the11th-year or the20th-year. There was insignificant radial variation rule among physical and mechanics characteristic factors, which was separated into two parts approximately in the4th to5th specimen from the pith.
引文
[1]李坚,郭明辉,赵西平.木材品质与营林环境[M].北京:科学出版社,2011
    [2]江泽慧,姜笑梅.木材结构与其品质特性的相关性[M].北京:科学出版社,2011
    [3]王金满.木材材质预测学[M].哈尔滨:东北林业大学出版社,1997
    [4]李勇民.关于幼龄材问题[J].贵州林业科技,2000,28(1):1-5
    [5]Jerome Alteyrac, Alain Cloutier, S. Y. Zhang. Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill.) B.S.P.) at different stand densities and sampling heights[J]. Wood Science and Technology,2006(40):124-138
    [6]Joel W. Evans, John F. Senft, David W. Green. Juvenile Wood Effect in Red Alder: Analysis of Physical and Mechanical Data to Delineate Juvenile and Mature Wood Zones[J]. Forest Products Journal,2000,50(7/8):75-87
    [7]徐有明.油松内幼龄材与成熟材材性的比较研究[J].木材工业,1992,6(3):44-48
    [8]刘元.幼龄材范围的确定及树木生长速率对幼龄材生长量的影响[J].林业科学,1997,33(5):418-426
    [9]刘盛全,储茵,张余才.刺楸木材幼龄期划分的探讨[J].林业科技通讯,1999,08:9-11
    [10]陈清波,周席华,河村嘉一郎,张兴虎.杨树非成熟材与成熟材年轮界限的探讨[J].湖北林业科技,2000.增刊:87-90
    [11]A. Yassin Abdel-Gadir, Robert L. Krahmer. Genetic Variation in the Age of Demarcation Between Juvenile and Mature Wood in Douglas-Fir[J]. Wood and Fiber Science,1993, 25(4):384-394
    [12]A. Yassin Abdel-Gadir, Robert L. Krahmer. Estimating the Age of Demarcation of Juvenile and Mature Wood in Douglas-Fir[J]. Wood and Fiber Science,1997,25(3):242-249
    [13]Gudaye Tasissa, Harold E. Burkhart, Thomas M. Juvenile-Mature Wood Demarcation in Loblolly Pine Trees[J]. Wood and Fiber Science,1998,30(2):119-127
    [14]Jianjun Zhu, Tatsuo Nakano, Yasuhiko Hirakawa. Effects of radial growth rate on selected indices for juvenile and mature wood of the Japanese Larch[J]. J Wood Sci,2000(46): 417-422
    [15]K. M. Bhat, P. B. Priya, P. Rugmini. Characterisation of Juvenile Wood in Teak[J]. Wood Science and Technology,2001(34):517-532
    [16]Rudiger MUTZ, Edith GUILLEY, Udo H. SAUTER, Gerard NEPVEU. Modeling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models[J]. Annals of Forest Science,2004(61):831-841
    [17]黄凤荣,鲍甫成,张冬梅.杨树材性成熟龄模型的建立及树体内幼龄材的分布[J].林业科学,2005,41(3):103-109
    [18]Jianjun Zhu, Naoki Tadooka, Katsuhiko Takata, Akio Koizumi. Growth and Wood Quality of sugi (Cryptomeria japonica) Planted in Akita prefecture (Ⅱ)[J]. Juvenile/mature Wood Determination of Aged Trees,2005(51):95-101
    [19]Jerome Alteyrac, Alain Cloutier, S. Y. Zhang. Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill.) B.S.P.) at different stand densities and sampling heights[J]. Wood Science and Technology,2006(40):124-138
    [20]Chih-Ming Chiu, Song-Yung Wang, Cheng-Jung Lin, Te-Hsin Yang, Ming-Chun Jane. Application of the fractometer for crushing strength:juvenile-mature wood demarcation in Taiwania (Taiwania cryptomerioids)[J]. The Japan Wood Research Society,2006(52):9-14
    [21]A. L. Ferreira, E. T. D. Severo, F. W. Calonego. Determination of fiber length and juvenile and mature wood zones from Hevea Brasiliensis Trees Grown in Brazil[J]. Eur. J. Wood Prod,2011(69):659-662
    [22]Levente Csoka, Jianjun Zhu, Katsuhiko Takata. Application of the Fourier analysis to determine the demarcation between juvenile and mature wood[J]. The Japan Wood Research Society,2005(51):309-311
    [23]王金满,刘一星,李坚.人工林长白落叶松木材材质早期预测模式(Ⅰ)——材性变异、幼龄期与成熟期的界定[J].东北林业大学学报,1996,24(5):65-71
    [24]李坚,刘一星,崔永志,徐子才.人工林杉木幼龄材与成熟材的界定及材质早期预测[J].东北林业大学学报,1999,27(4):24-28
    [25]王宏伟,刘迎涛,朱成.人工林和天然林红松幼龄材与成熟材的界定及解剖、物理性质的比较[J].东北林业大学,2005,33(3):42-43
    [26]金春德,张美淑,文桂峰,汤燕平,徐策.人工林赤松幼龄材与成熟材力学性质的比较[J].浙江林学院学报,2006,23(5):477-481
    [27]徐朝阳.杂种鹅掌楸材性研究[D].南京林业大学研究生硕士学位论文,2004
    [28]叶志宏.杉木种源地理变异的影响因子及性状遗传、相关和选择[J].南京林业大学学报,1991,15(4):89-96
    [29]姜笑梅,殷亚芳,浦上弘幸.北京地区1-214杨树木材解剖特性与基本密度的株内变异及其预测模型[J].林业科学,2003,39(6):115-121
    [30]金春德,吴义强,张美淑,张鹏.赤松木材材质早期预测[J].东北林业大学学报,2003,33(2):24-26
    [31]李坚,王金满,吴玉章,崔永志.火炬松木材材质早期预测[J].东北林业大学学报,1999,27(5):25-28
    [32]王金满,李坚,刘一星.人工林长白落叶松木材材质早期预测模式(Ⅱ)[J].东北林业大学学报,1997,25(2):24-28
    [33]石雷,孙庆丰,邓疆.人工幼龄印度黄檀木材解剖性质和结晶度的径向变异及预测模型 [J].林业科学研究,2009,22(4):553-558
    [34]金春德等.天然林赤松木材材质变异规律的初步研究[J].东北林业大学学报,2000,28(1):39-42
    [35]张友元等.香椿生长轮宽度、木材气干密度、纤维长度径向变异及其相关性研究[J].安徽农业科学,2009,37(5):1976-1978
    [36]徐有明,林汉,江泽慧.橡胶树生长轮宽度、木材密度变异及其预测模型的研究[J].林业科学,2002,38(1):95-102
    [37]刘元.幼龄材范围的确定及树木生长速率对幼龄材生长量的影响[J].林业科学,1997,33(5):418-424
    [38]Harri Ma"kinen, Tuula Jaakkola, Riikka Piispanen, Pekka Saranpa"a. Predicting wood and tracheid properties of Norway spruce[J]. Forest Ecology and Management,2007(241): 175-188
    [39]B. K. Via, T. F. Shupe, M Stine, C. L. So, L. H. Groom. Tracheid length prediction in Pinus palustris by means of near infrared spectroscopy:the influence of age[J]. Holz als Roh-und Werkstoff,2005(63):231-236
    [40]Ken Watanabe. Isao Kobayashi. Naohiro Kuroda. Masaki Harada. Shuichi Noshiro. Predicting oven-dry density of Sugi (Cryptomeria japonica) using near infrared (NIR) spectroscopy and its effect on performance of wood moisture meter[J]. J Wood Sci, 2012(58):383-390
    [41]Nicholas Ebdon, Roger Meder. Assessing sapwood depth and wood properties in Eucalyptusand Corymbia spp. Using visual methods and near infraredspectroscopy (NIR)[J]. Trees,2012,26:963-974
    [42]Kelley S S, Rials T G, Snell R. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood[J]. Wood Science and Technology,2004,38(4): 257-276
    [43]P. David Jones, Laurence R, Schimleck, Gary F. Peter, Richard F. Daniels, Alexander Clark Ⅲ. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol,2006(40): 709-720
    [44]Schimleck L R, Evans R. Estimation of microfiberial angle of increment cores by near infrared spectroscopy [J]. IAWA Journal,2002b,23(3):225-234
    [45]Schimleck L R, Anthony J M, Carolyn A R. Effect of site on the within-tree variation of wood properties of eucalypts as determined by NIR spectroscopy and multivariate analysis [J]. Appita Journal,2000,53(4):318-322
    [46]Gindl W, Teischinger A, Schwanninger M etal. The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties[J]. Journal of Near Infrared Spectroscopy,2001,9(4):255-261
    [47]Hoffmeyer P, Pedersen J G, Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy [J]. Holz als Roh-und Werkstoff,1995(53):165-170
    [48]Evans R. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiate [J]. Holzforschung,1994,48(2):168-172
    [49]Futoshi Ishiguri. Ryusei Matsui. Kazuya Iizuka. Shinso Yokota. Nobuo Yoshizawa. Prediction of themechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees[J]. Holz Roh Werkst,2008(66):275-280
    [50]Stephie Solorzano, Ro'ger Moya, Olma'n Murillo. Early prediction of basic density, shrinking, presence of growth stress, and dynamic elastic modulus based on the morphological tree parameters of Tectona grandis[J]. J Wood Sci,2012(58):290-299
    [51]WU Shi-jun, XU Jian-ming, LI Guang-you, RISTO Vuokko, LU Zhao-hua, LI Bao-qi, Wang Wei. Use of pilodyn for assessing wood properties in standing tress of Eucalyptus clones[J]. Journal of Forestry Research,2010,21(1):68-72
    [52]殷亚方,王莉娟,姜笑梅.Pilodyn方法评估阔叶树种人工林立木的基本密度[J].北京林业大学学报,2008,30(4):7-11
    [53]Cown D J. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wood density in living trees[J]. New Zealand Journal of Forestry Science,1978,8:384-391
    [54]Taylor F W. Rapid determination of southern pine specific gravity with a Pilodyn tester[J]. Forestry Science,1981,27:59-61
    [55]Watt M S, Garnett B T, Walker J C F. The use of the Pilodyn for assessing outerwood density in New Zealand Radiat a pine[J]. Forest Products Journal,1996,46:11-12,101-106
    [56]Cown D J. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wood density in living trees[J]. N Z J Forest Science,1978,8:384-391
    [57]Tong liW, Sally N A. Selection for improved growth and wood density in lodgepole pine effects on radial patterns of wood variation [J]. Wood Fiber Sci,2000,32(4):391-403
    [58]Gough G, Barnes R D. A comparison of three methods of wood density assessment in a Pinus elliottii progeny test[J]. South African Forestry,1984(128):22-25
    [59]郭明辉.人工林红松木材生长轮密度动态模型建立与预测[J].林业科学,2001,37(2):118-121
    [60]陈广胜.葛利.郭仲凯.人工林落叶松木材生长轮密度时间序列分析[J].东北林业大学,2005,33(2):22-23
    [61]王金满.朱腾林.毕文久.木材生长轮材性变异规律时间序列模型[J].东北林业大学学报, 1998,26(2):45-48
    [62]刘春起.兴安白桦木材生长轮密度时间序列分析[J].贵州林业科技,2012,40(1):14-17
    [63]夏萍.木材年轮密度变异规律模型的研究[D].东北林业大学研究生硕士学位论文,2005
    [64]陈广胜.基于神经网络的人工林落叶松木材材质预测研究[D].东北林业大学研究生博士学位论文,2005
    [65]祈庆钦.基于神经网络的人工林油松木材径向解剖特性预测研究[D].内蒙古农业大学研究生硕士学位论文,2008
    [66]冯伟.神经网络在木材生长轮密度预测中的应用研究[J].计算机仿真,2012,29(6):180-183
    [67]张亚朝.基于支持向量机回归的落叶松木材微纤丝角预测模型的研究[D].东北林业大学研究生硕士学位论文,2012
    [68]栾树杰,魏亚.关于木材密度测定——生长轮材质分析之一[J].东北林学院学报,1983,11(1):43-53
    [69]张述银.辽东栎木材解剖特征与物理-力学性质的关系[J].安徽农学院学报,1987,14(2):26-28
    [70]郭德荣,杨彩民,林彦.人工林红松纤丝倾角变异与管胞长度和拉伸强度的关系[J].东北林学院学报,1982(2):39-51
    [71]崔永志,徐子才,李坚.人工林杉木材性变异规律[J].东北林业大学,1999,27(5):35-39
    [72]张顺泰.人工林油松木材管胞长度与微纤丝角的变异性和相关性研究.山东农业大学学报,1988,19(3):53-60
    [73]黄艳辉.杉木木材微纤丝角及其与力学性质关系研究[D].西北农林大学研究生硕士学位论文,2007
    [74]费本华,江泽慧.阮锡根.银杏木材微纤丝角及其与生长轮密度相关模型的建立[J].木材工业,2000,14(3):13-15
    [75]徐有明.油松木材管胞纤丝角的变异及其与解剖、抗拉强度和抗弯强度的关系[J].安徽农学院学报,1989(2):141-151
    [76]徐有明.油松木材木材物理力学性质的研究[J].安徽农学院学报,1989(1):74-82
    [77]李云莲.木材力学性质与基本容重的关系[J].贵州林业科技,1983(5):10-13
    [78]赵春瑞,董玉库.木材物理力学性质的综合分析(Ⅱ)[J].东北林业大学学报,198917(4):45-54
    [79]吴燕,周定国,王思群,张洋,邢成.木材微纤丝角和密度与弹性模量的关系[J].南京林业大学学报(自然科学版),2009,33(4):113-116
    [80]J. P. Armstrong, Morgantown, C. Skaar, Blacksburg, C. deZeeuw, Syracuse. The effect of specific gravity on several mechanical properties of some world woods [J]. Wood Sci. Technol.1984(18):137-146
    [81]Pierre Dutilleul, Marc Herman, and Tomas Avella-Shaw. Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies)[J]. Canadian Journal of Forest Research,1998,28(1):56-68
    [82]S. Y. Zhang and Y Zhong. Structure-property relationship of wood in East-Liaoning oak[J]. Wood Sci. Technol,1992(26):139-149
    [83]Milos Ivkovic, Washington J. Gapare, Aljoy Abarquez, Jugo Ilic, Michael B. Powell, Harry X. Wu. Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine[J]. Wood Sci Technol,2009(43):237-257
    [84]Cheng-Jung Lin, Chih-Ming Chiu. Relationships among selected wood properties of 20-year-old Taiwania (Taiwania cryptomerioides) trees[J]. J Wood Sci,2007(53):61-66
    [85]A. Leclercq. Relationships between beechood anatomy and its physic-mechanical properties[J]. IAWA Bulletin n.s.,1980,1(1-2):65-71
    [86]Yi-Qiang Wu, Kazuo Hayashi, Yuan Liu, Yingchun Cai Masatoshi Sugimori. Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China[J]. J Wood Sci,2006:1-8
    [87]S. Y. Zhang. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories [J]. Wood Science and Technology,1995(29):451-465
    [88]Jinghui Jiang, Jianxiong Lu, Haiqing Ren, Chao Long. Effect of growth ring width, pith and visual grade on bending properties of Chinese fir plantation dimension lumber[J]. Eur. J. Wood Prod,2012(70):119-123
    [89]Shu-Yin Zhang etal. Modeling wood density in European oak(Quercus petraea and Quercus robur) and Simulating the silvicultural influence[J]. Canadian Journal of Forest Research,1993,23(12):2587-2593
    [90]陈永义,俞小鼎,高学浩,冯汉中.处理非线性分类和回归问题的一种新方法(Ⅰ)——支持向量机方法简介[J].应用气象学报,2004,15(3):345-354
    [91]付阳,李昆仑,支持向量机模型参数选择方法综述[J].电脑知识与技术,2010,6(28):8081-8085
    [92]杨少春.木材表面颜色模式识别方法的研究[D].东北林业大学研究生硕士学位论文,2008
    [93]业宁,王厚立,徐兆军,丁建文,基于支持向量机的木材缺陷识别[J].计算机应用与软件,2006,23(4):3-5
    [94]Irene Y. H. Gu, Henrik Andersson, Raul Vicen. Automatic Classification of Wood Defects Using Support Vector Machines[J]. Lecture Notes in computer Science,2009(5337):356-367
    [95]Irene Yu-Hua Gu, Henrik Andersson, Raul Vicen. Wood defect classification based on image analysis and support vector machines[J]. Wood Science and Technology,2010, 44(4):693-704
    [96]陈立生.基于支持向量机的木材干燥预测控制技术[D].东北林业大学研究生硕士学位论文,2011
    [97]尹文芳.基于支持向量机参数优化的木材干燥过程[D].东北林业大学研究生硕士学位论文,2010
    [98]菜从中.温玉锋.朱星键.裴军芳.肖婷婷.木材导热系数的支持向量回归预测[J].重庆大学学报,2009,32(8):960-964
    [99]温玉锋.材料实验数据的支持向量回归分析及应用[D].重庆大学研究生硕士学位论文,2009
    [100]刘一星.中国东北地区木材性质与用途手册[M].北京:化学工业出版社,2004
    [101]吴全德.核桃楸人工林发展现状与利用的探讨[J].科技创新与应用,2C
    [102]张国云.支持向量机算法及其应用研究[D].湖南大学研究生博士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700