用户名: 密码: 验证码:
小黑杨(Populus simonii×P.nigra)休眠芽的蛋白质组学和转录组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于生长在温带和寒带地区的树种来说,生长与休眠周期交替是它们生存和生长的一个重要的自适应特征。植物芽休眠的诱导到解除是个复杂的生物学过程,它涉及到细胞信号转导、碳水化合物代谢、激素调控、氨基酸的转运、营养物质合成及能量的产生、细胞分裂及分生组织分化及等多个方面,是多种基因协同作用的结果。
     本研究综合运用无标记定量分析技术和Solexa测序方法对生长在中国哈尔滨(E126°41',N45°45')分别代表进入休眠、保持休眠和解除休眠三个阶段的小黑杨的芽进行蛋白质组学和转录组学的研究,系统地分析了杨树顶芽从休眠诱导到解除的分子调控机制,初步阐释调控杨树芽休眠诱导到解除的调控网络,发掘关键基因。进一步从整体水平上了解林木芽休眠诱导和解除的分子机理。
     通过蛋白质组学的研究,我们鉴定到的74个差异蛋白一共被分为14类,涵盖了大范围的生物功能与活动路径。本研究所获得的差异蛋白主要参与了碳水化合物代谢、氧化还原调控、氨基酸运输与代谢和胁迫响应等生物途径,所占比例分别为22%,19%,10%,8%。在表达差异显著的蛋白中,31个蛋白在芽休眠的三个阶段中呈上调表达,5个蛋白下调表达,而其余的38个蛋白在三个时期休眠芽中特异表达。根据亚细胞定位分析,发现这74个蛋白质主要位于细胞质(64%)、线粒体(10%)、叶绿体(4%),还有18%的蛋白质不清楚在细胞中的具体位置和分布。在杨树芽休眠过程中,参与糖酵解及磷酸戊糖途径的相关酶在芽2中表现为上调表达,主要为芽休眠提供必要的能量储备,其主要形式就是碳水化合物。同时植物产生的渗透调节物质,包括蔗糖、葡萄糖、果糖、半乳糖等,通过调节代谢途径来减少或消除非生物逆境所带来的伤害。此外,消除活性氧等有害物质的过氧化物酶类蛋白和防御蛋白在芽2休眠保持时期上调表达,为杨树芽顺利过冬提供了保证。
     在转录组学研究方面,我们将变化倍数(log2值)>2和<-2、统计学有效值(P-value值)<0.001、错误发生率(FDR)<0.01作为筛选基因的标准,共鉴定到了562个表达显著差异的基因,其中154个上调和408个下调的基因。它们涉及转录调控、产物代谢、蛋白激酶调控、逆境胁迫应答、激素信号转导等生物功能,从中可以看出差异表达的基因与植物的抗逆反应及生长发育调控有着密切关系。在所鉴定到的表达差异显著的基因中与转录相关的基因多在芽1阶段大量表达,特别是与核糖体相关基因的表达,说明杨树芽休眠过程首先发生在转录水平;而与细胞周期相关基因多在芽1和芽3阶段上调表达,标志着芽休眠的进入和解除。在代谢和能量转换的通路中的差异基因,mRNA与蛋白质表达变化趋势基本相同。那些在mRNA与蛋白质表达变化差异显著的基因,将为我们今后对抗逆基因转录后调控机制的研究提供参考信息。
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, in this study, we employed label-free quantitative proteomics and Solexa sequencing transcriptomics for investigation of complex protein expression in Populus simonii×P. nigra dormant buds during dormancy induction, dormancy, and dormancy break in Harbin, China,(E126°37', N45°42'), with the aim of providing an overview of the biology of bud dormancy and elucidating the mechanisms responsible for differences in metabolic pathways. We used a label-free quantitative proteomics method for investigation of differential protein expression in apical buds of poplar. Among these identified over300proteins during poplar bud dormancy, there are74significantly altered proteins, most of which involved in carbohydrate metabolism (22%), redox regulation (19%), amino acid transport and metabolism (10%), and stress response (8%). Thirty-one of these proteins were up-regulated, five were down-regulated during three phases, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase.
     In the transcriptomics study,we analyzed the most differentially regulated genes with a log2ratio>2or <-2using a greater statistically significant value (P<0.001) as well as false discovery rates (FDR<0.01), representing154up-and408down-regulated transcripts. The differential genes are involved in transcription regulation, energy metabolism, protein kinase, stress response, hormone signal transduction and other biological function, and are association with stress resistance of plant growth. Among them, some genes related transcription are over express in bud1, especially the ribosome gene expression, suggest that poplar bud dormancy process firstly occurs in transcription level; The cell cycle related genes in bud1and bud3are up expression that imply the bud dormancy into and break. Analysis finds that mRNA and protein involve in the metabolism and energy conversion expression trend is similar. While mRNA and Protein expression abundant of the genes that are related to metabolism and energy conversion is significantly different. The inconsistency of the transcription and protein expression profiles may provide important clues to the research of post-transcriptional regulation of stress resistance genes.
引文
[1]Arora, R.; Rowland, L. J.; Tanino, K., Induction and release of bud dormancy in woody perennials:a science comes of age. HortScience 2003,38, (5),911-921.
    [2]Cooke, J. E. K.; Eriksson, M. E.; Junttila, O., The dynamic nature of bud dormancy in trees:environmental control and molecular mechanisms. Plant Cell Environ 2012,35, (10),1707-1728.
    [3]Bi, Y. D.; Wei, Z. G.; Shen, Z.; Lu, T. C.; Cheng, Y. X.; Wang, B. C.; Yang, C. P., Comparative temporal analyses of the Pinus sylvestris L. var. mongolica litv. apical bud proteome from dormancy to growth. Mol Biol Rep 2011,38, (2),721-729.
    [4]Bradshaw, H. D.; Ceulemans, R.; Davis, J.; Stettler, R., Emerging model systems in plant biology:Poplar (Poputas) as a model forest tree. J Plant Growth Regul 2000,19, (3),306-313.
    [5]Taylor, G., Populus:Arabidopsis for forestry. Do we need a model tree? Annals of botany 2002,90, (6),681-689.
    [6]Brunner, A. M.; Busov, V. B.; Strauss, S. H., Poplar genome sequence:functional genomics in an ecologically dominant plant species. Trends in Plant Science 2004,9, (1),49-56.
    [7]Tuskan, G. A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A. and Schein, J. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray). Science 2006,313, (5793),1596-1604.
    [8]杨传平,刘桂丰,梁宏伟,张慧.耐盐基因Bet-A转化小黑杨的研究.林业科学,2001,37(6),34-38.
    [9]周以良,董世林,聂绍荃.黑龙江树木志.黑龙江:科学技术出版社,1986,118.
    [10]Rohde, A.; Bhalerao, R. P., Plant dormancy in the perennial context. Trends in Plant Science 2007,12, (5), 217-223.
    [11]Horvath, D. P.; Anderson, J. V.; Chao, W. S.; Foley, M. E., Knowing when to grow:signals regulating bud dormancy. Trends in Plant Science 2003,8, (11),534-540.
    [12]H. Okubo. Growth cycle and dormancy in plants. Dormancy in plants:from whole plant behaviour to cellular control,2000,1.
    [13]J. V. A. David P. Horvath, Wun S. Chao and Michael E. Foley. Knowing when to grow:signals regulating bud dormancy. Trends Plant Sci.,2003,8 (11),534-540.
    [14]G. Lang. Dormancy:a new universal terminology. HortScience (USA),1987,22 (5),817-20.
    [15]简令成,卢存福,邓江明,等.木本植物休眠的诱导因子及其细胞内Ca2+水平的调节作用.应用与环境生物学报.2004,10(1):1-6.
    [16]Jian L C, Li P H, Sun L H, et al.Alteration in ultrastructure and subcellular localization of Ca2+in poplar apical bud cells during the induction of dormancy. Journal of Expermental Botany.1997,48:1195-1270.
    [17]Melmann JA, Junttila O, Johnsen 0, Olsen JE. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies). Plant Cell Environt,2006,29:166-172.
    [18]Olsen, JE. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol,2010,73:37-47.
    [19]Heide OM, Prestrud K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol,2005,25:109-114.
    [20]Ghelardini L, Santini A, Black-Samuelsson S, Myking T, Falusi M. Bud dormancy release in elm (Ulmus spp.) clones-A case study of photoperiod and temperature responses. Tree Physiol,2010,30:264-274.
    [21]Junttila O, Nilsen J, Igeland B. Effect of temperature on the induction of bud dormancy in ecotypes of Betula pubescens and Betula pendula. Scand J Forest Res,2003,18:208-217.
    [22]姜卫兵,韩浩章,汪良驹,等.落叶果树需冷量及其机理研究进展.果树学报,2003,20(5):364-36.
    [23]Heide OM. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hort,2008,115:309-314.
    [24]Faust M, Liu D, Line MJ, Stutte GW. Conversion of bound water to free water in endodormant buds of apple is an incremental process. Acta Hort,1995,395:113-117.
    [25]Erez A, Faust M, Line MJ. Changes in water status in peach buds in induction, development and release from endodormancy. Sci Hort,1998,73:111-123.
    [26]Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Jr Bradshaw HD. Quantitative trait loci and candidate gene mapping of bud set and bud fl ush in Populus. Genetics,2000,154:837-845.
    [27]Welling A, Palva ET. Molecular control of cold acclimation in trees. Physiol Plant,2006,127:167-181.
    [28]Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol,2005, 8:93-102.
    [29]Rook F, Hadingham S, Li Y, Bevan MW. Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ,2006,29:426-434.
    [30]Richardson AC, Walton EF, Boldingh HL, Meekings JS. Seasonal carbohydrate changes in dormant kiwifruit buds. Acta Hort,2007,753:567-572.
    [31]Richardson AC, Walton EF, Meekings JS, Boldingh HL. Carbohydrate changes in kiwifruit buds during the onset and release from dormancy. Sci Hort,2010,124:463-468.
    [32]Judd MJ, Meyer DH, Meekings JS, Richardson AC, Walton EF. An FTIR study of the induction and release of kiwifruit buds from dormancy. J Sci Food Agric,2010,90:1071-1080.
    [33]Perata P, Matsukura C, Vernieri P, Yamaguchi J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell,1997,9:2197-2208.
    [34]Mohamed HB, Vadel AM, Geuns JMC, Khemira H. Biochemical changes in dormant grapevine shoot tissues in response to chilling:Possible role in dormancy release. Sci Hort,2010,124:440-447.
    [35]Nagar P K. Changes in endogenous abscisic acid and phenols during winter dormancy in tea [Camellia sinensis L. (O) Kuntze]. Acta Physiol Plant,1996,18:33-38.
    [36]Nagar PK, Shweta S. Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant,2006,28:165-169.
    [37]葛会波,李青云,陈贵林,等.草莓休眠过程中内源激素含量的变化.园艺学报,1998,25(1):89-90.
    [38]Santanen A, Simola LK. Polyamine levels in buds and twigs of Tilia cordata from dormancy onset to bud break. Trees-Struct & Funct,2007,21:337-344.
    [39]Rey M, Diaz-Sala C, Rodriguez R. Comparison of endogenous polyamine content in hazel leaves and buds between the annual dormancy and flowing phases of growth. Physiol Plant,1994,91:45-50.
    [40]庞发虎,杜俊杰,刘飞.杏树休眠枝芽内抗氧化系统酶活性变化的研究.湖北民族学院学报,2004,12(4):27-30.
    [41]Perez FJ, Burgos B. Alterations in the pattern of peroxidase isoenzymes and transient increases in its activity and in H2O2 levels take place during the dormancy cycle of grapevine buds:The effect of hydrogen cyanamide. Plant Growth Regul,2004,43:213-220.
    [42]韩浩章.姜卫兵,费宪进,等.葡萄和油桃自然休眠解除过程中H202含量和抗氧化酶活性的变化.南京农业大学学报,2007(1):50-54.
    [43]邵浩,马锋旺.梨树花芽休眠解除与活性氧代谢的关系.植物生理与分子生物学学报,2004,30(6):660-664.
    [44]Vyas D, Kumar S, Ahujia PS. Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiol,2007,27:1253-1259.
    [45]Aue H L, Lecomte I, P6tel G. Change in plasma membrane ATPase activity during dormancy release of vegetative peach-tree buds. Physiol Plant,1999,106:41-46.
    [46]Jian LC, Li JH, Li PH. Seasonal alteration in amount of Ca2+ in apical bud cells of mulberry (Moms bombciz Koidz):an electron microscopycytochemical study. Tree Physiol,2000,20:623-628.
    [47]Pang X, Halaly T, Crane O, Keilin T, Keren-Keiserman A, Ogrodovitch A, Galbraith D, Or E. Involvement of calcium signaling in dormancy release of grape buds. J Exp Bot,2007,58:3249-3262.
    [48]Rohde, A. et al. PtAI3 impinges on the growth and differentiation of embryogenic leaves during but set in poplar. Plant Cell,2002,14,1885-1901.
    [49]Ruonala, R. et al. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J.2006,46,628-640.
    [50]Espinosa-Ruiz, A. et al. Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J.2004,38,603-615.
    [51]Razem, F.A. et al. The RNA-binding protein FCA is an abscisic acid receptor. Nature,2006,439,290-294.
    [52]Tanino, K. Hormones and endodormancy induction in woody plants. J. Crop Improv.2004,10,157-199.
    [53]Simpson, G.G. The autonomous pathway:epigenetic and posttranscriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol.2004,7,570-574.
    [54]Bezerra, I.C. et al. Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. Plant J.2004,40,112-119.
    [55]Schrader, J. et al. Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J.2004,40,173-187.
    [56]Law, R.D. and Suttle, J.C. Changes in histone H3 and H4 multiacetylation during natural and forced dormancy break in potato tubers. Physiol. Plant.2004,120,642-649.
    [57]Law, R.D. and Suttle, J.C. () Transient decreases in methylation at 5'-CCGG-3' sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol. Biol.2003,51,437-447.
    [58]Rinne, P.L.H. and van der Schoot, C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development.1998,125,1477-1485.
    [59]Rinne, P.L.H. et al. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J.2001,26,249-264.
    [60]Little, C.H.A. and Bonga, J.M. Rest in the cambium of Abies balsamea. Can. J. Bot.1974,52,1723-1730.
    [61]Uggla, C. et al. Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. U. S. A. 1996,93,9282-9286.
    [62]Chouard, P. Vernalization and its relations to dormancy. Annu.Rev. Plant Physiol.1960,11,191-238.
    [63]Sung, S. and Amasino, R.M. Remembering winter:toward a molecular understanding of vernalization. Annu. Rev. Plant Biol.2005,56,491-508.
    [64]Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature.2004, 427,164-167.
    [65]Sung, S. and Amasino, R.M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature.2004,427,159-164.
    [66]Mylne, J.S. et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl. Acad. Sci. U. S. A.2006,103,5012-5017.
    [67]Sung, S. et al. () Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat. Genet.2006,38,706-710.
    [68]Chen, K-Y. and Coleman, G.D. Type Ⅱ MADS-box genes associated with poplar apical bud development and dormancy. Abstract presented at the American Society of Plant Biologists Meeting, Boston, MA, USA),5-9 August 2006.
    [69]Wellensiek, S.J. Dividing cells as the locus for vernalization. Nature,1962,195,307-308.
    [70]Wellensiek, S.J. Dividing cells as the prerequisite for vernalization. Plant Physiol.1964,39,832-835.
    [71]Samish, R.M. Dormancy in woody plants. Annu. Rev. Plant Physiol.1954,5,183-204.
    [72]李子银,陈受宜.植物的功能基因组学研究进展.遗传学报,2000,22(10):57-60.
    [73]张志毅,林善枝,张德强等.现代分子生物学技术在林木遗传改良中的应用.北京林业大学学报.2002,24(5/6):250-261.
    [74]Bradshaw H D, Ceulemans R, Davis J,et al-Emerging model systems in plant biology:poplar (Populus) as a model forest tree. Plant Growth Regulation,2000,19(3):306-313.
    [75]Taylor G.Populus:Arabidopsis for forestry.Do we need a model tree. Annals of Botany,2002,90:681-689.
    [76]Amy M Brunner, Victor B Busov and Steven H.Strauss. Poplar genome sequence:functional genomics in an ecologically dominant plant species. Trends in Plant Science,2004,9(1):49-56.
    [77]Tuskan GA, DiFazio SP, Teichmann T. Poplar genomics is getting poplar: the impact of the poplar genome project on tree reseach. Plant Biol,2004,6(l):2-4.
    [78]尹佟明,黄敏仁,王明庥,等.利用RAPD标记单株大配子体马尾松的分子标记连锁图谱.植物学报,1997,39(7):607-612.
    [79]尹佟明,黄敏仁,王明庥,等.利用RAPD标记构建响叶杨和银白杨分子标记连锁图谱.植物学报,1999,41(9):956-961.
    [80]苏晓华,张绮纹,郑先武,等.美洲黑杨(PopulusdeltoidsMarsh.) X青杨(P.catha yanaRehd.)分子连锁图谱的构建.林业科学,1998,34(6):29-37.
    [81]甘四明,施季森,白嘉雨.尾叶桉和细叶桉无性系的RAPD的指纹图谱构建.南京林业大学学报,1999,23(1):11-14.
    [82]何祯祥,施季森,王明庥,等.杉木杂种群体分子框架遗传连锁图初报.南京林业大学学报,2000,24(6):22-26.
    [83]王泽亮,林善枝.植物功能基因组学研究技术及其在林木中的应用.植物生理学通讯,2005,41(4):413-423.
    [84]Sankof F,Nadeau J H.Comparative Genomics.KluwerAcdmic Publishers,2000.
    [85]Chagne D,Brown G,Lalanne C,Madur D,Pot D.Neale D, Plomion C. Comparative genome and QTL mappingbetween maritime an d loblolly pines. Mol Breed.2003,12:185-195.
    [86]Cervera MT, Storme V, et al. Dense genetic rinkage maps of three Populus species (Populus deltoides, nigra and P.trichocarpa) based on AFLP and microsatellite markers.Genetics.2001,158:787-809.
    [87]Barreneche T, Casasoli M, et al. Comparative mapping between Quercus and Castanea using simple sequence repeats(SSRs).Tbeor Appl Genet.2004,108:558-566.
    [88]Myburg AA,Griffin AR,Sederof RR,Whetten RW. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their Fl hybrid based on a double pseudo-backcross ma pping approach, Theor Appl Genet. 2003,107:1028-1042.
    [89]Paterson AH, Bowers JE, Burrow MD, et al.Comparative genornics of plant chromosomes. Plant Cell.2000, 12:1523-1539.
    [90]Stirling B, Yang ZK, Gunter LE, et al. Comparative sequence analysis between orthologous regions of the Arabidopsis and Populus genomes reveals substantial synteny andmicroc ollinearity. Can J For Res. 2003,33:2245-2251.
    [91]Veerasingham S J, Sellers K W, Raizada M K. Functional genomics as an emerging strategy for the investigation of central mechanisms in ex-perimental hyperten-sion. Prog BiophysMol Biol,2004,84(223):107-123.
    [92]Sato S, Hirakawa H, Isobe S, et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res,2011,18(1):65-76.
    [93]Ralph S G, Chun H J, Cooper D, et al. Analysis of4 664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics,2008(9): 57.
    [94]Zhang Y, Zhang X, Chen Y, et al. Function and chromosomal localization ofdifferentially expressed genes induced by Marssonina brunnea.f sp. Multigerm tubi in Populus deltoides. Journal ofGenetics and Genomics, 2007,34(7):641-648.
    [95]Plomion C, Richardson T, MacKay J. Advances in forest tree genomics. New Phytol.2005,166:713-717.
    [96]Schrader J, Nilsson J, Mellerowicz E, et al. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 2004,16(9):2278-2292.
    [97]Nairn CJ, Haselkorn T. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of an giospe rms. New Phytol.2005,166:907-915.
    [98]Wu L, Joshi CP, Chiang VL. A xylem-specific cellulose synthase gene from aspen(Populus tremuloides)is responsive to mechanical stress. Plant J.2000,22:495-502.
    [99]Djerbi S, Lindskog M, Arvcstad L, Sterky F, Tceri TT(). The genome sequence of black cottonwood (Populus trichocarpa) reveals 18conserved cellulose synthase (CesA)genes. Planta.2005,221:739-746.
    [100]Li X, Weng JK, Chapple C. Improvement of biomass through lign in modification. The Plant Journal.2008, 54(4):569-581.
    [101]Pena L, Martin-Trillo M, Juarez J, et al. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotech.2001,19:263-267.
    [102]Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science,2007,316(5827):1030-1033.
    [103]Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science,2006,312(5776):1040-1043.
    [104]Hsu CY, Liu Y, Luthe DS, et al. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell.2006,18(8):1846-1861.
    [105]王玉成,杨传平,刘桂丰,等.紫杆柽柳cDNA文库构建与硫氧还蛋白基因的克隆.分子植物育种.2004,2(5):667-673.
    [106]曾会明,沈昕.胡杨盐相关基因的克隆.内蒙古农业大学学报,2004,25(2):76-80.
    [107]张冰玉,苏晓华,李义良,等.转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定.林业科学研究,2005,18(3):364-368.
    [108]Zhang J, Steenackers M, Storme V, etal. Fine mapping and identification of nucleotide binding site/leucine-rich repeat sequences at the MER locus inPopulusdeltoides 'S9-2' Phytopathology,2001,91(11):1069-1073.
    [109]Stirling B, Newcombe G, Vrebalov J, et al. Suppressed recombination around theMXC3 locus, a major gene for resistance to poplar leaf rust. TAG Theoretical and Applied Genetics,2001,103(8):1129-1137.
    [110]Bader G D, Heilbut A, Andrens B, et al. Functional genomics and proteomic:Charting a multidimensional map of the yeast cell.Trends Cell Biol,2003,13 (7):344-356.
    [111]Moritz A L, Ji H, Schutz F, et al. A proteome strategy for fractionating proteins and peptides using for continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liguid chromatography. Anal Chem,2004,76(16):4811-4824.
    [112]Wasinger V C, Cordwell SJ, Cerpa-Poljak A, et al. Progress with geneproduct mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis,1995,16:1090-1094.
    [113]Aggarwal K, Lee K H. Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic,2003,2:175-184.
    [114]Patterson SD, Aebersold RH. Proteomics:the first decade and beyond. Nat Genet,2003,33:311-323. [115] Schmid M B. Structural proteomics:the potential of high-throughput structure determination. Trends Microbiol,2002,10:27-31.
    [116]Lee J, Garrett W M, Cooper B. Shotgun proteomic analysis of Arabidopsis thaliana leaves. J Sep Sci,2007, 30,2225-2230.
    [117]Xi J, Wang X, Li S, Zhou X, et.al. Polyeth-ylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry.2006,67:2341-2348.
    [118]Cellar N A, Kuppannan K, Langhorst M L, et al. Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphatecarboxylase/oxygenase. J Chromatogr B Analyt Technol Biomed Life Sci.2008,861:29-39.
    [119]Li G, Nallamilli B R, Tan F, et al. Removal of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endosperm. Electrophoresis.2008,29:604-617.
    [120]Bonler S, Bagard M, Oufir M,et al. ADIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics.2007,7,1584-1599.
    [121]Deng Z, Zhang X, Tang W, et al. A Proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics.2007,6:2058-2071.
    [122]Gong CY, Li Q, Yu HT, et al. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res.2012, 4;11(5):3019-3029.
    [123]Benschop J J, Mohammed S, O'Flaherty M, et al. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics.2007,6,1198-1214.
    [124]Lanquar V, Kuhn L, Lelievre F, Khafif M, et al.15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics.2007,7,750-754.
    [125]Hebeler R, Oeljeklaus S, Reidegeld K A, et al. Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics.2008,7,108-120.
    [126]Hartman N T, Sicilia F, Lilley K S, et al. Proteomic complex detection using sedimentation. Anal Chem. 2007,79,2078-2083.
    [127]Patterson J, Ford K, Cassin A, et al. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol.2007,144,1612-1631.
    [128]Zybailov B, Rutschow H, Friso G, et al.J O-Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE.2008,3, e1994.
    [129]Majeran W, Zybailov B, Ytterberg A J,et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics.2008,7,1609-1638.
    [130]Dunkley T P, Hester S, Shadforth I P, et al. Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA.2006,103,6518-6523.
    [131]Lilley K S, Dupree P. Plant organelle proteomics. Curr Opin Plant Biol.2007,10,594-599.
    [132]陈永对.生物信息学在基因组和蛋白质研究中的应用.中国临床康复,2006,10(41):136-139.
    [133]贺光,孙开来.生物信息学在蛋白质研究中的应用.国外医学·遗传学分册,2002,25(3):156-158.
    [134]张根连,范术丽,宋美珍等.植物蛋白质组学技术研究进展.生物技术通报,2011,7:26-30.
    [135]An Nguyen, T.T., Michaud, D., Cloutier, C. Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plant-mediated stress induced by defoliation and water deficit. J. Insect Physiol.2007,53,601-611.
    [136]Yuan K, Zhang B, Zhang Y, et al. Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. sp. Multigermtubi. J. Genet. Genomics,2008,35,49-60.
    [137]Lippert D, Chowrira S, Ralph S G, et al. Conifer defense against insects:proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi). Proteomics,2007,7,248-270.
    [138]Dizengremel P, Le Thiec D, Bagard M, et al. Ozone risk assessment for plants:central role of metabolism-dependent changes in reducing power. Environ. Pollut.2008,156,11-15.
    [139]Gerosa G, Marzuoli R, Bussotti F, et al. Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake. Environ. Pollut.2003,125,91-98.
    [140]Bohler S, Sergeant K, Lefevre I, et al. Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiol.2010,30,1415-1432.
    [141]Sung DY, Kaplan F, Lee KJ, et al. Acquired tolerance to temperature extremes. Trends Plant Sci.2003,8, 179-187.
    [142]Ferreira S, Hjerno K, Larsen M, et al. Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann. Bot.2006,98,361-377.
    [143]Beck EH, Fettig S, Knake C, et al. Specific and unspecific responses of plants to cold and drought stress. J. Biosci.2007,32,501-510.
    [144]Zhu JK. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol.2003,6,441-445
    [145]Yang F, Xiao X, Zhang S, et al. Salt stress responses in Populus cathayana Rehder. Plant Sci.2009,176,669-677.
    [146]Xiao X, Yang F, Zhang S, et al.. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Plant Physiol.2009,136,150-168.
    [147]Bonhomme L, Monclus R, Vincent D, et al. Genetic variation and drought response in two Populus x euramericana genotypes through 2-DE proteomic analysis of leaves from field and glasshouse cultivated plants. Phytochemistry.2009,70,988-1002.
    [148]Zhang S, Chen FG, Peng SM, et al. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress. Proteomics,2010,10,2661-2677.
    [149]Vander Mijnsbrugge K, Meyermans H, Van Montagu M, et al.. Wood formation in poplar:identification, characterization, and seasonal variation of xylem proteins. Planta,2000,210,589-598.
    [150]Kalluri UC, Hurst GB, Lankford PK, et al.. Shotgun proteome profile of Populus developing xylem. Proteomics,2009,9,4871-4880.
    [151]Du J, Xie HL, Zhang DQ, et al. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics,2006,6,881-895.
    [152]Kaku T, Serada S, Baba K, et al. Proteomic analysis of the G-layer in poplar tension wood. J. Wood Sci. 2009,55,250-257.
    [153]Dafoe NJ, Zamani A, Ekramoddoullah AK, et al. Analysis of the poplar phloem proteome and its response to leaf wounding. J. Proteome Res.2009,8,2341-2350.
    [154]Shen Z, Li P, Ni RJ, Ritchie M, Yang CP, et aL Label-free Quantitative Proteomics Analysis of Etiolated Maize Seedling Leaves during Greening. Mol Cell Proteomics.20098 (11):2443-2460.
    [155]Silva JC, Gorenstein MV, Li GZ, et al. Absolute quantification of proteins by LCMSE-A virtue of parallel MS acquisition. Mol Cell Proteomics.2006,5 (1):144-156.
    [156]Bi YD, Wei ZG, Shen Z, et al. Comparative temporal analyses of the Pinus sylvestris L. var. mongolica litv. apical bud proteome from dormancy to growth. Mol Biol Rep.2011,38 (2):721-729.
    [157]Silva JC, Denny R, Dorschel CA, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem.2005,77 (7):2187-2200.
    [158]Hughes MA, Silva JC, Geromanos SJ, et al. Quantitative proteomic analysis of drug-induced changes in mycobacteria. J Proteome Res.2006,5 (1):54-63.
    [159]Li GZ, Vissers JPC, Silva JC, et al. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics.2009,9 (6):1696-1719.
    [160]Vissers JP, Langridge JI, Aerts JM. Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics.2007,6 (5):755-766.
    [161]Oja V, Bichele I, Huve K,et al. Reductive titration of photosystem I and differential extinction coefficient of P700(+) at 810-950 nm in leaves. Bba-Bioenergetics.2004,1658 (3):225-234.
    [162]Whitelegge JP, Koo D, Diner BA, et al. Assembly of the Photosystem-Ii Oxygen-Evolving Complex Is Inhibited in Psba Site-Directed Mutants of Chlamydomonas-Reinhardtii-Aspartate-170 of the D1 Polypeptide. J Biol Chem.1995,270 (1):225-235.
    [163]Mayfield SP, Bennoun P, Rochaix JD. Expression of the Nuclear Encoded Oeel Protein Is Required for Oxygen Evolution and Stability of Photosystem-Ii Particles in Chlamydomonas-Reinhardtii. Embo J.1987,6 (2):313-318.
    [164]Miyao M, Murata N. The Mode of Binding of 3 Extrinsic Proteins of 33-Kda,23-Kda and 18-Kda in the Photosystem-Ii Complex of Spinach. Biochim Biophys Acta.1989,977 (3):315-321
    [165]Ghanotakis DF, Yocum CF. Photosystem-Ii and the Oxygen-Evolving Complex. Annu Rev Plant Phys.1990, 41:255-276.
    [166]Szego D, Kosa E, Horvath E. Role of S-methylmethionine in the plant metabolism. Acta Agronomica Hungarica.2007,55 (4):491-508.
    [167]Ho P, Kong K, Chan Y, et al. An unusual S-adenosylmethionine synthetase gene from dinoflagellate is methylated. BMC molecular biology.2007,8 (1):87.
    [168]Newman EB, Budman LI, Chan EC, et al. Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol.1998,180 (14):3614-3619.
    [169]Bergervoet JH, Jing HC, Van Den Hout JWE, et al. Expression of beta-tubulin during dormancy induction and release in apical and axillary buds of five woody species. Physiol Plantarum.1999,106 (2):238-245.
    [170]Rohde A, Ruttink T, Hostyn V, et al. Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. Journal of experimental botany.2007,58 (15-16):4047-4060.
    [171]Grudkowska M, Zagdanska B. Multifunctional role of plant cysteine proteinases. Acta Biochim Pol.2004, 51 (3):609-624.
    [172]Meyer K, Keil M, Naldrett MJ. A leucine-rich repeat protein of carrot that exhibits antifreeze activity. Febs Lett.1999,447 (2-3):171-178.
    [173]Thomas S, Mooney PFJ, Burrell MM, et al. () Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum):Explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J.1997,322:119-127.
    [174]Wurtele ES, Nikolau BJ. Enzymes of glucose oxidation in leaf tissues:the distribution of the enzymes of glycolysis and the oxidative pentose phosphate pathway between epidermal and mesophyll tissues of C3-plants and epidermal, mesophyll, and bundle sheath tissues of C4-plants. Plant Physiol.1986,82 (2):503.
    [175]Kato-Noguchi H. Low temperature acclimation to chilling tolerance in rice roots. Plant Growth Regul.2007, 51 (2):171-175.
    [176]Liu CC, Lu TC, Li HH, et al. Phosphoproteomic identification and phylogenetic analysis of ribosomal P-proteins in Populus dormant terminal buds. Planta.2010,231 (3):571-581.
    [177]Chinnusamy V, Zhu JK, Sunkar R. Gene Regulation During Cold Stress Acclimation in Plants. Plant Stress Tolerance:Methods and Protocols.2010,639:39-55.
    [178]Korkmaz A, Dufault RJ. Developmental consequences of cold temperature stress at transplanting on seedling and field growth aad yield. Ⅱ. Muskmelon. Journal of the American Society for Horticultural Science. 2001,126 (4):410-413.
    [179]Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences.2000,57 (5):779-795.
    [180]Bailly C. Active oxygen species and antioxidants in seed biology. Seed Science Research.2004,14 (2):93-108.
    [181]Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiol.2002,129 (2):460-468.
    [182]Foyer CH, Noctor G Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plantarum.2003,119 (3):355-364.
    [183]Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plantarum.2001,113 (2):158-164.
    [184]Wang SY, Jiao HJ, Faust M. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiol Plantarum.1991,82 (2):231-236.
    [185]Wang SY, Faust M. Changes in the Antioxidant System Associated with Budbreak inAnna'Apple (Malus domestica Borkh.) Buds. Journal of the American Society for Horticultural Science.1994,119 (4):735-741.
    [186]Perez FJ, Lira W. Possible role of catalase in post-dormancy bud break in grapevines. J Plant Physiol.2005, 162 (3)301-308.
    [187]Bartels D. Targeting detoxification pathways:an efficient approach to obtain plants with multiple stress tolerance? Trends in Plant Science.2001,6 (7):284-286.
    [188]Schultz-Norton JR, McDonald WH, Yates JR, et al. Protein disulfide isomerase serves as a molecular chaperone to maintain estrogen receptor a structure and function. Mol Endocrinol.2006,20 (9):1982-1995.
    [189]Liu JJ, Ekramoddoullah AKM. The family 10 of plant pathogenesis-related proteins:Their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant P.2006,68 (1):3-13.
    [190]Hon WC, Griffith M, Mlynarz A, et al. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol.1995,109 (3):879-889.
    [191]S. Garcia-Vallve, F.X. Simo, M.A. Montero, et al. Simultaneous horizontal gene transfer of a gene coding for ribosomal protein 127 and operational genes in Arthrobacter sp. J Mol Evol.2002,55(6):632-710.
    [192]V. Bordeau, B. Felden, Ribosomal protein S1 induces a conformational change of tmRNA; more than one protein S1 per molecule of tmRNA. Biochimie.2002,84(8):723-731.
    [193]Z.J. Guo, X.J. Chen, X.L. Wu, et al. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol.2004,55(4):607-618.
    [194]X. Zheng, B. Chen, G Lu, B. Han. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun.2009,379(4):985-989.
    [195]Rohde A, Van Montagu M, Inze D, et al. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta.1997,201:43-52..
    [196]Owens J N, Molder M. A study of DNA and mitotic activity in the vegetative apex of Douglas fir during the annual growth cycle.Can.J.Bot.1973,51:1395-1409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700