用户名: 密码: 验证码:
鸭疫里氏杆菌外膜porin基因的克隆、表达及实验免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭疫晨氏杆菌感染是由鸭疫里氏杆菌(Riemerella anatipestifer, RA)引起家鸭、鹅、火鸡及其他家禽和野禽的一种接触性传染病,可导致2-3周龄雏鸭大批发病和死亡,生长发育严重受阻,并已成为影响养鸭业最为严重的细菌性传染病之一。目前该病在世界各养鸭地区均有流行,给养鸭业造成了严重的经济损失。当前控制RA感染的有效方法是从流行地区的发病鸭体内分离致病菌,制备灭活油佐剂苗并进行免疫注射。但由于鸭疫里氏杆菌血清型多达21种,不同血清型间缺乏交叉保护,使灭活油佐剂苗的应用受到限制。当前对RA疫苗的研究多是集中于对具有交叉保护作用的抗原成分的筛选,已有资料报道的各种抗原成分如OmpA、pN45、Camp和Vap等均被用于RA亚单位疫苗的研究,但保护效果均不够理想,因此筛选出一种或几种具有交叉保护性抗原成分用于RA基因工程疫苗的开发仍是当前研究的重点。微孔蛋白(Porins)是革兰阴性菌普遍含有的重要外膜蛋白成分,诸多研究表明微孔蛋白基因具有高度保守性,可用于菌株的鉴定,且是菌体重要的抗原成分,能够为各型菌株提供交叉保护。
     本文以RA外膜微孔蛋白(Porin)为研究对象,设计特异性引物对RA外膜porin基因进行扩增,并于血清1、2、4、6、10、11、13、14和17型RA菌株基因组中均成功扩增出1222bp的目的基因,序列比对分析显示这8种血清型RA与RA-JL-1、RA-JL-2及GenBank中登录的RA-CH-2(CP004020.1)、RA-GD (CP002562.1)、DSM15868(CP002346.1)、ATCC11845(CP003388.1) Porin基因的同源性均为100%,仅与RA-CH-1(CP003787.1)的porin基因存在部分碱基序列的差异,同源性为93.8%;Blast分析该基因与黄杆菌科其它菌属细菌porin的同源性均低于70%,表明该基因具有高度的保守性。相比于16S rDNA和外膜蛋白A (OmpA)更适合用于RA菌株的鉴定。根据porin基因保守性高的357bp序列设计特异性引物,建立了检测RA外膜porin的PCR方法,与细菌分离鉴定符合率达到了100%,具有良好的特异性和敏感性。同时利用生物学分析软件对RA外膜Porin蛋白的二级结构、信号肽和跨膜区等进行预测和三级结构同源建模。结果显示RA外膜Porin是以p折叠为主要成分的桶状结构蛋白,以p折叠形式与细胞膜进行整合而形成跨膜区,仅存的1个α螺旋为蛋白的信号肽。DNASTAR软件分析蛋白抗原性,结果显示RA的外膜Porin蛋白中存在有14个潜在的B细胞抗原优势表位和15个潜在的T细胞抗原识别位点。
     本文构建了pET28a-porin重组原核表达质粒,并诱导目的基因的表达,结果显示诱导表达的RA外膜Porin蛋白分子量大小约为48.5ku,可溶性分析显示该蛋白是以不溶性的包涵体形式进行表达。Western blot分析显示纯化的表达蛋白能够与1、2、10、11、17型RA菌株全菌体阳性血清均发生特异性的免疫反应,证实具有良好的反应原性。在此基础上构建了pVAX1-porin重组真核表达质粒,以脂质体法转染至Marc-145细胞系中,通过RT-PCR和间接免疫荧光法分别从转录水平和蛋白水平鉴定出该基因在真核细胞中获得了表达。
     以构建的pVAX1-porin重组真核表达质粒免疫BALB/c小鼠,结果显示该质粒能够诱导小鼠产生特异性抗体,且显著高于pVAXl空载体和生理盐水对照组(P<0.05),表明RA外膜Porin能够诱导小鼠产生特异性的体液免疫反应。MTS法检测淋巴细胞增殖结果显示,pVAX1-porin真核表达质粒免疫组小鼠脾淋巴细胞在RA菌体裂解抗原刺激下发生明显增殖。同时检测小鼠血清中IL-2和IL-4含量均显著升高,与pVAX1空质粒和盐水组相比均差异显著(P<0.05),表明RA外膜Porin蛋白能够诱导小鼠产生细胞免疫应答。
     对RA外膜porin的初步研究证实该基因为各血清型RA菌株共有,且具有高度的同源性,依此建立的PCR方法能够用于RA菌株的鉴定。构建的porin真核表达质粒能够诱导小鼠产生体液免疫和细胞免疫应答,具有良好的免疫原性。研究结果为后续RA基因工程疫苗的开发奠定了一定的理论基础。
The infection of Riemerella anatipestifer was a contagious disease of domestic ducks, geese, turkeys, other poultry and wild birds caused by Riemerella anatipestifer and can lead to high incidence, death rate and slow growth of2-3weeks old ducklings. It has become one of the most serious bacterial infectious diseases for duck industry and caused serious economic losses to the duck industry for its distribution in most countries. The most effective control method of RA infection was injection of inactivated vaccine with strains isolated from endemic area. But as many as21kinds of serotypes and lack of cross-protection between serotypes, application of inactivated vaccine was limited. This problem can be solved by finding a useful subunit component of cross protection for each serotype RA strains. According to study data show subunit ingredients have been reported such as OmpA, pN45, Camp and Vap etc with development value and no ideal protective effect. So screening subunit composition with protective effect for each serotype is still the focus of study. Porins were generally major outer membrane protein composition of Gram-negative bacteria and existing research shows it highly conserved among strains can be used for detection and bacterial antigenic components can provide cross-protection for each type strain.
     Study for outer membrane porin of RA was carried out for the first time. Porin gene of1222bp was successfully amplified by specific primers designed in serotype1,2,4,6,10,11,13,14and17of RA strains and sequence alignment analysis showed homology between8serotypes RA and RA-JL-1、RA-JL-2and RA-CH-2(CP004020.1)、RA-GD (CP002562.1)、DSM15868(CP002346.1)×ATCC11845(CP003388.1) reported in Genbank were100%. Only some base sequence of RA-CH-1(CP003787.1) exist difference and homology was93.8%. The porin homology of RA with other bacteria of Flavobacterium was lower than70%by blast analysis. Result indicated that the gene has a very high conservatisim and homology can be used for the identification of the RA strains better than16S rDNA and OmpA. Specific primers according to a highly conserved357bp sequence of porin gene were designed and PCR method for detection was established. The PCR method was proven to have good specificity, sensitivity and100%coincidence with bacteriological identification. The PCR method can be used for rapid detection RA infection. Secondary structure, signal peptide, transmembrane region and tertiary structure model of Porin were predicted by biological analysis software. Result showed Porin was a barrel protein mainly constituted by β-pleated sheet and the transmembrane region was formed by integration of (3-pleated sheet with cellular membrane. Only one a-helix was the signal peptide of Porin. The antigenic analysis by DNASTAR software showed14potential B cell antigen epitops and15potential T cell antigen recognition sites in Porin.
     Prokaryotic expression plasmids pET28a-porin were constructed and induced for expression. Result showed that molecular size of expressed Porin was approximately48.5ku and soluble analysis showed the protein was expressed with form of insoluble inclusion bodies. Expressed products were purified and analysed by Western blot. The analysis showed specific immune response occued between expressed protein and positive serum of serotype1,2,10,11and17RA strains whole cell. This indicated Porin has a good immunological cross reaction. Eukaryotic pVAX1-porin recombinant expression plasmid was constructed on this basis and then transfected into Marc-145cells with liposomes method. Porin expression in eukaryotic cells were identified by RT-PCR and indirect immunofluorescence method from gene transcription and protein level.
     BALB/c mice were immunized with eukaryotic expression plasmid pVAXl-porin and the results showed pVAX1-porin eukaryotic expression plasmid can induce specific antibody of mice and was significantly higher than pVAXl empty vector and saline control group (P<0.05). This indicated that Porin of RA was able to induce specific humoral immune response in mice. The MTS assay results showed significantly proliferation of mice spleen lymphocytes immunized with pVAX1-porin eukaryotic expression plasmid stimulated by RA antigen and simultaneous detection of IL-2and IL-4levels in serum were significantly elevated, compared with pVAXl empty vector and saline group(P<0.05). Result indicated that Porin of RA can induce cellular immune responses of mice.
     Preliminary study on porin of RA confirmed that the gene existed in the RA strains of each serotype with a high degree of homology and conservation and can be used for the identification of RA strains. Porin eukaryotic expression plasmid induced humoral and cellular immune responses of mice and indicated the Porin has a good immunogenicity. The findings laid theoretical foundation for the development of subsequent RA genetic engineering vaccine.
引文
[1]苏敬良,高福,索勋主译.禽病学(第十一版)[M].北京:中国农业出版社,2005,767-775
    [2]周红娟,顾克,石磊.我国养鸭业存在的问题及应对措施[J].当代畜牧,2010,5:1-3.
    [3]Rubbenstroth D, Ryll M, Behr KP, et al. Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus[J]. Avian Pathol,2009,38(6):497-507.
    [4]Rubbenstroth D, Hotzel H, Knobloch J, et al. Isolation and characterization of atypical Riemerella columbina strains from pigeons and their differentiation from Riemerella anatipestifer[J] Veterinary Microbiology,2011,147(1-2):103-112.
    [5]Bocklisch H, Huhn F, Herold W, et al. Ostrich-A new avian host of Riemerella columbina[J]. Vet. Microbiol,2012,154(3-4):429-431.
    [6]Hendrickson JM, Hilbert KF. A new and serious septicaemic disease of young ducks with a description of the causative organisms, Pfeiferella anatipestifer[J]. N S Cornell Vet,1932,22:239-252.
    [7]郭玉璞,陈德威,范国雄.北京小鸭传染性浆膜炎的调查研究[J].畜牧兽医学报,1982,13(2):107-112.
    [8]Bruner DW, Fabrieant J. A strain of Moraxella anatipestifer(Pfeifferella anatipestier) isolated from ducks[J]. Cornell Vet,1954,44(4):461-464.
    [9]Piechulla K, Pohl S, Mannheim W. Phenotypic and genetic relationships of so-called Moraxella (Pasteurella) anatipestifer to the Flavobacterium/Cytophaga group[J]. Vet Microbiol,1986, 11(3):261-270.
    [10]Segers P, Mannheim W, Vancanneyt M, et al. Riemerella anatipestifer gen.nov.,comb.nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group[J]. Int J Syst Bacteriol,1993,43(4):768-776.
    [11]鲍国连,伶承刚,韦强,等.鸭传染性浆膜炎流行病学与病原特性研究[J].浙江农业学报,1997,9(3):161-163.
    [12]Pathanasophon P, Sawada T, Tantieharoenyos T. New serotypes of Riemerella anatipestifer isolated from ducks in Thailand[J]. Avian Pathol,1995,24(1):195-199.
    [13]Loh H, Teo TP, Tan HC. Serotypes of Pasteurella anatipesifer isolates from ducks in Singapore:A proposal of new serotypes[J]. Avian Pathol,1992,21(3):453-459.
    [14]Sandhu TS, Leister ML. Serotypes of Pasteurella anatipestifer isolates from poultry in different countries[J]. Avian Pathol,1991,20(2):233-239.
    [15]Bisgaard M. Antigenic studies on Pasteurella anatipestifer, species incertae sedis, using slide and tube agglutination[J]. Avian Pathol,1982,11(3):341-350.
    [16]Harry EG. Pasteurella (Pfeiferella) anatipestifer serotypes isolated from cases of anatipestefer septicaemia in ducks [J]. Vet Rec,1969,84(26):673.
    [17]张大丙.用3种分型方法研究鸭疫里默氏菌的血清型[J].畜牧兽医学报,2005,36(3):258-263.
    [18]Pathanasophon P, Phuektes P, Tanticharoenyos T, et al. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand[J]. Avian Pathol,2002,31(3):267-270.
    [19]张大丙,郭玉璞.7型鸭疫里氏杆菌分离株的鉴定[J].中国兽医杂志,2003,39(5):18-19.
    [20]张大丙,郭玉璞.15型鸭疫里氏杆菌分离株的鉴定[J].中国兽医杂志,2002,38(3):23.
    [21]汪铭书,程安春,陈孝跃,等.血清3型鸭疫里默氏杆菌在我国的发现及其病原特性研究[J].中国家禽,2001,23(22):9-12.
    [22]汪铭书,程安春,陈孝跃,等.血清5型鸭疫里氏杆菌在我国的发现及其病原特性研究[J].中国兽医科技,2002,32(9):16-19.
    [23]汪铭书,程安春,陈孝跃,等.血清8型鸭疫里默氏杆菌在我国的发现及其病原特性研究[J].中国预防兽医学报,2003,25(1):47-52.
    [24]程安春,汪铭书,陈孝跃,等.我国鸭疫里默氏杆菌血清型调查及新血清型的发现和病原特性[J].中国兽医学报,2003,23(4):320-332.
    [25]张平英,朱德康,程安春.间接免疫酶组织化学法检测猪繁殖与呼吸综合征病毒感染和抗原定位[J].中国兽医学报,2008,28(2):128-132.
    [26]刘雯,马丽敏,李琳.犬瘟热病毒间接免疫酶组化检测方法的建立[J].中国预防兽医学报,2011,33(2):160-162.
    [27]周春宇,程安春,汪铭书.检测鹅细小病毒的间接免疫酶组织化学法的建立[J].中国兽医杂志,2006,42(8):19-21.
    [28]刘维平,程安春,汪铭书,等.间接免疫组化法检测鸭疫里氏杆菌感染和抗原定位[J].中国兽医学报,2005,25(4):362-365.
    [29]孟琼华,程安春,汪铭书,等.间接免疫酶组织化学法检测雏鹅感染鸭疫里默氏杆菌的研究[C].中国畜牧兽医学会动物微生态学分会第三届第七次学术研讨会论文集,2004.
    [30]吴彩艳,覃宗华,袁建丰.鸭疫里默氏杆菌抗体检测的全菌体抗原间接ELISA方法的建立[J].养禽与禽病防治,2009,6:4-7.
    [31]程安春,汪铭书,方鹏飞.间接酶联免疫吸附试验(ELISA)检测血清2型鸭疫里默氏杆菌抗体的研究[J].中国兽医杂志,2004,40(12):14-16.
    [32]程安春,汪铭书,方鹏飞.间接酶联免疫吸附试验(ELISA)检测血清4型鸭疫里默氏杆菌抗体的研究[J].中国家禽,2004,26(16):11-14.
    [33]张冬冬,张大丙.用间接ELISA检测鸭疫里默氏菌不同血清型之间的交叉反应[J].中国兽医杂志,2006,42(6):23-25.
    [34]孙,郭东春,刘家森,等.1型鸭疫里氏杆菌OmpA蛋白间接ELISA方法的建立[J].中国预防兽医学报,2011,33(8):635-639.
    [35]程龙飞,施少华,傅光华,等.2型鸭疫里氏杆菌抗体间接ELISA检测方法的建立与应用[J].福建农业学报,2006,21(2):131-134.
    [36]HUANG B, SUBRAMANIAM S, FREY J, et al. Vaccination of ducks with recombinant outer membrane protein (OmpA) and a 41 kDa partial protein(P45N') of Riemerella anatipestifer[J]. Vet Mierobiol,2002, 84(3):219-230.
    [37]辜新贵,袁建丰,覃宗华,等.鸭疫里默氏杆菌重组蛋白P25间接ELISA检测方法的建立[J].中国兽医科学,2008,38(3):218-223.
    [38]方钦.间接ELISA检测鸭疫里默氏杆菌抗体方法的建立及应用[D].重庆:西南大学,2007.
    [39]刘传银,胡继明.亲和型生物传感器在生物医学上的应用进展[J].应用化学,2011,28(6):611-623.
    [40]Huang CH, Li JX, Tang Y, et al. Biosensor based on imaging ellipsometry for serotype-specific detection of Riemerella anatipestifer[J]. Materials Science and Engineering,2011,31(7):1069-1613.
    [41]Teng K, Li M, Yu W, et al. Comparison of PCR with culture for detection of ureaplasma urealyticum in clinical samples from patients with urogenital infections[J]. J Clin Microbiol,1994,32(9):2232-2234.
    [42]曲丰发,蔡畅,郑献进,等.利用16S rDNA建立种特异性PCR快速检测鸭疫里默氏菌[J].微生物学报,2006,46(1):13-17.
    [43]孙.鸭疫里氏杆菌PCR方法初步建立及应用[J].黑龙江畜牧兽医科技版,2011,1:14-16.
    [44]Kardos G, Nagy J, Antal M, et al. Development of a novel PCR assay specific for Riemerella anatipestifer[J]. Lett Appl Microbiol,2007,44(2):145-148.
    [45]Kao CC, Liu MF, Lin CF, et al. Antimicrobial susceptibility and multiplex PCR screening of AmpC genes from isolates of enterobacter cloacae, citrobacter freundii, and serratia marcescens[J]. J Microbiol Immunol Infect,2010,43(3):180-187.
    [46]张小贤,张家敏,黄卫平,等.应用多重PCR法快速检测伤寒沙门菌的研究[J].中国卫生检验杂志,2010,20(5):1074-1076.
    [47]王春平,韦强,鲍国连,等.鸭疫里默氏菌病和大肠杆菌病多重PCR诊断方法的建立[J].中国兽医学报,2010,30(3):352-355.
    [48]覃宗华,蔡建平,吕敏娜,等.鸭疫里默氏菌病和大肠杆菌病鉴别诊断双重PCR方法的建立和应用[J].畜牧兽医学报,2008,39(4):517-521.
    [49]Hu Q, Tu J, Han X, et al. Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks[J]. J Microbiol Methods,2011,87(1):64-69.
    [50]Kubista M, Andrade JM, Benqtsson M, et al. The real-time polymerase chain reaction[J]. Mol Aspects Med,2006,27(2-3):95-125.
    [51]谢永平,盘宝进,陈泽祥,等.鸭疫里默氏菌实时荧光定量PCR快速检测方法的建立与应用研究[J].中国畜牧兽医,2010,37(10):87-91.
    [52]冯金牛,陈芳艳,晏永邦,等.鸭疫里默氏杆菌荧光定量PCR检测方法的建立[J].中国兽医科学,2011,41(4):392-396.
    [53]Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):63.
    [54]Zheng FY, Lin GZ, Zhou JZ, et al. Loop-mediated isothermal amplification assay targeting the OmpA gene for rapid detection of Riemerella anatipestifer[J]. Molecular and Cellular Probes,2011,25(1): 65-67.
    [55]杨金龙,付利芝,杨睿,等.基于环介导等温扩增技术的鸭疫里默氏杆菌检测试剂盒及方法[P].中国,CN101871005A.2010,10,27.
    [56]陈红梅,程龙飞,施少华,等.鸭疫里默氏菌环介导等温扩增检测方法的建立[J].中国农学通报,2010,26(20):15-17.
    [57]张大丙.鸭疫里默氏杆菌病的防制思路[J].中国家禽,2009,31(21):51.
    [58]Layton HW, Sandhu TS. Protection of ducklings with a broth-grown Pasteurella anatipestifer bacterin[J]. Avian Dis,1984,28(3):718-726.
    [59]Pathanasophon P, Sawada T, Pramoolsinsap T, et al. Immunogenicity of Riemerella anatipestifer broth culture bacterin and cell-free culture filtrate in ducks[J]. Avian Pathol,1996,25(4):705-719.
    [60]陈洁,金尔光,陈橙,等.1型鸭疫里氏杆菌油乳剂灭活苗的研制[J].现代农业科技,2008,,23:265-266.
    [61]李艳奇,高晴霄,顾春阳,等.鸭疫里默氏杆菌多价灭活苗的研制及应用[J].水禽世界,2008,2:41-42.
    [62]程龙飞,施少华,傅光华,等.2型鸭疫里默氏菌抗体效价与免疫保护率的相关性测定[J].福建畜牧兽医,2009,31(2):25-26.
    [63]陈洁,金尔光,陈橙,等.1型鸭疫里默氏杆菌蜂胶灭活苗的研制[J].中国家禽,2009,31(24):57-58.
    [64]孙亚妮.GN52株鸭疫里氏杆菌的传代培养和鸭疫里默氏杆菌分离株耐药性的研究[D].山东农业大学,2008.
    [65]欧阳峰,谭铁兵,劳耀流,等.肉鸭大肠杆菌病、沙门氏杆菌病和鸭疫里默氏杆菌病三联疫苗免疫效果试验[J].养禽与禽病防治,2006,11:14-15.
    [66]齐冬梅,赖月辉,巫月生,等.Ⅰ型鸭疫里默氏杆菌荚膜免疫的研究[J].中国兽药杂志.2009,43(4):17-19.
    [67]Sandhu TS. Immunogenicity and safety of a live Pasteurella anatipestifer vaccine in White Pekin Ducks: laboratory and field trials[J]. Avian Pathol,1991,20(3):423-432.
    [68]Higgins DA, Henry RR, Kounev ZV. Duck immune responses to Riemerella anatipestifer vaccines[J]. Dev Comp Immunol,2000,24(2-3):153-167.
    [69]赵洁.鸭疫里默氏杆菌自然弱毒菌株的分离鉴定及特性研究[D].重庆:西南大学,2008.
    [70]Pathanasophon P, Tanticharoenyos T, Sawada T. Immunogenic component of Riemerella anatipestifer[i]. Journal of the Thai Veterinary Medical Association,1996,47(1):13-20.
    [71]苏敬良,郭玉璞,吕艳丽.鸭疫里默氏杆菌外膜蛋白免疫原性研究[J].畜牧兽医学报,1999(5):444-448.
    [72]程安春,汪铭书.血清2型鸭疫里默氏杆菌外膜蛋白多肤的组成及其免疫原性[J].中国兽医学报,2004,24(4):329-332.
    [73]吕敏娜,黄承锋,张玉团,等.鸭传染性浆膜炎荚膜多糖苗研究初报[J].广东畜牧兽医科技,1999,3:16-18.
    [74]齐冬梅,赖月辉,巫月生,等.Ⅰ型鸭疫里默氏杆菌荚膜免疫的研究[J].中国兽药杂志,2009,43(4):17-19.
    [75]Subramaniam S, Huang B, Loh H, et al. Characterization of a predominant immunogenic outer membrane protein of Riemerella anatipestifer[J]. Clin Diagn Lab Immunol,2000,7(2):168-174.
    [76]霍翠梅,韦强,鲍国连.鸭疫里默氏杆菌外膜蛋白A的克隆与表达[J].浙江农业学报,2008,20(2):92-95.
    [77]周祖涛.鸭疫里氏杆菌免疫诊断方法及在感染鸭肝脏差异表达基因的研究[D].中国农业大学博士学位论文,2009.
    [78]Crasta K.C, Chua KL, Subramaniam S, et al. Identification and characterization of CAMP cohemolysin as a potential virulence factor of Riemerella anatipestifer[J]. J Bacteriol,2002,184(7):1932-1939.
    [79]么乃全,高云航,于丹等.鸭疫里氏杆菌吉林分离株Cam基因的克隆、表达及间接ELISA检测方法的建立[J].中国预防兽医学报,2013,35(1):54-58.
    [80]Jiang M, Potter AA, Maclachlan PR. Camp factor of streptococcus uberis[P]. US,5863543.1999,1.
    [81]Chang CF, Hung PE, Chang YF. Molecular characterization of a plasmid isolated from Riemerella anatipestifer[J]. Avian Pathol,1998,27(4):339-345.
    [82]Weng SC, Lin WH, Chang Y. et al. Identification of a virulence-associated protein homolog gene and ISRal in a plasmid of Riemerella anatipestifer[J]. FEMS Microbiol Lett,1999,179 (1):11-19.
    [83]黄国安.鸭疫里氏杆菌毒力相关蛋白基因VapD1之次单位疫苗及DNA疫苗建构及对鸭免疫保护效果[D].台湾大学兽医学研究所,2002.
    [84]Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins:barrels in a nutshell[J]. Mol Microbiol,37(2):239-253.
    [85]Matsui K, Arai T. Protective immunity induced by porin in experimental mouse salmonellosis[J]. Microbiol Immunol,1989,33(9):699-708.
    [86]董传甫,林天龙,龚晖,等.嗜水气单胞菌主要外膜蛋白对欧洲鳗鲡的免疫保护试验[J].水生生物学报,2005,29(3):285-290.
    [87]Vazquez-Juarez RC, Romero MJ, Ascencio F. Adhesive properties of a LamB-like outer-membrane protein and its contribution to Aeromonas veronii adhesion[J]. J Appl Microbiol,2004,96(4):700-708.
    [88]Ebanks RO, Goguen M, Mckinnon S, et al. Identification of the major outer membrane proteins of Aeromonas salmonicida[J]. Dis Aquat Organ,2005,68(1):29-38.
    [89]Khushiramani R, Girisha SK, Bhowmick PP, et al. Prevalence of different outer membrane proteins in isolates of Aeromonas species[J]. World Journal of Microbiology and Biotechnology,2008,24(10): 2263-2268.
    [90]李碧华.革兰阴性菌外膜蛋白结构、功能及遗传学[J].国外遗传学-微生物学分册,1991,14(5):193-196.
    [91]Nikaido H. Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiol Mol Biol Rev,2003,67(4):593-656.
    [92]Hong H, Patel DR, Tamm LK, et al. The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel[J]. J Biol Chem,2006,281(11):7568-7577.
    [93]Jin Xiong. Essential bioinformatics[M]. Cambridge:Cambridge University Press.2006,208. ISBN 9780521840989.
    [94]Maiti B, Raghunath P, Karunasagar I, et al. Cloning and expression of an outer membrane protein OmpW of Aeromonas hydrophila and study of its distribution in Aeromonas spp[J]. J Appl Microbiol,2009, 107(4):1157-1167.
    [95]Jalajakumari M B, Manning P A. Nucleotide sequence of the gene, OmpW, encoding a 22 kDa immunogenic outer membrane protein of Vibrio cholerae[J]. Nucleic Acids Res,1990,18(8):2180.
    [96]Das M, Chopra AK, Cantu JM, et al. Antisera to selected outer membrane proteins of Vibrio cholerae protect against challenge with homologous and heterologous strains of V. cholerae[J]. FEMS Immunol Med Microbiol,1998,22(4):303-308.
    [97]Vordermeier HM, Hoffinann P, Gombert FO, et al. Synthetic peptide segments from the Escherichia coli porin OmpF constitute leukocyte activators[J]. Infect Immun,1990,58(8):34-36.
    [98]Sengupta D, Sengupta T, Ghose A. Major outer membrane proteins of Vibrio cholerae and their role in inducion of protective immunity through inhibition of intestinal colonization[J]. Infect Immun,1992, 60(11):4848-4855.
    [99]Galdiero M, Brancaccio F, Nazzaro C, et al. Salmonella typhimurium porin internalization by leukocytes[J]. Res Microbiol,1998,149(9):625-630.
    [100]Wetzler LM, Ho Y, Reiser H. Neisserial porins induce B lymphocytes to express costimulatory B7-2 molecules and to proliferate[J]. J Exp Med,1996,183 (3):1151-1159.
    [101]Snapper CM, Rosas FR, Kehry MR, et al. Neisserial porins may provide critical second signals to polysaccharide-activated murine B cells for induction of immunoglobulin secretion[J]. Infect Immun. 1997,65(8):3203-3208.
    [102]Gonzalez CR, Isibasi A, Ortiz-Navarrete V, et al. Lymphocytic proliferative response to outer-membrane proteins isolated from Salmonella[J]. Microbiol Immunol,1993,37(10):793-799.
    [103]Amlan Biswas, Pallavi Banerjee, Tapas Biswas. Porin of Shigella dysenteriae directly promotes toll-like receptor 2-mediated CD4+T cell survival and effector function[J]. Mol Immunol,2009,46(15): 3076-3085
    [104]Banerjee P, Biswas A, Biswas T. Porin-incorporated liposome induces Toll-like receptors 2-and 6-dependent maturation and type 1 response of dendritic cell[J]. Int Immunol,2008,20(12):1551-1563.
    [105]Biswas A, Banerjee P, Biswas T. Priming of CD4+T cells with porin of Shigella dysenteriae activates the cells toward type 1 polarization[J]. Int Immunol,2008,20(1):81-88.
    [106]戴志兵,胡四海,陈敏,等.淋球菌PorB和大肠杆菌LtB融合基因的构建、表达及其免疫活性[J].微生物学报,2010,50(4):517-523.
    [107]Saif Y M, Barnes H J, Glisson J R, et al. Diseases of Poultry[M].11 ed. Ames:Iowa State University Press,2003:676-682.
    [108]陈义锋,赵亚荣,牟巍.鸭疫里默氏菌疫苗及其效力检测方法研究进展[J].中国兽药杂志,2010,44(2):46-51.
    [109]Hu Q, Han X, Zhou X, et al. Characterization of biofilm formation by Riemerella anatipestifer[J]. Vet Microbiol,2010,144(3-4):429-436.
    [110]程安春,汪铭书,陈孝跃,等.我国鸭疫里默氏杆菌血清型调查及新血清型的发现和病原特性[J].中国兽医学报,2003,23(4):320-332.
    [111]Sharma A, Chaturvedi AN. Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1 Vibrio cholerae isolated from fresh water environment[J]. Int J Hyg Environ Health,2006, 209(6):521-526.
    [112]McPhee J B, Tamber S, Bains M, et al. The major outer membrane protein OprG of Pseudomonas aeruginosa contributes to cytotoxicity and forms an anaerobically regulated, cation-selective channel[J]. FEMS Microbiol Lett,2009,296(2):241-247.
    [113]Singh R, Shasany AK, Aggarwal A, et al. Low molecular weight proteins of outer membrane of Salmonella typhimurium are immunogenic in Salmonella induced reactive arthritis revealed by proteomics[J]. Clin Exp Immunol,2007,148(3):486-493.
    [114]Albrecht R, Zeth K, Soding J, et al. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun,2006,62(Pt 4):415-418.
    [115]居尔毅,宁喜斌.副溶血性弧菌外膜蛋白的提取与免疫鉴定[J].安徽农业科学,2008,36(32):14116-14111.
    [116]Stahlberg H, Fotiadis D, Scheuring S, et al. Two-dimensional crystal:a powerful approach to access structure, function and dynamics of membrane protein[J]. FEBS Lett,2001,504(3):166-172.
    [117]Wimley WC. The versatile beta-barrel membrane protein[J]. Curr Opin Struct Biol,2003,13(4):404-411.
    [118]Ana L, Vega D, Anne H Delcour. Cadaverina induces closing of Echerichia coli porins[J]. EMBO J, 1995,14(23):6058-6065.
    [119]刘明智,叶星,田园园,等.嗜水气单胞菌外膜蛋白W基因的表达及其免疫原性分析[J].微生物学通报,2011,38(3):437-445.
    [120]赵跃武,赵凤兰,徐友梅,等.鼠伤寒沙门氏菌外膜蛋白(Porin)的提纯及鉴定[J].中国生物制品学杂志,1996,9(4):162-164.
    [121]Derrick JP, Urwin R, Suker J, et al. Structural and evolutionary inference from molecular variation in Neisseria porins[J]. Infect Immun,1999,67(5):2406-2413.
    [122]Kuusi N, Nurminen M, Saxen H, et al. Immunization with major outer membrane protein (porin) preparations in experimental murine Salmonellosis:effect of lipopolysaccharide[J]. Infect Immun,1981, 34(2):328-332.
    [123]李建华,王忠田,何君,等.霍乱弧菌外膜蛋白W的原核表达及抗原性分析[J].军事医学,2011,35(10):746-753.
    [124]江秀娟,孙厚良.核酸疫苗的研究现状[J].医学理论与实践,2008,21(2):125-127.
    [125]郭广君,吕素芳,王荣富.外源基因表达系统的研究进展[J].科学技术与工程,2006,6(5):582-587.
    [126]李成伟,贾孟,张怡.几种外源基因真核表达体系研究进展[J].商丘师范学院学报,2008,24(9):89-91.
    [127]Chen P, Hutter D, Liu P, et al. A mammalian expression system for rapid production and purification of active MAP kinase phosphatases[J]. Protein Expr Purif,2002,24(3):481-488.
    [128]Maitani Y, Igarashi S, Sato M, et al. Cationic liposome (DC-Chol/DOPE=1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression[J]. Int J Pharm,2007,342(1-2):33-39.
    [129]Gao X, Huang L. A novel cationic liposome reagent for efficient transfection of mammlian cells[J]. Biochem Biophys Res Comm,1991,179(l):280-285.
    [130]Nimesh S, Kumar R, Chandra R. Novel polyallylamine-dextran sulfate-DNA nanoplexes:highly efficient non-viral vector for gene delivery[J]. Int J Pharm,2006,320(1-2):143-149.
    [131]Nguyen LT, Atobe K, Barichello JM, et al. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes[J]. Biol Pharm Bull,2007,30(4):751-757.
    [132]高海波,张拴林,陈燕红.半定量RT-PCR在基因表达方面的应用[J].畜禽业,2008,226:34-36.
    [133]孙龚.1型鸭疫里默氏杆菌OmpA蛋白间接ELISA方法的建立及应用[D].黑龙江八一农垦大学,2010,4.
    [134]Fynan EF, Webster RG, Fuller DH, et al. DNA vaccine:protective immunizations by pareteral, mucosal, and gene-gun inoculations[J]. Proc Natl Acad Sci USA,1993,90(24):11478-11482.
    [135]Davis HL, Whalen RG, Demeneix BA. Direct gene transfer into skeletal muscle in vivo:factors affecting efficiency of transfer and stability of exprssion[J]. Hum Gene Ther,1993,4(2):151-159.
    [136]Davis HL, Michel ML, Mancini M, et al. Direct gene transfer into skeletal muscle:plasmid DNA-based immunization against hepatitis B virus surface antigen[J]. Vaccine,1994,12(16):1503-1509.
    [137]David H L, Millian C L B, Mancini M, et al. DNA-based immunization against hepatitis B surface antigen (HBsAg) in normal and HBsAg-transgenic mice[J]. Vaccine,1997,15(8):849-852.
    [138]Whiteside TL, Zhao Y, Tsukishiro T, et al. Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma[J]. Clin Cancer Res,2003,9(2):641-649.
    [139]Yamamoto M, Kamigaki T, Yamashita K, et al. Enhancement of anti-tumor immunity by high levels of Thl and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer[J]. Oncol Rep,2009,22(2):337-343.
    [140]Wulf M, Hoehn P, Trinder P. Identification and validation of T-cell epitopes using the 1FN-gamma ELISPOT assay[J]. Methods Mol Biol,2009,524:439-446.
    [141]杨汉春.动物免疫学[M].第2版.北京:中国农业大学出版社,2003:368-388.
    [142]赵跃武,藏郑菊,赵凤兰,等.鼠伤寒沙门氏菌主要外膜蛋白和微孔蛋白诱导细胞免疫及免疫保护的比较[J].河南医学研究,1996,5(3):240-243.
    [143]廖芳,贺超,刘丽江,等.淋球菌孔蛋白疫苗在动物体内诱导的免疫应答[J].中国妇幼保健,2005,20(24):3309-3311.
    [144]周银平,万筱荣,刘志勇,等.近交系BALB/c小鼠繁殖与保种方法的建立和应用[J].江西科学,1997,15(3):180-183.
    [145]Amara RR, Villinger F, Altman JD, et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine[J]. Vaccine,2002,20(15):1949-1955.
    [146]Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery[J]. J Biol Chem,2001, 276(8):5836-5840.
    [147]Nandi B, Nandy RK, Mukhopadhyay S, et al. Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW[J]. J Clin Microbiol, 2000,38(11):4145-4151.
    [148]周向阳,万婧,顾立丰,等.基于TaqMan探针的荧光定量PCR检测水产品中的沙门菌[J].中国卫生检验杂志,2012,22(12):2842-2845.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700