用户名: 密码: 验证码:
黄鼬东北亚种(Mustela sibirica sibirca)被毛热力学特性及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物具有完善的热量调节机制,通过生理性调节促进产热和散热的动态平衡,从而实现动物维持相对恒定的体温。哺乳动物的被毛不仅形成了动物与外界环境的相对分界,且在动物的热量平衡中发挥了重要作用,为动物更广泛的适应环境变化提供保障。黄鼬(Mustela sibirica)适应能力强,广泛的分布于不同的地理环境,即使同一地理种群也能适应多种生境类型。黄鼬被毛结构复杂,形态多样,栖息于不同生境类型的生态型之间被毛特征具有明显的分化,这为通过被毛的形态结构特征来研究动物适应进化提供了理想的素材。被毛的热力学特性是动物被毛在热量传递过程中的固有属性,被毛的不同形态特征势必表现出热力学特性的差异。本研究的目的就是通过测定不同生态因子作用下被毛的热物性,比较不同生态型被毛热力学特性,建立被毛形态特征与热力学特性的关系,为进一步揭示被毛对动物热量调节的作用提供了依据。
     本文以张广才岭-松嫩平原分布的黄鼬东北亚种(M.s.sibirca)的森林生态型、丘陵生态型、平原生态型的夏冬季被毛为研究对象,对三种生态型皮板厚度、毛颜色、毛长度、毛细度、毛密度、毛髓质发达程度等形态指标进行比较研究,通过自行构建的稳态过程热物性测试平台,测定三种黄鼬生态型被毛在不同温度、风速、湿度作用下的热流密度和传热系数,通过SPSS17.0for windows统计软件进行分析,得到以下结果:
     1.森林生态型夏冬季被毛颜色分别为巧克力色和暗橙色,平原生态型冬季被毛为秘鲁色。黄鼬被毛垂直剖面呈现明显的颜色分层,这一现象可能与接收太阳辐射热,改善被毛隔热性能有关。
     2.三种黄鼬生态型皮板厚度和毛密度具有显著差异,森林生态型最高,平原生态型最低,丘陵生态型居中。
     3.森林生态型夏冬季节皮板厚度夏季高于冬季,毛密度、针毛长度、针毛细度、针毛髓质指数呈现冬季高于夏季,上述指标夏冬季差异性显著。
     4.黄鼬被毛的性二型特征明显,各生态型黄鼬雌雄在皮板厚度、毛密度、针绒毛长度、针绒毛细度、针毛髓质细度存在显著差异(p<0.05)。
     5.通过热物性测试平台测定,三种生态型中森林生态型热流密度和传热系数最低,平原生态型最高,通过回归分析,毛密度、毛长度和针毛髓质指数是影响黄鼬不同生态型被毛隔热性能的主要因素。
     6.环境温度对黄鼬被毛热流密度具有显著影响。三种黄鼬生态型被毛的热流密度由高到低依次为平原生态型>丘陵生态型>森林生态型,不同生态型之间被毛热流密度差异极显著。温度变化对黄鼬夏冬季节间和雌雄间的被毛热流密度均有极显著。环境温度的变化对黄鼬被毛传热系数的影响不显著(p>0.05)。
     7.随着风速的增加,黄鼬被毛的热流密度显著增高。风速从0m·s增加到5m·s,单位面积内被毛向环境传递的热量增加了1.72倍。在风速梯度的影响下,三种黄鼬生态型被毛的热流密度由高到低依次为平原生态型>丘陵生态型>森林生态型,不同生态型之间被毛热流密度差异极显著(p<0.01)。风速对季节间和性别间黄鼬被毛的影响差异性极显著(p<0.01)。
     8.在5m·s以下风速,风向对雄性黄鼬被毛热流密度以及传热系数影响不显著(p>0.05),黄鼬被毛的形态特征保持了相对的空间构型是导致风向对黄鼬被毛热力学特性影响不显著的主要原因。
     9.空气相对湿度对黄鼬被毛的热流密度和传热系数均无显著影响。被毛润湿后使热流密度和传热系数显著增高,被毛的空间结构受到破坏以及蒸发散热是加速热量传递的直接原因。毛纤维对促进水分蒸发具有显著作用。
     综上分析,得出以下结论:
     1.三种黄鼬生态型中,森林生态型被毛具有最高的隔热性能,生态因子对被毛的传热性能影响最小。丘陵生态型次之,平原生态型最小。三种生态型被毛热物性呈现由森林生态系统向平原生态系统过渡的垂直地带性分布规律。
     2.温度、风速以及湿度对被毛的热力学特性具有显著影响,当生态因子协同产生交互作用时,对被毛的热量传递具有更加显著的作用。黄鼬通过调整被毛形态结构,适应不同因子作用下动物机体热量调节的需要。
     3.黄鼬被毛热力学特性解释了其形态特征差异的生物学意义,充分反映了黄鼬被毛特征对不同生境因子变化的高效响应,体现了动物被毛形态结构与功能高度统一的适应性。
Mammals have a perfect thermoregulation mechanism, they maintain body temperature by physiologically adjusting the balance of heat production and dissipation. The pelage is a critical surface between the body and environment, which plays an important role in thermal balance and provide morphological strategies for adapting to circumstances variety. Siberian weasel have (Mustela sibirica) a strong adaptability, widely distribute in different geographical environment, and even the same geographical population can adapt to various habitat types. The pelage morphological structure of weasel is complicated and high diversity,the characteristics of pelage of weasels from different habitat type show obvious differentiation, which provide a ideal object for researching adaptive evolution of animal by the morphological structure and characteristics of pelage. Thermal property of fur is an inherent attribute in heat transfer process, so different morphological characteristics certainly will show different thermal property. Therefore, to find the relation between pelage characteristic and fur thermal property.The thermal property of fur influenced by different ecological factors were measured, thermal property of fur of different ecotype were compared. These provide evidence for the further research in influence of fur on thermoregulation.
     In this research, summer fur and winter hair of forest ecotype, hill ecotype and plain ecotype of Siberian weasel (M.s.sibirca) distributed between Zhangguangcai Moutains and Songnen Plains were chosen. The hair colour, hair length, hair diameter, hair density, and medulla index of hairs of there ecotypes were studied. The thermal flux and overall heat transfer coefficient of fur from three ecotypes were measured under different air temperature, wind speed, relative air humidity by testing platform based on heat transfer property of pelage builted by ourselves. All data were analyzed by SPSS, and the results are as following:
     1. For forest ecotype, the hair color of summer fur is chocolate and that of winter fur is dark orange; for plain ecotype, color of winter fur is peru. The vertical Anatomical surface of pelage showed obvious color layering, which could be related to absorb the radiant heat from the sun and improve the heat-insulating property of the fur.
     2. There are significant differences in skin thickness and hair density among the three ecotypes, of which the forest ecotype is the highest, plain ecotype is the lowest, hill ecotype is medium.
     3. For forest ecotype, skin thickness of summer fur is significantly higher than that of winter fur morphological characteristic such as hair density, hair length, medulla width and medulla index of gurd hair
     4. The dimorphism is significant for fur morphological characteristic. For all ecotypes, the skin thickness, hair density, hair length, hair diameter, and medulla index all showed significant difference between male and female.
     5. Among three ecotypes, the fur overall heat transfer coefficient and thermal flux of forest ecotype is the lowest, and that of plain ecotypes is the highest. Regression analysis showed that hair density,hair length and medulla index of guard hair is the main factors that influences the heat transfer property.
     6. Ambient air temperature has a significant impact on fur thermal flux. The thermal flux of plain ecotype is the highest, that of hill ecotype is medium, that of forest ecotype is the lowest, and the difference between each other is highly significant. The air temperature has highly significant impact on fur thermal flux between summer and winter, and between male and female. Air temperature showed no significant impact on fur overall heat transfer coefficient.
     7. The fur thermal flux increased significantly with the increase of wind speed. The heat transferred from hair to environment increased by1.72times when wind speed increased from0m·s to5m·s. Under the impact of gradient wind speed, fur thermal flux of plain ecotype is the highest, that of hill ecotype is medium, that of forest is the lowest, and fur thermal flux between each ecotype is significantly different. The impact of wind speed on fur is significant between seasons and between genders.
     8. Wind direction has no significant impact on fur thermal flux in male weasel, but significant in female. Wind direction has no significant impact on overall heat transfer coefficient in both sexes.
     9. Air relative humidity has no significant impact on fur thermal flux and overall heat transfer coefficient, of which increased significantly when the fur was wetting. The hair significantly promoted the evaporation of water.
     Base on the analysis above, we can conclude that:
     1. Among three ecotypes, the heat-insulating property of fur of forest ecotype is the highest, and the impact of ecological factors on heat transfer property is the minimum; followed by hill ecotype and plain ecotype.
     2. The thermal property of fur from three ecotypes showed distribution of vertical zonality that forest ecosystem transit to plain ecosystem gradually.
     3. The fur thermodynamic property of weasel explains the biological significance of different morphological characteristics, reflects the response of fur characteristics to different ecological factors changes, and incarnates the adaptability that the morphology and function of animal fur highly unify.
引文
[1]R.N.哈迪著,蔡益鹏译.温度与动物生活.科学出版社.1984
    [2]孙儒泳.动物生态学原理(第三版).北京:北京师范大学出版社,2001.
    [3]李博,杨持,林鹏.生态学.北京:高等教育出版社,2000.
    [4]Ferriere R,Belthoff J R,Olivieri I,et al.Evolving Dispersal:Where to Go Next?Ecology&Evolution,15,(2000):5-7.
    [5]Bergman J,Ph D.Why Mammal Body Hair Is an Evolutionary Enigma.CRS Quarterly,40,(2004):216-2303.
    [6]刘静,王存诚.生物传热学.北京:科学出版社,1993.
    [7]张伟,徐艳春,华彦.毛皮学.哈尔滨:东北林业大学出版社,2011
    [8]高耀亭等.中国动物志:兽纲,食肉类.北京:科学出版社,1987:89-90
    [9]马逸清等.黑龙江兽类志.哈尔滨:黑龙江科学技术出版社,1986.
    [10]许万祥,王政富.黄鼬全身骨骼的形态学观察.安徽农师院学报,1989,(1):56-59.
    [11]邹铭之.黄鼬的主要器官数值测量分析.上海农学院学报,1985,(03):265-268.
    [12]邹铭之.黄鼬肉垫的研究.上海农学院学报,988,(03):269-272.
    [13]盛和林,陆厚基.黄鼬成幼体鉴别及其在狩猎生产上的意义.动物学报,1976,(4):329-335.
    [14]马逸清.黄鼬阴茎骨的生态意义.动物学会三十周年论文摘要汇编,第二册,1965:306.
    [15]王丽萍,王永林,任小莉,等.黄鼬(Mustera sibirica Pallas)肛腺组织形态学研究.兽医导刊,1993,(02):7-8.
    [16]王贤峰.黄鼬(Mustelia siberica)气味对黑线姬鼠(Apodemus agrarius)雄雄竞争的影响.曲阜师范大学硕士论文,2006.
    [17]张健旭,曹承,高恒,等.不同性别和年龄的大仓鼠对黄鼬气味的反应.动物学报,2004,02:151-157.
    [18]张健旭等.不同性别和年龄的大仓鼠对黄鼬气味的反应.动物学报,2004(2):151-157.
    [19]张健旭,张知彬,王睿,等.黄鼬肛腺分泌物的挥发性成分.动物学报,2002,(4):459-464.
    [20]姜兆文等.黑龙江省黄鼬的生物学特性及合理利用对策.野生动物,1996,(1):8-10.
    [21]高翔,徐敬明,周晓燕.华北地区黄鼬的生物学特性及人工饲养应注意的问题.河北大学学报(自然科学版),1996,S1:85-86.
    [22]盛和林.黄鼬(Mustela sibirica)体型大小的性二型及地理变异.兽类学报,1987,7(2):92-95
    [23]盛和林,杨圭璋.黄鼬的习性与驯化.毛皮动物饲养,1979,01:24-26.
    [24]蔡惠栋.黄鼬种类与饲养方法.动物学报,1959,(8):346-349.
    [25]盛和林,陆厚基.黄鼬的产仔环境和鼬巢密度调查.兽类学报,1982,(1):29-34.
    [26]陈太庸等.农作区黄鼬越冬的栖息地.动物学杂志,1975,(4):36-38.
    [27]高翔等.华北地区黄鼬的生物特性及人工饲养应注意的问题.河北大学学报,1996,(5):85-86.
    [28]盛和林.黄鼬昼夜节律行为[J].兽类学报,1984,04:246-255.
    [29]盛和林,杨圭璋.黄鼬的习性与驯化.毛皮动物饲养,1979,1:24-26.
    [30]盛和林.黄鼬冬季食性的研究.华东师范大学学报,1964,(2):117-122.
    [31]盛和林等.黄淮平原鼬、鼠关系及鼠害防治对策.兽类学报,1990,10(1):1-9.
    [32]蕯希荣.黄鼬冬季生活习性的初步观察.动物利用与防治,1973,(4):37-39.
    [33]邹波,王庭林,宁振东,等.山西省鼠类主要天敌-鼬类的分布与数量估测.农业技术与装备,2012,(18):7-9.
    [34]盛和林,陆厚基.黄鼬的繁殖.动物学杂志,1979,(4):36-39.
    [35]邹波,王庭林,宁振东,等.山西省鼠类主要天敌-鼬类的分布与数量估测[J].农业技术与装备,2012,(18):7-9.
    [36]王培潮,陆厚基.黄鼬的胚后发育与恒温机制的形成.毛皮动物饲养,1980,(01):1-6.
    [37]王培潮,钱国桢,陆厚基,等.温度与聚群对三种仔兽热能代谢的影响.兽类学报,1985,03:211-221.
    [38]柳宇,张伟.黑龙江省黄鼬冬季毛被分层结构及保温功能.生态学报,2012,17:5568-5573.
    [39]张伟,应钦,葛亮.雄性黄鼬直针毛无髓段的特点.东北林业大学学报,2007,07:57-58.
    [40]张伟,孙长虹,马跃,等.通河林区黄鼬背中部与爪部冬季上毛的形态结构.兽类学报,2008,28(4):440-444
    [41]朱靖,王家义.黄鼬换毛序.动物学杂志,1960,(7):293-295.
    [42]华彦,张伟,徐艳春.黑龙江小兴安岭地区黄鼬夏冬季毛皮性状比较.兽类学报,2010,01:110-114.
    [43]杨圭璋.黄鼬季节性换毛的规律.毛皮动物饲养,1980,(02):6-8.
    [44]郑雷,张伟,张斌,等.动物体被稳态过程热物性参数测试平台构建.东北林业大学学报.2011,39(2):117-119.
    [45]张伟,刘龙生等.狍被毛髓质指数在保温和保护功能上的适应性变化.东北林业大学学报,1997,25(3):45-47.
    [46]周秋娇.野生细杂皮检验学.哈尔滨:东北林业大学,1989:4-6.
    [47]张伟,景松岩.两种生境中黄鼬东北亚种皮张质量的比较研究.野生动物,1992(增):50-66
    [48]张伟,景松岩.山地深林生态系统与平原草甸生态系统对黄鼬东北亚种毛皮性状产生不同影响的原因分析.野生动物,1992增刊:67-71.
    [49]周宏力.龙江路、辽宁路元皮的质量差异.东北林业大学学报,2004,03:55-58.
    [50]李明,张伟.漠河黄鼬与通河黄鼬冬季直针毛形态与功能的差异.东北林业大学学报,2009,07:91-92.
    [51]张溯源,张伟,郑雷.不同生境黄鼬毛皮保温性能比较及传热测试实验优化.东北林业大 学学报,2012,40(4):68-70.
    [52]Scholander P F, Walters V, Hock R, Irving L. Body insulation of some arctic and tropical mammals and birds. Biol Bull,1950, (99):225-236
    [53]Tregear R T.Hair density, wind speed, and heat loss in mammals.Journal of Applied Physiology,20(1965):796-801.
    [54]Morrison P.Insulative Flexibility in the Guanaco Journal of Mammalogy,47, (1966):18-23.
    [55]Chappell M A,Holsclaw D S.Effects of wind on thermoregulation and energy balance in deer mice (Peromyscus maniculatus).Joumal of Comparative Physiology B,154,(1984):619-625.
    [56]Timisjarvi J,Nieminen M,Sippola A.The structure and insulation properties of the reindeer fur[J].Comparative Biochemistry and Physiology Part A:Physiology,79,(1984):601-609.
    [57]Webb D R,McClure P A.Insulation Development in an Altricial Rodent:Neotoma floridana Thomas[J].Functional Ecology,2,(1988):237-248.
    [58]Webb D R, Porter W P, McClure P A. Development of insulation in juvenile rodents: functional compromise in insulation. Functional Ecology.1990,4(2):251-256
    [59]Sumbera R,Zelova J,Kunc P,et al.Patterns of surface temperatures in two mole-rats (Bathyergidae) with different social systems as revealed by IR-thermography.Physiology&Behavior,92,(2007):526-532.
    [60]Gerken M.Relationships between integumental characteristics and thermoregulation in South American camelids.Animal,(2010):1451-1459.
    [61]Alexander S. K,Alessandra C,Irning Z.Energy intake and fur in summer-and winter-acclimated Siberian hamsters (Phodopus sungorus).Physiol Regulatory Integrative Comp Physiol,281:R519-R527,2001.
    [62]Alexander S,Kauffman,Paul M J,et al.Increased heat loss affects hibernation in golden-mantled ground squirrels. Physiol Regul Integr Comp Physiol,287(2004):R167-R173.
    [63]Moote I.The Thermal Insulation of Caribou Pelts.Textile Research Journal,25,(1955):832-837.
    [64]Gebremedhin K G.Effect of animal orientation with respect to wind direction on convective heat loss.Agricultural and Forest Meteorology,40,(1987):199-206.
    [65]Rogowitz G L,Gessaman J A.Influence of air temperature, wind and irradiance on metabolism of white-tailed jackrabbits.Journal of Thermal Biology,15,(1990):125-131.
    [66]Boyles J G,Bakken G S.Seasonal changes and wind dependence of thermal conductance in dorsal fur from two small mammal species(Peromyscus leucopus and Microtus pennsylvanicus) Journal of Thermal Biology,32,(2007):383-387.
    [67]Dawson T J,Brown G D.A comparison of the insulative and reflective properties of the fur of desert kangaroos.Comparative Biochemistry and Physiology,37,(1970):23-38.
    [68]Walsberg G E, Campbell G S, King J R. Animal coat color and radiative heat gain:A Re-Evaluation. Journal of Comparative Physiology,1978,126(11):211-222
    [69]Walsberg G E,Schmidt C A.Seasonal Adjustment of Solar Heat Gain in a Desert Mammal by Altering Coat Properties Independently of Surface Coloration[J].The Journal of Experimental Biology,142,(1989):387-400.
    [70]Walsberg G E.Thermal effects of seasonal coat change in three subarctic mammals.Journal of Thermal Biology,16,(1991):291-296.
    [71]Cooper C E,Walsberg G E,Withers P C.Biophysical properties of the pelt of a diurnal marsupial, the numbat(Myrmecobius fasciatus), and its role in thermoregulation.The Journal of Experimental Biology,206,(2003):2771-2777.
    [72]Cain J W,Krausman P R,Rosenstock S S.Mechanisms of Thermoregulation and Water Balance in Desert Ungulates.Wildlife Society Bulletin,34,(2006):570-581.
    [73]Hetem R S,Witt B,Fick L G,et al.Body temperature, thermoregulatory behaviour and pelt characteristics of three colour morphs of springbok (Antidorcas marsupialis).Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,152,(2009):379-388
    [74]Webb D R, King J R. Effects of wetting of insulation of bird and mammal coat. Journal of Thermal Biology,1984,9(3):189-191
    [75]Mcarthur A J, Ousey J C. The effect of moisture on the thermal insulation provided by the coat of a thoroughbred foal. Journal of Thermal Biology,1996,21(1):43-48
    [76]Gebremedhin K G,Wu B X.Simulation of sensible and latent heat losses from wet-skin surface and fur layer.Journal of Thermal Biology,27,(2002):291-197.
    [77]Jiang M, Gebremedhin K G, Alright L D. Simulation of skin temperature and sensible and latent heat losses through fur layers. Transactions of the ASABE,2005,48(2):767-775
    [78]陶文铨.2006.《传热学》[M].西安:西北工业大学出版社.
    [79]覃密道.覆盖材料传热系数测试技术和设备的研究.北京:中国农业大学硕士论文,2004:12-17
    [80]刘静,任泽霈,王存诚.生物医学传热学的研究进展.力学进展,1996,26(2):198-213
    [81]华彦,马建章,张伟,等.传热系数测试平台在毛皮学研究中的应用.实验室技术与管理.2011,28(12):69-71.
    [82]Mariana B,Daniel L. Thermal conductance of guanaco(Lama guanicoe) pelage. Journal of Thermal Biology,2005, (30):569-573.
    [83]张伟,孙长虹.狍胎毛形态结构与功能的关系[J].东北林业大学学报,2007,35(3):68-70.
    [84]Walsberg G.E. Consequences of skin color and fur properties for solar heat gain and ultraviolet irradiance in two mammals. Journal of Comparative Physiology,1988,158: 213-221.
    [85]王德华,杨明,刘全生.小型哺乳动物生理生态学研究与进化思想.兽类学报,2009,29(4):343-351
    [86]尚玉昌,蔡晓明.普通生态学.北京:北京大学出版社,1992.
    [87]Bowman J, Jaeger J G, Fahrig L. Dispersal distance of mammals is proportional to home range size. Ecology.2002,83(7):2049-2055.
    [88]GB/T11048-2008.纺织品生理舒适性稳态条件下热阻和湿阻的测定.北京:中国标准出版社,2008.
    [89]费荣梅,景松岩等.六种动物毛中色素颗粒形态的比较研究.野生动物,1992,(增):72-73.
    [90]Fletcher L S. Recent developments in contact heat transfer. Journal of Heat Transfer,1988, 110(2):1059-1070
    [91]Gebremedhin K G,Wu B X.A model of evaporative cooling of wet skin surface and fur layer[J] Journal of Thermal Biology,26,(2001):537-545.
    [92]盛和林.黄鼬狩猎期与提高鼬皮质量的关系.动物学杂志,1966,(1):13-16.
    [93]McDonald R A. Resource partitioning among British and Irish mustelids. Journal of Animal Ecology.2002,71:185-200. Yom-Tov Y, Yom-Tov S, Angerbjorn A. Body sizeoftheweasel Mustela nivalis and thestoat M. erminea in Sweden. Mamm.biol.2010,75:420-426
    [94]张伟,徐艳春.毛发微观结构研究的回顾与展望.兽类学报,2003,23(4):339-345.
    [95]杨世铭.传热学.北京:高等教育出版社,1987:17-32
    [96]李如治.家畜环境卫生学.北京:中国农业出版社.2011
    [97]安立龙.家畜环境卫生学.北京:高等教育出版社.2004
    [98]Zhu M, Weinbaum S, Jiji L M. Heat exchange between unequal countercurrent vessels asymmetrically embedded in a cylinder with surface convection. Journal of Heat Mass Transfer,1990,33(10):2275-2283
    [99]Yang S M. Heat Transfer Theory. Beijing:Higher Education Press,1987:7-32
    [100]郑雷,张伟,华彦.哺乳动物毛被传热性能及其影响因素.生态学报,2011,31(13):3856-3862.
    [101]高世桥,刘海鹏.毛细力学.科学出版社.2010.
    [102]滕新荣.表面物理化学.化学工业出版社.2009.
    [103]Hamilton WJ, Seely MK.Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature,1976,262:284-285
    [104]Bentley PJ, Blumer WFC. Uptake of water by the lizard, Moloch horridus. Nature.1962, 194:699-700
    [105]Gans C, Baic D.Regional specialization of reptilian scale surfaces.relation to texture and biological role. Science,1977,195:1348-1350
    [106]Wade C, SherbrookeA J, Scardino RNL.Schwarzkopf Functional morphology of scale hinges used to transport water:convergent drinking adaptations in desert lizards(Moloch horridus and Phrynosoma cornutum). Zoomorphology.2007,126:89-102
    [107]Paul T. S. Fish scale development:Hair today, teeth and scales yesterday? Current Biology.2001,11(8):751-752
    [108]Feughelman A. Mechanical properties and structure of alpha-keratin fibres:wool, human hair and related fibres. Sydney:University of South Wales Press; 1997.
    [109]Vincent D, Dominique L, Patrick G. Wetting and electrical properties of the human hair surface:Delipidation observed at the nanoscale. Journal of Colloid and Interface Science. 2007,306:34-40
    [110]侯森林,薛晓明,宋庆双.白鼬和黄鼬直针毛的扫描电镜分析[J].南京林业大学学报(自然科学版),2012,04:149-152.
    [111]华彦.小兴安岭通河林区黄鼬东北亚种毛皮性状夏冬季节差异与生态因子关系研究.东北林业大学硕士论文.2006
    [112]Vincent D, Terri C, Dominique L. Atomic force microscopy imaging of hair:correlations between surface potential and wetting at the nanometer scale. Journal of Colloid and Interface Science.2004,269:329-335
    [113]Lodge RA, Bhushan B. Surface potential measurement of human hair using Kelvin probe microscopy. J Vac Sci Technol A.2007,25:893-902.
    [114]杨晓东,任露泉.动物毛发的形态结构及其功能特性研究.农业工程学报,2002,18(2):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700