用户名: 密码: 验证码:
雌激素对可兴奋性细胞K_(ATP)通道的调节及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     流行病学研究发现性别不同会导致脑中风、心血管疾病的发生率及预后存在显著的差异。差异产生可能与雌激素的水平相关,如女性绝经前与同龄男性相比,其高血压、心肌缺血、脑中风等发病率较低,绝经后由于女性体内的雌激素水平迅速降低,心脑疾病的发生率急剧上升。雌激素受体除了在生殖系统中表达丰富以外,还广泛表达于多种组织,如血管、心脏、神经系统等。目前研究发现雌激素与雌激素受体结合可以通过多种相关途径介导心、脑及血管的保护作用。
     ATP敏感性钾离子通道(ATP-sensitive K+channels, KATP通道)是一种内向整流式钾通道,其开放主要受细胞内ATP水平的调控,将各种兴奋性组织中细胞的电活动与细胞代谢状态相耦联。KATP通道广泛分布于心肌细胞、胰岛β细胞、骨骼肌细胞、血管与非血管平滑肌细胞和神经细胞等多种可兴奋性细胞中。它具有减轻组织缺血再灌注损伤、维持血管的舒张功能、调节胰岛素的分泌等作用。
     雌激素和KATP通道对可兴奋性组织有着相似的生理效应。由此我们推测雌激素可能通过调节可兴奋性细胞(心肌细胞、血管平滑肌细胞和神经细胞)中KATP通道来发挥其保护作用。为此本研究拟通过首先建立卵巢去势雌激素干预模型,并在此基础上分别通过以下实验探讨雌激素对可兴奋性细胞KATP通道的调节及意义:(1)评估雌激素对心肌KATP通道表达的影响。(2)检测雌激素对血管平滑肌KATP通道的表达及活性的调节,观察其对血管功能的影响。(3)检测雌激素对脑皮层神经元KATP通道的表达及活性的调节,并评价其在脑缺血再灌注损伤中的作用。
     研究方法及结果
     1.大鼠卵巢去势雌激素再干预模型的建立及鉴定
     方法雌性SD大鼠30只,体重100±10g,随机分为假手术组(Sham)、卵巢切除组(Ovx)、卵巢切除后补充雌激素组(Estr)。通过阴道脱落细胞涂片观察其发情周期的变化,并检测子宫指数、子宫切片HE染色及血清中雌激素浓度的变化。
     结果与Sham组相比较,卵巢去势后(Ovx组)大鼠子宫指数、雌激素浓度显著降低(P<0.05);与Ovx组相比,卵巢去势后又补充雌激素(Estr组)大鼠子宫指数、雌激素浓度明显增加(P<0.05)。
     2.雌激素对大鼠心肌ATP敏感性钾离子通道表达的影响
     方法雌性SD大鼠18只,体重100±10g,随机分为假手术组(Sham)、卵巢切除组(Ovx)、卵巢切除后补充雌激素组(Estr)。取大鼠心室肌组织采取实时荧光定量PCR及Western-blot方法分别检测大鼠心肌中KATP通道的Kir6.2及SUR2A亚单位mRNA及蛋白的表达变化。
     结果与Sham组相比,Ovx组大鼠心肌中的Kir6.2及SUR2A亚单位mRNA及蛋白表达减少(P<0.05),而Estr组无明显差异。与Sham组相比,Estr组则表达增加(P<0.05)。
     3.雌激素通过KATP通道影响大鼠肠系膜动脉的反应性
     方法雌性SD大鼠48只,体重100±10g,随机分为假手术组(Sham)、卵巢切除组(Ovx)、卵巢切除后补充雌激素组(Estr)。取大鼠肠系膜动脉,采取实时荧光定量PCR检测KATP通道的Kir6.1及SUR2B亚单位mRNA的表达,及观察各组大鼠对去甲肾上腺素(NE)升压效应的反应性。
     结果与Sham组相比,Ovx组大鼠肠系膜动脉中的Kir6.1及SUR2B亚单位mRNA表达减少(P<0.05),而Estr组则表达增加(P<0.05)。与Sham组相比,Ovx组大鼠的血管反应性明显增加(P<0.05),Estr组无明显差异。给予KATP通道阻滞剂格列本脲后,Sham组和Estr组的动脉反应性增加(P<0.05), Ovx组无明显变化(P>0.05),此时三组间比较无明显差异(P>0.05)。
     4.雌激素通过KATP通道减轻大鼠脑缺血再灌注损伤
     方法实验1实验分为假手术组(Sham)、卵巢切除组(Ovx)、卵巢切除后补充雌激素组(Estr)。取大鼠大脑皮层组织,采取实时荧光定量PCR及Western-blot方法分别检测KATP通道mRNA及蛋白的表达变化。
     实验2假手术组(Sham)、卵巢切除组(Ovx)大鼠侧脑室注射DMSO,卵巢切除后补充雌激素组(Estr)则分别侧脑室注射DMSO和格列本脲(Estr+G),观察各组大鼠局灶脑缺血后脑梗死体积和神经功能评分及KATP阻滞剂对其影响。
     结果与Sham组相比,Ovx组大鼠大脑皮层中KATP通道mRNA及蛋白表达减少(P<0.05),而Estr组无明显差异。与Ovx组相比,Estr组则表达增加(P<0.05)。与Ovx组大鼠相比,Sham组及Estr组大鼠的局灶脑缺血后脑梗死体积和神经功能评分均减小(P<0.05)。而格列本脲则增加了Estr组大鼠的脑梗死体积及神经功能评分(P<0.05)。
     研究结论
     1.本实验成功建立了卵巢去势后雌激素干预模型,该模型可以模拟雌激素的生理作用。
     2.雌激素可以增加大鼠心肌ATP敏感性钾离子通道的表达。
     3.雌激素可能通过调节肠系膜动脉平滑肌细胞KATP通道的表达及活性来降低动脉对去甲肾上腺素升压效应的反应性。
     4.雌激素可以调节大脑皮层KATP通道的表达及活性,并且可能与雌激素的神经保护作用有关。
     研究总结及展望
     本研究建立了卵巢去势后雌激素干预模型,该模型可以模拟雌激素的生理作用。后续研究通过此模型发现,雌激素可以上调可兴奋性细胞如心肌组织、肠系膜动脉平滑肌细胞及大脑皮层组织中的KATP通道的表达。在进一步对其生理功能的研究发现,雌激素对这些可兴奋性组织KATP通道的调节可能与雌激素的血管反应性、神经保护作用等有关。本研究提示了雌激素的生理作用可能通过调节KATP通道来实现这一作用机制。为减少雌激素替代治疗的不良反应,及开发新的治疗药物及方案提供一些线索。为我们下一步研究雌激素调节KATP通道的信号传导途径奠定了基础。
Back ground and objective
     Epidemiological studies have shown that sex differences in stroke, cardiovascular disease. The incidences of stroke, hypertension and myocardial ischemia in premenopausal women are lower than in men of the same age. However, when estrogen levers fall due to follicular depletion in postmenopausal women, incidences of stroke and cardiovascular disease increase sharply. Estrogen receptor (ERa and ERβ) are not only localized in the reproductive system, also widely expressed in a variety of tissues:blood vessels, heart, nervous system, and so on. Estradiol is thought to exert the majority of its biological actions, the protective effect of the heart, brain and blood, via interaction with two primary estogen receptors.
     ATP-sensitive potassium channel (KATP channel) is an inward rectifier potassium channel, which couples the intermediary metabolism to excitability, and mainly modulated by intracellular ATP levels. KATP channels are widely expressed in a variety of excitable cells including myocardium, pancreatic beta cells, skeletal muscle cells, vascular and non-vascular smooth muscle cells and neurons. Previous studies have shown that KATP channels were involved in protection against ischemia-reperfusion injury, maintaining the dilation of blood vessels and regulating insulin secretion.
     It has been shown that there are similar physiological effects between KATP channel and estrogen. Therefore, we hypothesize that the effect of estogen in excitable cells is associated with KATP channel. To test this hypotheses, firstly, we established and evaluated a rat model of ovariectomized and estrogen administration. Then we performed the follow studies:(1) Assessed the effects of estrogen on the expression of KATP channel in myocardial of rats.(2) Observed the expression of ATP-sensitive potassium channel mRNA in mesenteric artery smooth muscle of rats with estrogen administration, and to evaluate the role of KATP channel in the effects of estrogen on mesenteric artery reactivity in rats.(3)Observed the effects of estrogen on the expression and activity of KATP channel in cerebral cortex, and evaluated the role of this regulation in cerebral ischemia-reperfusion injury in rats.
     Methods and Results
     1. Establish and evaluate the rat model of ovariectomized and estrogen administration.
     Methods:Thirty female Sprague-Dawley rats, weighing100±10g, were randomly divided into three groups:group sham operation (group Sham), group ovariectomy (group Ovx), and group ovariectomy with estrogen administration (group Estr). Vaginal smears were performed to observe the changes of estrous cycle. Then the uterine index, uterine slice HE staining and serum concentration of estrogen were evaluated after estrogen administration.
     Results:After ovariectomy, the uterus/body ratio and serum estradiol levels in female rats were lower than those in the Sham group (P<0.05). With17b-estradiol treatment, the uterine index and serum estradiol levels in Estr group were higher than those in the Ovx group (P<0.05).
     2. Regualting of KATP channel gene expression by estrogen in ratcardiaomyocytes
     Methods:Eighteen female Sprague-Dawley rats, weighing100+10g, were randomly divided into three groups:group sham operation (group Sham), group ovariectomy (group Ovx), and group ovariectomy with estrogen administration (group Estr). The expression of KATP subunits mRNA and protein of cardiac myocytes were detected by quantitive real time PCR and western blot.
     Results:Compared with group Sham, the expression of Kir6.2and SUR2A mRNA and protein were significantly decreased in group Ovx (P<0.05). But compared with group Ovx, they were increased in group Estr (P<0.05).
     3. Estrogen afftects rats'mesenteric artery reactivity through ATP-sensitive potassium channel
     Methods:Forty-eight female Sprague-Dawley rats, weighing100±10g, were randomly divided into three groups:group sham operation (group Sham), group ovariectomy (group Ovx), and group ovariectomy with estrogen administration (group Estr). The expression of KATP subunits mRNA of mesenteric artery smooth muscle was detected by quantitive real time PCR. Artery reactivity in rats was observed by norepinephrine induced pressor response.
     Results:Compared with group Sham, the expression of Kir6.1and SUR2B mRNA was significantly decreased in group Ovx (P<0.05), but increased in group Estr (P<0.05).Compared with group Sham and group Estr, the pressor response induced by norepinephrine of rats were enhanced in group Ovx (P<0.05). But there was no significantly difference between group Sham and group Estr. After administration glibenclamide, a KATP channel blocker, the pressor response induced by norepinephrine were enhanced in group Sham and group Estr, but no changed in group Ovx. Meanwhile, there were no differences in three groups.
     4. Neuroprotective effects of17b-estradiol associate with KATP in rat brain
     Methods:In experiment1:Randomly divided three groups of rats:ovariectomized rats (Ovx), sham operation (Sham), ovariectomized rats receiving17β-estradiol (Estr). The KATP mRNA and proteins in cortex of three group rats were measured respectively.
     In experiment2:Randomly assigned four groups of rats:ovariectomized female rats (Ovx), sham operation(Sham), ovariectomized female rats receiving17β-estradiol (Estr) and ovariectomized rats receiving both17β-estradiol and the stereotaxic injection of glibenclamide (Estr+G). The rats in Ovx, Sham and Estr groups were received the stereotaxic injection of vehicle (dimethyl sulfoxide).30minutes after drug administration, the rats received middle cerebral artery occlusion for60minutes. Twenty-four hours after reperfusion, the neurobehavioral scores and infract volume were evaluated.
     Results:The Kir6.2and SUR1mRNA and protein levels of brain cortex in female ovarectomied rats were decreased compared to rats with sham operation. However, the expressions of Kir6.2and SUR1in brain cortex of ovarectomied rats were recovered with supplement17β-estradiol. The protective effects of17β-estradiol were abolished by glibenclamide, a KATP channels blocker.
     Conclusions
     1. A rat model of ovariectomized and estrogen administration was successfully established, and it is able to mimic the physiological effects of estrogen.
     2. Estrogen can up-regulate KATP channel subunits gene expressions in rat cardiomyocytes.
     3. Estrogen can up-regulate the gene expression of KATP channel subunits, and that regualtion may be involved in estrogen-reduced the pressor response of norepinephrine.
     4. Estrogen significantly upregulates the gene expression of KATP channel subunits and channel activity in the brain cortices of ovariectomized rats. This regulation is associated with the neuroprotective effects of estradiol.
     Summary
     This study has successfully established an ovariectomized and estrogen intervention rat model.The studies fellowing have shown that estrogen can up-regulate the expression of KATP channel in excitable cells such as cardiomyocytes, mesenteric artery smooth muscle cells and cerebral cortex. The results of physiological function revealed that, the regulation of KATP channel by estrogen in excitable cells may be related to vascular reactivity and neuroprotection. These studies suggest another potential mechanism of estrogen physiological effects, and provide some hints for reducing the adverse effects of estrogen replacement therapy and development of novel treatment.
引文
[1]Burns K. A., Korach K. S. Estrogen receptors and human disease:an update. Arch Toxicol.2012.86(10).1491-1504
    [2]Appelros P., Stegmayr B., Terent A. Sex differences in stroke epidemiology:a systematic review. Stroke.2009.40(4).1082-1090
    [3]Turtzo L. C, McCullough L. D. Sex differences in stroke. Cerebrovasc Dis.2008.26(5). 462-474
    [4]Brann D. W., Dhandapani K., Wakade C., Mahesh V. B., Khan M. M. Neurotrophic and neuroprotective actions of estrogen:basic mechanisms and clinical implications. Steroids. 2007.72(5).381-405
    [5]Brann D. W., Mahesh V. B. The aging reproductive neuroendocrine axis. Steroids.2005. 70(4).273-283
    [6]Brann D., Raz L., Wang R., Vadlamudi R., Zhang Q. Oestrogen signalling and neuroprotection in cerebral ischaemia. J Neuroendocrinol.2012.24(1).34-47
    [7]Arias-Loza P. A., Muehlfelder M., Pelzer T. Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch.2013.
    [8]张登文,徐林,张传汉,韩爱迪,姚文龙,王学仁.雌激素通过KATP通道影响大鼠肠系膜动脉的反应性.中国病理生理杂志.2012.28(7).1176-1180
    [9]Shao B., Cheng Y., Jin K. Estrogen, neuroprotection and neurogenesis after ischemic stroke. Curr Drug Targets.2012.13(2).188-198
    [10]Hou Y., Wei H., Luo Y., Liu G. Modulating expression of brain heat shock proteins by estrogen in ovariectomized mice model of aging. Exp Gerontol.2010.45(5).323-330
    [11]Ueda K., Karas R. H. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system. Steroids.2012.
    [12]Nichols C. G. KATP channels as molecular sensors of cellular metabolism. Nature.2006. 440(7083).470-476
    [13]Niwano S., Hirasawa S., Niwano H., Sasaki S., Masuda R., Sato K., Masuda T., Izumi T. Cardioprotective effects of sarcolemmal and mitochondrial KATP channel openers in an experimental model of autoimmune myocarditis. Role of the reduction in calcium overload during acute heart failure. Int Heart J.2012.53(2).139-145
    [14]Muravyeva M., Sedlic F., Dolan N., Bosnjak Z. J., Stadnicka A. Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes. J Cardiovasc Pharmacol.2013.
    [15]Tay A. S., Hu L. F., Lu M., Wong P. T., Bian J. S. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience.2010. 167(2).277-286
    [16]Seino S., Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol.2003.81(2).133-176
    [17]Wang X., Wu J., Li L., Chen F., Wang R., Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res.2003.92(11).1225-1232
    [18]Ko E. A., Han J., Jung I. D., Park W. S. Physiological roles of K+channels in vascular smooth muscle cells. J Smooth Muscle Res.2008.44(2).65-81
    [19]Buckley J. F., Singer M., Clapp L. H. Role of KATP channels in sepsis. Cardiovasc Res. 2006.72(2).220-230
    [20]Uematsu K., Katayama T., Katayama H., Hiratsuka M., Kiyomura M., Ito M. Nitric oxide production and blood corpuscle dynamics in response to the endocrine status of female rats. Thromb Res.2010.126(6).504-510
    [21]Ueda K., Karas R. H. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system. Steroids.2012.
    [22]Ranki H. J., Budas G. R., Crawford R. M., Davies A. M., Jovanovic A. 17Beta-estradiol regulates expression of KATP channels in heart-derived H9c2 cells. J Am Coll Cardiol.2002.40(2).367-374
    [23]Soriano S., Ripoll C., Fuentes E., Gonzalez A., Alonso-Magdalena P., Ropero A. B., Quesada I., Nadal A. Regulation of KATP channel by 17beta-estradiol in pancreatic beta-cells. Steroids.2011.
    [24]Zhang C, Kelly M. J., Ronnekleiv O. K.17Beta-estradiol rapidly increases KATP activity in GnRH via a protein kinase signaling pathway. Endocrinology.2010.151(9). 4477.4484
    [1]Gokcay F., Arsava E. M., Baykaner T., Vangel M., Garg P., Wu O., Singhal A. B., Furie K. L., Sorensen A. G., Ay H. Age-dependent susceptibility to infarct growth in women. Stroke.2011.42(4). 947-951
    [2]Appelros P., Stegmayr B., Terent A. Sex differences in stroke epidemiology:a systematic review. Stroke.2009.40(4).1082-1090
    [3]Krolik M., Milnerowicz H. The effect of using estrogens in the light of scientific research. Adv Clin Exp Med.2012.21(4).535-543
    [4]Deroo B. J., Korach K. S. Estrogen receptors and human disease. J Clin Invest.2006.116(3). 561-570
    [5]孙先虹,杨枫,毕春丽.雌激素对机体的影响及其导致子宫内膜癌的分子机制.实用肿瘤学杂志.2011.25(4).389-392
    [6]Pompili A., Arnone B., Gasbarri A. Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology.2012.37(9).1379-1396
    [7]Prossnitz E. R., Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol.2011.7(12).715-726
    [8]Marcondes F. K., Bianchi F. J., Tanno A. P. Determination of the estrous cycle phases of rats:some helpful considerations. Braz J Biol.2002.62(4A).609-614
    [9]Burns K. A., Korach K. S. Estrogen receptors and human disease:an update. Arch Toxicol.2012. 86(10).1491-1504
    [10]Ross R. L., Serock M. R., Khalil R. A. Experimental benefits of sex hormones on vascular function and the outcome of hormone therapy in cardiovascular disease. Curr Cardiol Rev.2008.4(4).309-322
    [11]McCubbin J. A., Helfer S. G., Switzer FS Rd, Price T. M. Blood pressure control and hormone replacement therapy in postmenopausal women at risk for coronary heart disease. Am Heart J.2002. 143(4).711-717
    [12]Nofer J. R. Estrogens and atherosclerosis:insights from animal models and cell systems. J Mol Endocrinol.2012.48(2). R13-R29
    [13]Zhang C., Bosch M. A., Rick E. A., Kelly M. J., Ronnekleiv O. K.17Beta-estradiol regulation of T-type calcium channels in gonadotropin-releasing hormone neurons. J Neurosci.2009.29(34). 10552-10562
    [14]Brown C. M., Dela Cruz CD, Yang E., Wise P. M. Inducible nitric oxide synthase and estradiol exhibit complementary neuroprotective roles after ischemic brain injury. Exp Neurol.2008.210(2). 782-787
    [15]Jover-Mengual T., Zukin R. S., Etgen A. M. MAPK signaling is critical to estradiol protection of CAl neurons in global ischemia. Endocrinology.2007.148(3).1131-1143
    [16]Maggi A., Ciana P., Belcredito S., Vegeto E. Estrogens in the nervous system:mechanisms and nonreproductive functions. Annu Rev Physiol.2004.66.291-313
    [17]Azcoitia I., Santos-Galindo M., Arevalo M. A., Garcia-Segura L. M. Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. Eur J Neurosci.2010.32(12).1995-2002
    [18]王月鹏,赵行字,张慧锋.成年大鼠性周期阴道细胞变化探究.中国科技信息.2007.(17).192-193
    [19]匡文娟,陈夏静,刘立涛,谭显曙,万莉红,熊文碧,周黎明.17p-雌二醇对去势大鼠子宫内膜厚度的影响.四川生理科学杂志.2011.33(1).16-18
    [20]张森,谭建华.大鼠发情周期中主要生殖激素的变化.动物医学进展.2005。26(12).1-6
    [21]Strom J. O., Theodorsson E., Holm L., Theodorsson A. Different methods for administering 17beta-estradiol to ovariectomized rats result in opposite effects on ischemic brain damage. BMC Neurosci.2010.11.39
    [22]张登文,徐林,张传汉,韩爱迪,姚文龙,王学仁.雌激素通过KATP通道影响大鼠肠系膜动脉的反应性.中国病理生理杂志.2012.28(7).1176-1180
    [23]Zhang D., Xia H., Xu L., Zhang C., Yao W., Wang Y., Ren J., Wu J., Tian Y., Liu W., Wang X. Neuroprotective effects of 17beta-estradiol associate with KATP in rat brain. Neuroreport.2012.23(16). 952-957
    [1]Arias-Loza P. A., Muehlfelder M., Pelzer T. Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch.2013.
    [2]Hayward C. S., Kelly R. P., Collins P. The roles of gender, the menopause and hormone replacement on cardiovascular function. Cardiovasc Res.2000.46(1).28-49
    [3]Crabbe D. L., Dipla K., Ambati S., Zafeiridis A., Gaughan J. P., Houser S. R., Margulies K. B. Gender differences in post-infarction hypertrophy in end-stage failing hearts. J Am Coll Cardiol.2003. 41(2).300-306
    [4]Kane G. C., Liu X. K., Yamada S., Olson T. M., Terzic A. Cardiac KATP channels in health and disease. J Mol Cell Cardiol.2005.38(6).937-943
    [5]Zhang D., Xia H., Xu L., Zhang C., Yao W., Wang Y., Ren J., Wu J., Tian Y., Liu W., Wang X. Neuroprotective effects of 17beta-estradiol associate with KATP in rat brain. Neuroreport.2012.23(16). 952-957
    [6]张登文,徐林,张传汉,韩爱迪,姚文龙,王学仁.雌激素通过KATP通道影响大鼠肠系膜动脉的反应性.中国病理生理杂志.2012.28(7).1176-1180
    [7]Nichols C. G. KATP channels as molecular sensors of cellular metabolism. Nature.2006.440(7083). 470-476
    [8]Rodrigo G. C., Standen N. B. ATP-sensitive potassium channels. Curr Pharm Des.2005.11(15). 1915-1940
    [9]Flagg T. P., Enkvetchakul D., Koster J. C., Nichols C. G. Muscle KATP channels:recent insights to energy sensing and myoprotection. Physiol Rev.2010.90(3).799-829
    [10]Ranki H. J., Budas G. R., Crawford R. M., Davies A. M., Jovanovic A.17Beta-estradiol regulates expression of KATP channels in heart-derived H9c2 cells. J Am Coll Cardiol.2002.40(2).367-374
    [1 l]Terzic A., Alekseev A. E., Yamada S., Reyes S., Olson T. M. Advances in cardiac ATP-sensitive K+ channelopathies from molecules to populations. Circ Arrhythm Electrophysiol.2011.4(4).577-585
    [12]Das B., Sarkar C. Similarities between ischemic preconditioning and 17beta-estradiol mediated cardiomyocyte KATP channel activation leading to cardioprotective and antiarrhythmic effects during ischemia/reperfusion in the intact rabbit heart. J Cardiovasc Pharmacol.2006.47(2).277-286
    [13]Gross G. J., Peart J. N. KATP channels and myocardial preconditioning:an update. Am J Physiol Heart Circ Physiol.2003.285(3). H921-H930
    [14]Law J. K., Yeung C. K., Yiu K. L., Rudd J. A., Ingebrandt S., Chan M. A study of the relationship between pharmacologic preconditioning and adenosine triphosphate-sensitive potassium (KATP) channels on cultured cardiomyocytes using the microelectrode array. J Cardiovasc Pharmacol.2010.56(1).60-68
    [15]Tang X. Q., Zhuang Y. Y., Fan L. L., Fang H. R., Zhou C. F., Zhang P., Hu B. Involvement of KATP/PI3K/AKT/Bc1-2 pathway in hydrogen sulfide-induced neuroprotection against the toxicity of l-methy-4-phenylpyridinium ion. J Mol Neurosci.2012.46(2).442-449
    [16]Skovgaard N., Gouliaev A., Aalling M., Simonsen U. The role of endogenous H2S in cardiovascular physiology. Curr Pharm Biotechnol.2011.12(9).1385-1393
    [17]Tay A. S., Hu L. F., Lu M., Wong P. T., Bian J. S. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience.2010.167(2).277-286
    [18]Favre J., Gao J., Henry J. P., Remy-Jouet I., Fourquaux I., Billon-Gales A., Thuillez C., Arnal J. F., Lenfant F., Richard V. Endothelial estrogen receptor{alpha} plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/reperfusion. Arterioscler Thromb Vasc Biol.2010. 30(12).2562-2567
    [19]Donaldson C., Eder S., Baker C., Aronovitz M. J., Weiss A. D., Hall-Porter M., Wang F., Ackerman A., Karas R. H., Molkentin J. D., Patten R. D. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res.2009.104(2).265-275, llp-275p
    [20]Pedram A., Razandi M., Lubahn D., Liu J., Vannan M., Levin E. R. Estrogen inhibits cardiac hypertrophy:role of estrogen receptor-beta to inhibit calcineurin. Endocrinology.2008.149(7). 3361-3369
    [21]Pelzer T., Loza P. A., Hu K., Bayer B., Dienesch C., Calvillo L., Couse J. F., Korach K. S., Neyses L., Ertl G. Increased mortality and aggravation of heart failure in estrogen receptor-beta knockout mice after myocardial infarction. Circulation.2005.111(12).1492-1498
    [22]Patten R. D., Pourati I., Aronovitz M. J., Baur J., Celestin F., Chen X., Michael A., Haq S., Nuedling S., Grohe C., Force T., Mendelsohn M. E., Karas R. H.17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res.2004.95(7).692-699
    [23]Ueda K., Karas R. H. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system. Steroids.2012.
    [24]Wang M., Wang Y., Weil B., Abarbanell A., Herrmann J., Tan J., Kelly M., Meldrum D. R. Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol.2009. 296(4). R972-R978
    [1]Appelros P., Stegmayr B., Terent A. Sex differences in stroke epidemiology: a systematic review. Stroke.2009.40(4).1082-1090
    [2]Wang X., Wu J., Li L., Chen F., Wang R., Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res.2003.92(11).1225-1232
    [3]Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc.2008.3(6).1101-1108
    [4]Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001.25(4).402-408
    [5]Kuo J. H., Chen S. J., Shih C. C., Lue W. M., Wu C. C. Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis-induced septic shock. Shock.2009.32(1).74-79
    [6]Nakagawa M., Hori S., Adachi T., Miyazaki K., Inoue S., Suzuki M., Mori H., Nakazawa H., Aikawa N., Ogawa S. Adenosine triphosphate-sensitive potassium channels prevent extension of myocardial ischemia to subepicardium during hemorrhagic shock. Shock.2008.30(2).178-183
    [7]Ross R. L., Serock M. R., Khalil R. A. Experimental benefits of sex hormones on vascular function and the outcome of hormone therapy in cardiovascular disease. Curr Cardiol Rev.2008.4(4).309-322
    [8]Pojoga L. H., Yao T. M., Sinha S., Ross R. L., Lin J. C., Raffetto J. D., Adler G. K., Williams G. H., Khalil R. A. Effect of dietary sodium on vasoconstriction and eNOS-mediated vascular relaxation in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol.2008.294(3). H1258-H1265
    [9]Nichols C. G. KATP channels as molecular sensors of cellular metabolism. Nature.2006. 440(7083).470-476
    [10]Buckley J. F., Singer M., Clapp L. H. Role of KATP channels in sepsis. Cardiovasc Res. 2006.72(2).220-230
    [11]Brayden J. E. Functional roles of KATP channels in vascular smooth muscle. Clin Exp Pharmacol Physiol.2002.29(4).312-316
    [12]Collin S., Sennoun N., Dron A. G., de la Bourdonnaye M., Montemont C., Asfar P., Lacolley P., Meziani F., Levy B. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock. Intensive Care Med.2011.37(5).861-869
    [13]Shi W., Cui N., Wu Z., Yang Y., Zhang S., Gai H., Zhu D., Jiang C. Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-kappaB-dependent signaling. J Biol Chem.2010.285(5). 3021-3029
    [14]Huang W., Acosta-Martinez M., Levine J. E. Ovarian steroids stimulate adenosine triphosphate-sensitive potassium (KATP) channel subunit gene expression and confer responsiveness of the gonadotropin-releasing hormone pulse generator to KATP channel modulation. Endocrinology.2008.149(5).2423-2432
    [15]Ranki H. J., Budas G. R., Crawford R. M., Davies A. M., Jovanovic A. 17Beta-estradiol regulates expression of KATP channels in heart-derived H9c2 cells. J Am Coll Cardiol.2002.40(2).367-374
    [16]Park S. H., Ramachandran S., Kwon S. H., Cha S. D., Seo E. W., Bae I., Cho C., Song D. K. Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol.2008.24(5).250-256
    [1]Liu F., Li Z., Li J., Siegel C., Yuan R., McCullough L. D. Sex differences in caspase activation after stroke. Stroke.2009.40(5).1842-1848
    [2]Appelros P., Stegmayr B., Terent A. Sex differences in stroke epidemiology:a systematic review. Stroke.2009.40(4).1082-1090
    [3]Singh M., Sumien N., Kyser C., Simpkins J. W. Estrogens and progesterone as neuroprotectants: what animal models teach us. Front Biosci.2008.13.1083-1089
    [4]Strom J. O., Theodorsson A., Theodorsson E. Dose-related neuroprotective versus neurodamaging effects of estrogens in rat cerebral ischemia:a systematic analysis. J Cereb Blood Flow Metab.2009. 29(8).1359-1372
    [5]Rusa R., Alkayed N. J., Crain B. J., Traystman R. J., Kimes A. S., London E. D., Klaus J. A., Hum P. D.17beta-estradiol reduces stroke injury in estrogen-deficient female animals. Stroke.1999.30(8). 1665-1670
    [6]Galanopoulou A. S., Alm E. M., Veliskova J. Estradiol reduces seizure-induced hippocampal injury in ovariectomized female but not in male rats. Neurosci Lett.2003.342(3).201-205
    [7]Saleh T. M., Cribb A. E., Connell B. J. Estrogen-induced recovery of autonomic function after middle cerebral artery occlusion in male rats. Am J Physiol Regul Integr Comp Physiol.2001.281(5). R1531-R1539
    [8]Jover-Mengual T., Zukin R. S., Etgen A. M. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology.2007.148(3).1131-1143
    [9]Dubal D. B., Shughrue P. J., Wilson M. E., Merchenthaler I., Wise P. M. Estradiol modulates bcl-2 in cerebral ischemia:a potential role for estrogen receptors. J Neurosci.1999.19(15).6385-6393
    [10]Nichols C. G. KATP channels as molecular sensors of cellular metabolism. Nature.2006.440(7083). 470-476
    [11]Rodrigo G. C., Standen N. B. ATP-sensitive potassium channels. Curr Pharm Des.2005.11(15). 1915-1940
    [12]Ballanyi K. Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol.2004.207(Pt 18).3201-3212
    [13]Schultz J. E., Qian Y. Z., Gross G. J., Kukreja R. C. The ischemia-selective KATP channel antagonist, 5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart. J Mol Cell Cardiol.1997.29(3). 1055-1060
    [14]Grover G. J. Pharmacology of ATP-sensitive potassium channel (KATP) openers in models of myocardial ischemia and reperfusion. Can J Physiol Pharmacol.1997.75(4).309-315
    [15]Mei D. A., Nithipatikom K., Lasley R. D., Gross G. J. Myocardial preconditioning produced by ischemia, hypoxia, and a KATP channel opener:effects on interstitial adenosine in dogs. J Mol Cell Cardiol.1998.30(6).1225-1236
    [16]Kehl F., Payne R. S., Roewer N., Schurr A. Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res.2004.1021(1).76-81
    [17]Bantel C., Maze M., Trapp S. Neuronal preconditioning by inhalational anesthetics:evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology.2009. 110(5).986-995
    [18]Sepac A., Sedlic F., Si-Tayeb K., Lough J., Duncan S. A., Bienengraeber M., Park F., Kim J., Bosnjak Z. J. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology.2010. 113(4).906-916
    [19]Law J. K., Yeung C. K., Yiu K. L., Rudd J. A., Ingebrandt S., Chan M. A study of the relationship between pharmacologic preconditioning and adenosine triphosphate-sensitive potassium (KATP) channels on cultured cardiomyocytes using the microelectrode array. J Cardiovasc Pharmacol.2010.56(1).60-68
    [20]Tay A. S., Hu L. F., Lu M., Wong P. T., Bian J. S. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience.2010.167(2).277-286
    [21]Tsai C. H., Su S. F., Chou T. F., Lee T. M. Differential effects of sarcolemmal and mitochondrial KATP channels activated by 17 beta-estradiol on reperfusion arrhythmias and infarct sizes in canine hearts. J Pharmacol Exp Ther.2002.301(1).234-240
    [22]Uematsu K., Katayama T., Katayama H., Hiratsuka M., Kiyomura M., Ito M. Nitric oxide production and blood corpuscle dynamics in response to the endocrine status of female rats. Thromb Res. 2010.126(6).504-510
    [23]Ranki H. J., Budas G. R., Crawford R. M., Davies A. M., Jovanovic A.17Beta-estradiol regulates expression of KATP channels in heart-derived H9c2 cells. J Am Coll Cardiol.2002.40(2).367-374
    [24]Thomzig A., Laube G., Pruss H., Veh R. W. Pore-forming subunits of KATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol. 2005.484(3).313-330
    [25]Zhou M., Tanaka O., Suzuki M., Sekiguchi M., Takata K., Kawahara K., Abe H. Localization of pore-forming subunit of the ATP-sensitive K+channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res.2002.101(1-2).23-32
    [26]张登文,徐林,张传汉,韩爱迪,姚文龙,王学仁.雌激素通过KATP通道影响大鼠肠系膜动脉的反应性.中国病理生理杂志.2012.28(7).1176-1180
    [27]Huang W., Acosta-Martinez M., Levine J. E. Ovarian steroids stimulate adenosine triphosphate-sensitive potassium (KATP) channel subunit gene expression and confer responsiveness of the gonadotropin-releasing hormone pulse generator to KATP channel modulation. Endocrinology.2008. 149(5).2423-2432
    [28]Ranki H. J., Budas G. R., Crawford R. M., Jovanovic A. Gender-specific difference in cardiac ATP-sensitive K+channels. J Am Coll Cardiol.2001.38(3).906-915
    [29]Park S. H., Ramachandran S., Kwon S. H., Cha S. D., Seo E. W., Bae I., Cho C., Song D. K. Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol.2008.24(5).250-256
    [30]Brann D. W., Dhandapani K., Wakade C., Mahesh V. B., Khan M. M. Neurotrophic and neuroprotective actions of estrogen:basic mechanisms and clinical implications. Steroids.2007.72(5). 381-405
    [31]Hojo Y., Hattori T. A., Enami T., Furukawa A., Suzuki K., Ishii H. T., Mukai H., Morrison J. H., Janssen W. G., Kominami S., Harada N., Kimoto T., Kawato S. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A.2004.101(3).865-870
    [32]Brann D., Raz L., Wang R., Vadlamudi R., Zhang Q. Oestrogen signalling and neuroprotection in cerebral ischaemia. J Neuroendocrinol.2012.24(1).34-47
    [33]Brann D. W., Mahesh V. B. The aging reproductive neuroendocrine axis. Steroids.2005.70(4). 273-283
    [34]Liao S., Chen W., Kuo J., Chen C. Association of serum estrogen level and ischemic neuroprotection in female rats. Neurosci Lett.2001.297(3).159-162 [35] Sawada M., Alkayed N. J., Goto S., Crain B. J., Traystman R. J., Shaivitz A., Nelson R. J., Hum P. D. Estrogen receptor antagonist ICI182,780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab.2000.20(1).112-118
    [36]Niewada M., Kobayashi A., Sandercock P. A., Kaminski B., Czlonkowska A. Influence of gender on baseline features and clinical outcomes among 17,370 patients with confirmed ischaemic stroke in the international stroke trial. Neuroepidemiology.2005.24(3).123-128
    [37]Roquer J., Campello A. R., Gomis M. Sex differences in first-ever acute stroke. Stroke.2003.34(7). 1581-1585
    [38]Turtzo L. C., McCullough L. D. Sex differences in stroke. Cerebrovasc Dis.2008.26(5).462-474
    [39]Prossnitz E. R., Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol.2011.7(12).715-726
    [40]Deroo B. J., Korach K. S. Estrogen receptors and human disease. J Clin Invest.2006.116(3). 561-570
    [41]Solum D. T., Handa R. J. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci.2002.22(7).2650-2659
    [42]Barouk S., Hintz T., Li P., Duffy A. M., Maclusky N. J., Scharfman H. E.17{beta}-Estradiol Increases Astrocytic Vascular Endothelial Growth Factor (VEGF) in Adult Female Rat Hippocampus. Endocrinology.2011.
    [43]Dubal D. B., Shughrue P. J., Wilson M. E., Merchenthaler I., Wise P. M. Estradiol modulates bcl-2 in cerebral ischemia:a potential role for estrogen receptors. J Neurosci.1999.19(15).6385-6393
    [44]Shao B., Cheng Y., Jin K. Estrogen, neuroprotection and neurogenesis after ischemic stroke. Curr Drug Targets.2012.13(2).188-198
    [45]Hou Y., Wei H., Luo Y., Liu G. Modulating expression of brain heat shock proteins by estrogen in ovariectomized mice model of aging. Exp Gerontol.2010.45(5).323-330
    [46]Yang L. C., Zhang Q. G., Zhou C. F., Yang F., Zhang Y. D., Wang R. M., Brann D. W. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One.2010.5(5). e9851
    [47]Zhang C., Kelly M. J., Ronnekleiv O. K.17Beta-estradiol rapidly increases KATP activity in GnRH via a protein kinase signaling pathway. Endocrinology.2010.151(9).4477-4484
    [48]Soriano S., Ropero A. B., Alonso-Magdalena P., Ripoll C., Quesada I., Gassner B., Kuhn M., Gustafsson J. A., Nadal A. Rapid regulation of KATP channel activity by 17{beta}-estradiol in pancreatic {beta}-cells involves the estrogen receptor {beta} and the atrial natriuretic peptide receptor. Mol Endocrinol.2009.23(12).1973-1982
    [1]Noma A. ATP-regulated K+channels in cardiac muscle. Nature.1983.305(5930).147-148
    [2]Yokoshiki H., Sunagawa M., Seki T., Sperelakis N. ATP-sensitive K+channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol.1998.274(1 Pt 1). C25-C37
    [3]Rodrigo G. C., Standen N. B. ATP-sensitive potassium channels. Curr Pharm Des.2005.11(15). 1915-1940
    [4]Nichols C. G. KATP channels as molecular sensors of cellular metabolism. Nature.2006.440(7083). 470-476
    [5]Ashcroft F. M., Gribble F. M. Correlating structure and function in ATP-sensitive K+channels. Trends Neurosci.1998.21(7).288-294
    [6]Proks P., Ashcroft F. M. Modeling KATP channel gating and its regulation. Prog Biophys Mol Biol. 2009.99(1).7-19
    [7]Aguilar-Bryan L., Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev.1999.20(2).101-135
    [8]Hansen A. M., Hansen J. B., Carr R. D., Ashcroft F. M., Wahl P. Kir6.2-dependent high-affinity repaglinide binding to beta-cell KATP channels. Br J Pharmacol.2005.144(4).551-557
    [9]Shimomura K. The KATP channel and neonatal diabetes. Endocr J.2009.56(2).165-175
    [10]Seino S., Miki T. Physiological and pathophysiological roles of ATP-sensitive K+channels. Prog Biophys Mol Biol.2003.81(2).133-176
    [11]Seino S., Miki T. Physiological and pathophysiological roles of ATP-sensitive K+channels. Prog Biophys Mol Biol.2003.81(2).133-176
    [12]Nichols C. G. KATP channels as molecular sensors of cellular metabolism. Nature.2006.440(7083). 470-476
    [13]Mannikko R., Flanagan S. E., Sim X., Segal D., Hussain K., Ellard S., Hattersley A. T., Ashcroft F. M. Mutations of the same conserved glutamate residue in NBD2 of the sulfonylurea receptor 1 subunit of the KATP channel can result in either hyperinsulinism or neonatal diabetes. Diabetes.2011.60(6). 1813-1822
    [14]Gromada J., Franklin I., Wollheim C. B. Alpha-cells of the endocrine pancreas:35 years of research but the enigma remains. Endocr Rev.2007.28(1).84-116
    [15]Haider S., Tarasov A. I., Craig T. J., Sansom M. S., Ashcroft F. M. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J.2007.26(16). 3749-3759
    [16]Shumilina E., Klocker N., Korniychuk G., Rapedius M., Lang F., Baukrowitz T. Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels. J Physiol. 2006.575(Pt 2).433-442
    [17]Isomoto S., Kondo C., Yamada M., Matsumoto S., Higashiguchi O., Horio Y., Matsuzawa Y., Kurachi Y. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+channel. J Biol Chem.1996.271(40).24321-24324
    [18]Yamada M., Isomoto S., Matsumoto S., Kondo C., Shindo T., Horio Y., Kurachi Y. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+channel. J Physiol.1997. 499 (Pt 3).715-720
    [19]Ko E. A., Han J., Jung I. D., Park W. S. Physiological roles of K+channels in vascular smooth muscle cells. J Smooth Muscle Res.2008.44(2).65-81
    [20]Buckley J. F., Singer M., Clapp L. H. Role of KATP channels in sepsis. Cardiovasc Res.2006.72(2). 220-230
    [21]Brayden J. E. Functional roles of KATP channels in vascular smooth muscle. Clin Exp Pharmacol Physiol.2002.29(4).312-316
    [22]Yamazaki F., Chi H., Eguchi S., Kawano T. Activation of ATP-sensitive potassium channels by nicorandil is preserved in aged vascular smooth muscle cells in rats. J Anesth.2013.
    [23]Gurpinar T., Gok S. Vasodilator effects of cromakalim and HA 1077 in diabetic rat aorta. Swiss Med Wkly.2012.142. wl3558
    [24]Nelson M. T., Huang Y., Brayden J. E., Hescheler J., Standen N. B. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+channels. Nature.1990.344(6268).770-773
    [25]Miyoshi H., Nakaya Y. Calcitonin gene-related peptide activates the K+channels of vascular smooth muscle cells via adenylate cyclase. Basic Res Cardiol.1995.90(4).332-336
    [26]Quayle J. M., Bonev A. D., Brayden J. E., Nelson M. T. Calcitonin gene-related peptide activated ATP-sensitive K+currents in rabbit arterial smooth muscle via protein kinase A. J Physiol.1994.475(1). 9-13
    [27]Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+channels in arterial smooth muscle. Science.1989.245(4914). 177-180
    [28]Belloni F. L., Hintze T. H. Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilatation. Am J Physiol.1991.261(3 Pt 2). H720-H727
    [29]Merkel L. A., Lappe R. W., Rivera L. M., Cox B. F., Perrone M. H. Demonstration of vasorelaxant activity with an A1-selective adenosine agonist in porcine coronary artery:involvement of potassium channels. J Pharmacol Exp Ther.1992.260(2).437-443
    [30]Daut J., Maier-Rudolph W., von Beckerath N., Mehrke G., Gunther K., Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science.1990.247(4948). 1341-1344
    [31]Kleppisch T., Nelson M. T. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A.1995. 92(26).12441-12445
    [32]Brayden J. E. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol.1990.259(3 Pt 2). H668-H673
    [33]Murphy M. E., Brayden J. E. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol.1995.486 (Pt 1).47-58
    [34]Katakam P. V., Wappler E. A., Katz P. S., Rutkai I., Institoris A., Domoki F., Gaspar T., Grovenburg S. M., Snipes J. A., Busija D. W. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vase Biol.2013.33(4).752-759
    [35]Wang Y., Han Y., Yang J., Wang Z., Liu L., Wang W., Zhou L., Wang D., Tan X., Fu C., Jose P. A., Zeng C. Relaxant effect of all-trans-retinoic acid via NO-sGC-cGMP pathway and calcium-activated potassium channels in rat mesenteric artery. Am J Physiol Heart Circ Physiol.2013.304(1). H51-H57
    [36]Miyoshi Y., Nakaya Y. Angiotensin II blocks ATP-sensitive K+channels in porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun.1991.181(2).700-706
    [37]Miyoshi Y., Nakaya Y., Wakatsuki T., Nakaya S., Fujino K., Saito K., Inoue I. Endothelin blocks ATP-sensitive K+channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res. 1992.70(3).612-616
    [38]Wakatsuki T., Nakaya Y., Inoue I. Vasopressin modulates K+-channel activities of cultured smooth muscle cells from porcine coronary artery. Am J Physiol.1992.263(2 Pt 2). H491-H496
    [39]Wang X., Wu J., Li L., Chen F., Wang R., Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res.2003.92(11).1225-1232
    [40]Lange M., Morelli A., Ertmer C., Broking K., Rehberg S., Van Aken H., Traber D. L., Westphal M. Role of adenosine triphosphate-sensitive potassium channel inhibition in shock states:physiology and clinical implications. Shock.2007.28(4).394-400
    [41]Shi W., Cui N., Wu Z., Yang Y., Zhang S., Gai H., Zhu D., Jiang C. Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-kappaB-dependent signaling. J Biol Chem.2010.285(5).3021-3029
    [42]张登文,徐林,张传汉,韩爱迪,姚文龙,王学仁.雌激素通过KATP通道影响大鼠肠系膜动脉的反应性.中国病理生理杂志.2012.28(7).1176-1180
    [43]Blanco-Rivero J., Gamallo C., Aras-Lopez R., Cobeno L., Cogolludo A., Perez-Vizcaino F., Ferrer M., Balfagon G. Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of KATp channels. Eur J Pharmacol.2008.587(1-3).204-208
    [44]Pan Z.s Huang J., Cui W., Long C., Zhang Y., Wang H. Targeting hypertension with a new adenosine triphosphate-sensitive potassium channel opener iptakalim. J Cardiovasc Pharmacol.2010. 56(3).215-228
    [45]Ranki H. J., Budas G. R., Crawford R. M., Davies A. M., Jovanovic A.17Beta-estradiol regulates expression of KATP channels in heart-derived H9c2 cells. J Am Coll Cardiol.2002.40(2).367-374
    [46]Ranki H. J., Budas G. R., Crawford R. M., Jovanovic A. Gender-specific difference in cardiac ATP-sensitive K+channels. J Am Coll Cardiol.2001.38(3).906-915
    [47]Terzic A., Alekseev A. E., Yamada S., Reyes S., Olson T. M. Advances in cardiac ATP-sensitive K+channelopathies from molecules to populations. Circ Arrhythm Electrophysiol.2011.4(4).577-585
    [48]Niwano S., Hirasawa S., Niwano H., Sasaki S., Masuda R., Sato K., Masuda T., Izumi T. Cardioprotective effects of sarcolemmal and mitochondrial KATP channel openers in an experimental model of autoimmune myocarditis. Role of the reduction in calcium overload during acute heart failure. Int Heart J.2012.53(2).139-145
    [49]Calderone V., Testai L., Martelli A., Rapposelli S., Digiacomo M., Balsamo A., Breschi M. C. Anti-ischemic properties of a new spiro-cyclic benzopyran activator of the cardiac mito-KATP channel. Biochem Pharmacol.2010.79(1).39-47
    [50]Schultz J. E., Qian Y. Z., Gross G. J., Kukreja R. C. The ischemia-selective KATP channel antagonist, 5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart. J Mol Cell Cardiol.1997.29(3). 1055-1060
    [51]Gogelein H., Ruetten H., Albus U., Englert H. C., Busch A. E. Effects of the cardioselective KATP channel blocker HMR 1098 on cardiac function in isolated perfused working rat hearts and in anesthetized rats during ischemia and reperfusion. Naunyn Schmiedebergs Arch Pharmacol.2001. 364(1).33-41
    [52]Gross G. J. The role of mitochondrial KATP channels in the antiarrhythmic effects of ischaemic preconditioning in dogs. Br J Pharmacol.2002.137(7).939-940
    [53]Muravyeva M., Sedlic F., Dolan N., Bosnjak Z. J., Stadnicka A. Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes. J Cardiovasc Pharmacol.2013.
    [54]Kamada N., Kanaya N., Hirata N., Kimura S., Namiki A. Cardioprotective effects of propofol in isolated ischemia-reperfused guinea pig hearts:role of KATP channels and GSK-3beta. Can J Anaesth. 2008.55(9).595-605
    [55]Tay A. S., Hu L. F., Lu M., Wong P. T., Bian J. S. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience.2010.167(2).277-286
    [56]Das B., Sarkar C. Similarities between ischemic preconditioning and 17beta-estradiol mediated cardiomyocyte KATP channel activation leading to cardioprotective and antiarrhythmic effects during ischemia/reperfusion in the intact rabbit heart. J Cardiovasc Pharmacol.2006.47(2).277-286
    [57]Gross G. J., Fryer R. M. Sarcolemmal versus mitochondrial ATP-sensitive K+channels and myocardial preconditioning. Circ Res.1999.84(9).973-979
    [58]Zhang H. X., Akrouh A., Kurata H. T., Remedi M. S., Lawton J. S., Nichols C. G. HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal KATP channels. J Mol Cell Cardiol. 2011.50(3).552-560
    [59]Baczko I., Husti Z., Lang V., Lepran I., Light P. E. Sarcolemmal KATP channel modulators and cardiac arrhythmias. Curr Med Chem.2011.18(24).3640-3661
    [60]Billman G. E. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy. Pharmacol Ther.2008.120(1).54-70
    [61]Kim S. J., Zhang H., Khaliulin I., Choisy S. C., Bond R., Lin H., El Haou S., Milnes J. T., Hancox J. C, Suleiman M. S., James A. F. Activation of glibenclamide-sensitive ATP-sensitive K+channels during beta-adrenergically induced metabolic stress produces a substrate for atrial tachyarrhythmia. Circ Arrhythm Electrophysiol.2012.5(6).1184-1192
    [62]Pandit S. V., Kaur K., Zlochiver S., Noujaim S. F., Furspan P., Mironov S., Shibayama J., Anumonwo J., Jalife J. Left-to-right ventricular differences in IKATP underlie epicardial repolarization gradient during global ischemia. Heart Rhythm.2011.8(11).1732-1739
    [63]Billman G. E., Houle M. S., Englert H. C., Gogelein H. Effects of a novel cardioselective ATP-sensitive potassium channel antagonist, l-[[5-[2-(5-chloro-o-anisamido)ethyl]-beta-methoxyethoxyphenyl]sulfonyl]-3-methyl thiourea, sodium salt (HMR 1402), on susceptibility to ventricular fibrillation induced by myocardial ischemia:in vitro and in vivo studies. J Pharmacol Exp Ther.2004.309(1).182-192
    [64]Holmes D. S., Sun Z. Q., Porter L. M., Bernstein N. E., Chinitz L. A., Artman M., Coetzee W. A. Amiodarone inhibits cardiac ATP-sensitive potassium channels. J Cardiovasc Electrophysiol.2000. 11(10).1152-1158
    [65]Olschewski A., Brau M. E., Olschewski H., Hempelmann G., Vogel W. ATP-dependent potassium channel in rat cardiomyocytes is blocked by lidocaine. Possible impact on the antiarrhythmic action of lidocaine. Circulation.1996.93(4).656-659
    [66]Colatsky T. J., Follmer C. H., Starmer C. F. Channel specificity in antiarrhythmic drug action. Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation.1990.82(6).2235-2242
    [67]Zhou M., Tanaka O., Suzuki M., Sekiguchi M., Takata K., Kawahara K., Abe H. Localization of pore-forming subunit of the ATP-sensitive K+-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res.2002.101(1-2).23-32
    [68]Thomzig A., Wenzel M., Karschin C., Eaton M. J., Skatchkov S. N., Karschin A., Veh R. W. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane KATP channels. Mol Cell Neurosci.2001.18(6).671-690
    [69]Sun X. L., Hu G. ATP-sensitive potassium channels:a promising target for protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol.2010.37(2).243-252
    [70]Yamada K., Inagaki N. Neuroprotection by KATP channels. J Mol Cell Cardiol.2005.38(6). 945-949
    [71]Marcoli M., Bonfanti A., Roccatagliata P., Chiaramonte G., Ongini E., Raiteri M., Maura G. Glutamate efflux from human cerebrocortical slices during ischemia:vesicular-like mode of glutamate release and sensitivity to A(2A) adenosine receptor blockade. Neuropharmacology.2004.47(6).884-891
    [72]Erdo F., Berzsenyi P., Andrasi F. The AMPA-antagonist talampanel is neuroprotective in rodent models of focal cerebral ischemia. Brain Res Bull.2005.66(1).43-49
    [73]Maslov L. N., Khaliulin I. G., Podoksenov IuK. Neuroprotective and cardioprotective effects of hypothermic preconditioning. Patol Fiziol Eksp Ter.2012. (1).67-72
    [74]Watts A. E., Hicks G. A., Henderson G. Putative pre-and postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J Neurosci.1995.15(4).3065-3074
    [75]Ortega F. J., Jolkkonen J., Mahy N., Rodriguez M. J. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J Cereb Blood Flow Metab.2013.33(3).356-364
    [76]Yamada K., Inagaki N. Neuroprotection by KATP channels. J Mol Cell Cardiol.2005.38(6). 945-949
    [77]Zhang D., Xia H., Xu L., Zhang C., Yao W., Wang Y., Ren J., Wu J., Tian Y., Liu W., Wang X. Neuroprotective effects of 17beta-estradiol associate with KATP in rat brain. Neuroreport.2012.23(16). 952-957
    [78]Feng Y., He X., Yang Y., Chao D., Lazarus L. H., Xia Y. Current research on opioid receptor function. Curr Drug Targets.2012.13(2).230-246
    [79]Li X., Luo P., Wang Q., Xiong L. Electroacupuncture Pretreatment as a Novel Avenue to Protect Brain against Ischemia and Reperfusion Injury. Evid Based Complement Alternat Med.2012.2012. 195397
    [80]Hu S., Dong H., Zhang H., Wang S., Hou L., Chen S., Zhang J., Xiong L. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine Al receptor and redox status after transient focal cerebral ischemia in rats. Brain Res.2012.1459.81-90
    [81]Zeng Y., Xie K., Dong H., Zhang H., Wang F., Li Y., Xiong L. Hyperbaric oxygen preconditioning protects cortical neurons against oxygen-glucose deprivation injury:role of peroxisome proliferator-activated receptor-gamma. Brain Res.2012.1452.140-150
    [82]Alkan T. Neuroproctective effects of ischemic tolerance (preconditioning) and postconditioning. Turk Neurosurg.2009.19(4).406-412
    [83]Bantel C., Maze M., Trapp S. Neuronal preconditioning by inhalational anesthetics:evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology.2009. 110(5).986-995
    [84]Liu D., Lu C., Wan R., Auyeung W. W., Mattson M. P. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab.2002. 22(4).431-443
    [85]Gaspar T., Snipes J. A., Busija A. R., Kis B., Domoki F., Bari F., Busija D. W. ROS-independent preconditioning in neurons via activation of mitoKATP channels by BMS-191095. J Cereb Blood Flow Metab.2008.28(6).1090-1103
    [86]Mayanagi K., Gaspar T., Katakam P. V., Kis B., Busija D. W. The mitochondrial KATP channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab.2007.27(2).348-355
    [87]Lu M., Zhao F. F., Tang J. J., Su C. J., Fan Y., Ding J. H., Bian J. S., Hu G. The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid Redox Signal.2012.17(6).849-859
    [88]Mayanagi K., Gaspar T., Katakam P. V., Kis B., Busija D. W. The mitochondrial KATP channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab.2007.27(2).348-355
    [89]Koehler R. C., Gebremedhin D., Harder D. R. Role of astrocytes in cerebrovascular regulation. J Appl Physiol.2006.100(1).307-317
    [90]Nakase T., Fushiki S., Sohl G., Theis M., Willecke K., Naus C. C. Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun Adhes.2003.10(4-6).413-417
    [91]Sun X. L., Zeng X. N., Zhou F., Dai C. P., Ding J. H., Hu G. KATP channel openers facilitate glutamate uptake by GluTs in rat primary cultured astrocytes. Neuropsychopharmacology.2008.33(6). 1336-1342
    [92]Liu B., Hong J. S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther.2003.304(1).1-7
    [93]Persson A., Osman A., Bolouri H., Mallard C., Kuhn H. G. Radixin expression in microglia after cortical stroke lesion. Glia.2013.61(5).790-799
    [94]Block M. L., Hong J. S. Microglia and inflammation-mediated neurodegeneration:multiple triggers with a common mechanism. Prog Neurobiol.2005.76(2).77-98
    [95]Zhou F., Wu J. Y., Sun X. L., Yao H. H., Ding J. H., Hu G. Iptakalim alleviates rotenone-induced degeneration of dopaminergic neurons through inhibiting microglia-mediated neuroinflammation. Neuropsychopharmacology.2007.32(12).2570-2580
    [96]Zhou F., Yao H. H., Wu J. Y., Ding J. H., Sun T., Hu G. Opening of microglial KATP channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med.2008.12(5A).1559-1570
    [97]Morrison H. W., Filosa J. A. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation.2013.10.4
    [98]Huang Y. C., Feng Z. P. The good and bad of microglia/macrophages:new hope in stroke therapeutics. Acta Pharmacol Sin.2013.34(1).6-7
    [99]Ortega F. J., Gimeno-Bayon J., Espinosa-Parrilla J. F., Carrasco J. L., Batlle M., Pugliese M., Mahy N., Rodriguez M. J. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neural.2012.235(1).282-296
    [100]Liss B., Haeckel O., Wildmann J., Miki T., Seino S., Roeper J. KATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci.2005.8(12).1742-1751
    [101]Wang S., Hu L. F., Yang Y., Ding J. H., Hu G. Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson's disease:implications for treating Parkinson's disease? Neuropharmacology.2005.48(7).984-992
    [102]Schiemann J., Schlaudraff F., Klose V., Bingmer M., Seino S., Magill P. J., Zaghloul K. A., Schneider G., Liss B., Roeper J. KATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci.2012.15(9).1272-1280
    [103]Wang Y., Yang P. L., Tang J. F., Lin J. F., Cai X. H., Wang X. T., Zheng G. Q. Potassium channels:possible new therapeutic targets in Parkinson's disease. Med Hypotheses.2008.71(4).546-550
    [104]Salthun-Lassalle B., Hirsch E. C., Wolfart J., Ruberg M., Michel P. P. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci.2004.24(26).5922-5930
    [105]Giustizieri M., Cucchiaroni M. L., Guatteo E., Bernardi G., Mercuri N. B., Berretta N. Memantine inhibits ATP-dependent K+conductances in dopamine neurons of the rat substantia nigra pars compacta. J Pharmacol Exp Ther.2007.322(2).721-729
    [106]Wu C., Yang K., Liu Q., Wakui M., Jin G. Z., Zhen X., Wu J. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology.2010.59(7-8).567-572
    [107]Yamada K., Ji J. J., Yuan H., Miki T., Sato S., Horimoto N., Shimizu T., Seino S., Inagaki N. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science. 2001.292(5521).1543-1546
    [108]Munoz A., Nakazaki M., Goodman J. C., Barrios R., Onetti C. G., Bryan J., Aguilar-Bryan L. Ischemic preconditioning in the hippocampus of a knockout mouse lacking SURl-based KATP channels. Stroke.2003.34(1).164-170
    [109]吴焕兵,王学仁.离子通道与神经病理性疼痛.国际麻醉学与复苏杂志.2010.31(4).356-359
    [110]Ortiz M. I., Castaneda-Hernandez G., Izquierdo-Vega J. A., Sanchez-Gutierrez M., Ponce-Monter H. A., Granados-Soto V. Role of ATP-sensitive K+channels in the antinociception induced by non-steroidal anti-inflammatory drugs in streptozotocin-diabetic and non-diabetic rats. Pharmacol Biochem Behav.2012.102(1).163-169
    [111]Mizokami S. S., Arakawa N. S., Ambrosio S. R., Zarpelon A. C., Casagrande R., Cunha T. M., Ferreira S. H., Cunha F. Q., Verri WA Jr. Kaurenoic acid from Sphagneticola trilobata Inhibits Inflammatory Pain:effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod.2012.75(5).896-904
    [112]Lima F.O., Souza G. R., Verri WA Jr, Parada C. A., Ferreira S. H., Cunha F. Q., Cunha T. M. Direct blockade of inflammatory hypernociception by peripheral Al adenosine receptors:Involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain.2010.
    [113]Negrete R., Hervera A., Leanez S., Martin-Campos J. M., Pol O. The antinociceptive effects of JWH-015 in chronic inflammatory pain are produced by nitric oxide-cGMP-PKG-KATP pathway activation mediated by opioids. PLoS One.2011.6(10). e26688
    [114]Perimal E. K., Akhtar M. N., Mohamad A. S., Khalid M. H., Ming O. H., Khalid S., Tatt L. M., Kamaldin M. N., Zakaria Z. A., Israf D. A., Lajis N., Sulaiman M. R. Zerumbone-induced antinociception:involvement of the L-arginine-nitric oxide-cGMP-PKC-KATP channel pathways. Basic Clin Pharmacol Toxicol.2011.108(3).155-162
    [115]Quock L. P., Zhang Y., Chung E., Ohgami Y., Shirachi D. Y., Quock R. M. The acute antinociceptive effect of HBO2 is mediated by a NO-cyclic GMP-PKG-KATP channel pathway in mice. Brain Res.2011.1368.102-107
    [116]Sachs D., Cunha F. Q., Ferreira S. H. Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+channel pathway. Proc Natl Acad Sci USA.2004.101(10).3680-3685
    [117]Barbosa A. L., Pinheiro C. A., Oliveira G. J., Torres J. N., Moraes M. O., Ribeiro R. A., Vale M. L., Souza M. H. Participation of the NO/cGMP/KATP pathway in the antinociception induced by Walker tumor bearing in rats. Braz J Med Biol Res.2012.45(6).531-536
    [118]Cunha T. M., Roman-Campos D., Lotufo C. M., Duarte H. L., Souza G. R., Verri WA Jr, Funez M. I., Dias Q. M., Schivo I. R., Domingues A. C., Sachs D., Chiavegatto S., Teixeira M. M., Hothersall J. S., Cruz J. S., Cunha F. Q., Ferreira S. H. Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci U S A.2010.107(9). 4442-4447
    [119]Distrutti E., Cipriani S., Renga B., Mencarelli A., Migliorati M., Cianetti S., Fiorucci S. Hydrogen sulphide induces micro opioid receptor-dependent analgesia in a rodent model of visceral pain. Mol Pain. 2010.6.36
    [120]吴焕兵,张登文,夏辉,赵邦娥,王学仁.坐骨神经慢性压迫性损伤大鼠相应脊髓背角神经元KATP通道表达的变化.华中科技大学学报(医学版).2011.40(4).400-403
    [121]吴焕兵,赵邦娥,张登文,夏辉,田学愎,王学仁.开胸术后慢性疼痛模型大鼠相应脊髓背角神经元KATP通道表达的变化.中华麻醉学杂志.2011.31(6).699-701
    [122]赵邦娥,张登文,夏辉,吴焕兵,田学愎,田玉科,王学仁.ATP敏感性钾离子通道对开胸术后大鼠痛觉过敏的影响.中华麻醉学杂志.2012.11(32).1304-1306
    [123]Gutierrez V. P., Zambelli V. O., Picolo G., Chacur M., Sampaio S. C., Brigatte P., Konno K., Cury Y. The peripheral L-arginine-nitric oxide-cyclic GMP pathway and ATP-sensitive K+channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav Pharmacol.2012. 23(1).14-24
    [124]Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature.1984.312(5993).446-448
    [125]McTaggart J. S., Clark R. H., Ashcroft F. M. The role of the KATP channel in glucose homeostasis in health and disease:more than meets the islet. J Physiol.2010.588(Pt 17).3201-3209
    [126]Remedi M. S., Koster J. C. KATP channelopathies in the pancreas. Pflugers Arch.2010.460(2). 307-320
    [127]Henquin J. C. Regulation of insulin secretion:a matter of phase control and amplitude modulation. Diabetologia.2009.52(5).739-751
    [128]Rodriguez E., Pulido N., Romero R., Arrieta F., Panadero A., Rovira A. Phosphatidylinositol 3-kinase activation is required for sulfonylurea stimulation of glucose transport in rat skeletal muscle. Endocrinology.2004.145(2).679-685
    [129]Chutkow W. A., Samuel V., Hansen P. A., Pu J., Valdivia C. R., Makielski J. C., Burant C. F. Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci U S A.2001.98(20).11760-11764
    [130]Wang P. H., Moller D., Flier J. S., Nayak R. C., Smith R. J. Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 rat skeletal muscle cells. J Clin Invest.1989.84(1).62-67
    [131]Miki T., Minami K., Zhang L., Morita M., Gonoi T., Shiuchi T., Minokoshi Y., Renaud J. M., Seino S. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab.2002.283(6). E1178-E1184
    [132]Minami K., Morita M., Saraya A., Yano H., Terauchi Y., Miki T., Kuriyama T., Kadowaki T., Seino S. ATP-sensitive K+channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. Am J Physiol Endocrinol Metab.2003.285(6). E1289-E1296
    [133]Miki T., Seino S. Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol.2005.38(6).917-925
    [134]Pocai A., Obici S., Schwartz G. J., Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab.2005.1(1).53-61
    [135]Pocai A., Lam T. K., Gutierrez-Juarez R., Obici S., Schwartz G. J., Bryan J., Aguilar-Bryan L., Rossetti L. Hypothalamic KATP channels control hepatic glucose production. Nature.2005.434(7036). 1026-1031
    [136]Obici S., Feng Z., Morgan K., Stein D., Karkanias G., Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes.2002.51(2).271-275
    [137]Lam T. K., Pocai A., Gutierrez-Juarez R., Obici S., Bryan J., Aguilar-Bryan L., Schwartz G. J., Rossetti L. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005.11(3).320-327
    [138]Quan Y., Barszczyk A., Feng Z. P., Sun H. S. Current understanding of KATP channels in neonatal diseases:focus on insulin secretion disorders. Acta Pharmacol Sin.2011.32(6).765-780
    [139]Bennett K., James C., Hussain K. Pancreatic beta-cell KATP channels:Hypoglycaemia and hyperglycaemia. Rev Endocr Metab Disord.2010.11(3).157-163
    [140]McCrimmon R. J., Evans M. L., Fan X., McNay E. C., Chan O., Ding Y., Zhu W., Gram D. X., Sherwin R. S. Activation of ATP-sensitive K+channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes.2005.54(11).3169-3174
    [141]Plum L., Ma X., Hampel B., Balthasar N., Coppari R., Munzberg H., Shanabrough M., Burdakov D., Rother E., Janoschek R., Alber J., Belgardt B. F., Koch L., Seibler J., Schwenk F., Fekete C., Suzuki A., Mak T. W., Krone W., Horvath T. L., Ashcroft F. M., Bruning J. C. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest.2006. 116(7).1886-1901
    [142]Parton L. E., Ye C. P., Coppari R., Enriori P. J., Choi B., Zhang C. Y., Xu C., Vianna C. R., Balthasar N., Lee C. E., Elmquist J. K., Cowley M. A., Lowell B. B. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature.2007.449(7159).228-232
    [143]De Leon D. D., Stanley C. A. Mechanisms of Disease:advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab.2007.3(1).57-68
    [144]Flanagan S. E., Clauin S., Bellanne-Chantelot C., de Lonlay P., Harries L. W., Gloyn A. L., Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009.30(2).170-180
    [145]Taneja T. K., Mankouri J., Karnik R., Kannan S., Smith A. J., Munsey T., Christesen H. B., Beech D. J., Sivaprasadarao A. Sarl-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism. Hum Mol Genet.2009.18(13).2400-2413
    [146]Shimomura K. The KATP channel and neonatal diabetes. Endocr J.2009.56(2).165-175
    [147]Akrouh A., Halcomb S. E., Nichols C. G., Sala-Rabanal M. Molecular biology of KATP channels and implications for health and disease. IUBMB Life.2009.61(10).971-978
    [148]Hamming K. S., Soliman D., Matemisz L. C., Niazi O., Lang Y., Gloyn A. L., Light P. E. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+channel. Diabetes.2009.58(10). 2419-2424
    [149]Villareal D. T., Koster J. C., Robertson H., Akrouh A., Miyake K., Bell G. I., Patterson B. W., Nichols C. G., Polonsky K. S. Kir6.2 variant E23K increases ATP-sensitive K+channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes.2009.58(8).1869-1878
    [150]Woodfork K. A., Wonderlin W. F., Peterson V. A., Strobl J. S. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J CellPhysiol.1995.162(2).163-171
    [151]Park S. H., Ramachandran S., Kwon S. H., Cha S. D., Seo E. W., Bae I., Cho C., Song D. K. Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol.2008.24(5).250-256
    [152]Malhi H., Irani A. N., Rajvanshi P., Suadicani S. O., Spray D. C., McDonald T. V., Gupta S. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. J Biol Chem.2000. 275(34).26050-26057
    [153]Donley V. R., Hiskett E. K., Kidder A. C., Schermerhorn T. ATP-sensitive potassium channel (KATP channel) expression in the normal canine pancreas and in canine insulinomas. BMC Vet Res.2005. 1.8
    [154]Huang L., Li B., Li W., Guo H., Zou F. ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis.2009.30(5).737-744
    [155]Qian X., Li J., Ding J., Wang Z., Duan L., Hu G. Glibenclamide exerts an antitumor activity through reactive oxygen species-c-jun NH2-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochem Pharmacol.2008.76(12).1705-1715
    [156]Suzuki Y., Inoue T., Murai M., Suzuki-Karasaki M., Ochiai T., Ra C. Depolarization potentiates TRAIL-induced apoptosis in human melanoma cells:role for ATP-sensitive K+channels and endoplasmic reticulum stress. Int J Oncol.2012.41(2).465-475
    [157]Gu Y. T., Zhang H., Xue Y. X. Dexamethasone enhances adenosine 5'-triphosphate-sensitive potassium channel expression in the blood-brain tumor barrier in a rat brain tumor model. Brain Res. 2007.1162.1-8
    [158]Bodenstine T. M., Vaidya K. S., Ismail A., Beck B. H., Diers A. R., Edmonds M. D., Kirsammer G. T., Landar A., Welch D. R. Subsets of ATP-sensitive potassium channel (KATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression. FEBS Lett.2012.586(1).27-31
    [159]Ningaraj N. S., Sankpal U. T., Khaitan D., Meister E. A., Vats T. Activation of KAtp channels increases anticancer drug delivery to brain tumors and survival. Eur J Pharmacol.2009.602(2-3). 188-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700