用户名: 密码: 验证码:
基于生物免疫隐喻机制的AIS优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工免疫系统(Artificial immune system,AIS)是模仿自然免疫系统功能的一种智能方法。它受生物免疫系统自然防御机制的启发并具备噪声忍耐、无教师学习、自组织、记忆等特性,同时结合了分类器、神经网络及推理系统的一些优点,为解决实际问题提供了新颖方法。其研究成果涉及优化计算、控制、数据处理和故障诊断等许多领域,成为继神经网络、模糊逻辑和进化计算后人工智能的又一个研究热点。
     然而,免疫系统本身比较复杂,因此对人工免疫系统模型的研究相对较少。虽然现有的研究成果展示了人工免疫算法在解决某些现实问题上的巨大潜力和在求解一些优化问题上的优势,但是目前对人工免疫系统算法的研究还只是处于起步阶段,其广阔的应用前景还在等待更细致的开发。在优化计算方面,目前对人工免疫优化算法的研究多集中在免疫机理对已有优化算法的改进,虽然这些算法大多被冠以“免疫”的名字,但本质上只是利用了免疫系统的相关机理对遗传算法的改进,而且多数是静态的和非自适应的,也缺乏对生物免疫机理的深入分析以及与其他受自然启发算法的深入对比研究。本文在已有克隆选择算法的基础上,深入研究了生物免疫系统的识别,学习和防御机理,通过提取相关免疫隐喻机制,从不同角度分别构造了免疫反应机制与全局优化问题、约束优化问题和动态优化问题的匹配映射关系,并以此映射关系为基础,提出了相应的人工免疫算法,解决了约束优化和动态优化两个问题。论文取得的主要成果与创新工作概括如下:
     ①基于生物免疫机制抽取免疫隐喻,构建了生物免疫反应与最优化问题、约束优化问题和动态优化问题的匹配映射。为这些问题的解决提供了崭新的生物学的视角。详细探讨了生物免疫系统的高稳定性和可靠性的信息处理和机体防御方法。摒弃了现有的很多算法只是借用“免疫”之名,停留在概念表层的做法,对生物免疫系统进行深入的分析和研究,并以此为基础构造算法。
     ②提出了基于信息传递的人工免疫优化算法IAIS。以B细胞在固有免疫和自适应免疫中扮演的双重角色为立足点抽取隐喻,构造了免疫反应与约束优化问题的匹配映射。然后用B细胞的激活和非激活两种形态分别模拟了约束优化问题中因约束存在而造成的候选解的两种形式——可行解和不可行解,从信息传递的观点出发,提取并利用方向信息促进不可行解向可行域推进,进而精确定位可行解的方式解决约束优化问题。IAIS算法只采用了传统的人工免疫算子操作就提升了算法的性能,显示出人工免疫优化算法在解决约束优化问题上的巨大潜力。
     ③改进了IAIS算法并用于解决约束优化问题。深入挖掘人工免疫机制解决约束优化问题的潜力,并在此基础上,对算法的一些操作进行了修改,进一步提升算法的性能。为了克服传统克隆选择算法早熟收敛和搜索精度有限的问题,在算法中加入基因重组(recombination)算子,修改了免疫变异(hypermutation)算子,引入了新个体招募(recruitment)等,并调整了方向信息的提取方式,运用现有测试函数测试,达到了非常有竞争力的结果。本文提出的算法弥补了现有人工免疫算法在解决约束优化问题上的不足,而且仅仅立足于生物免疫机制,促进了人工免疫算法自身的发展。本文通过大量的实验从统计的角度验证了算法的全局搜索能力、高的求解精度以及好的稳定性。
     ④提出了基于类梯度、聚类和记忆机制的人工免疫算法GCMAIS解决动态环境下的优化问题。在已建立的生物免疫反应与动态优化问题的映射基础上,提取了一般的人工免疫优化算法框架并进行了深入的分析,找出了其在解决动态优化问题上的不足,并提出了三种应对机制从不同的方面提升了算法的性能。为了提高算法的搜索速度,从克隆个体携带的冗余信息中提取了类梯度信息,扩展了传统雅各比向量和正切向量等常用的梯度信息提取方法的使用范围,提升了算法的搜索性能;为了促进算法的搜索能力和保持种群的多样性,本文采用了聚类的方法引入了多种群处理机制,并加强了子群中的个体之间以及子群与子群之间的相互作用,删除了种群的冗余信息,并促进了精确搜索;为了应对动态优化的周期和非周期变化的动态特性,深入研究了生物免疫记忆机制,并根据记忆细胞生命周期的不同,提出了长期-短期记忆机制。短期记忆提取了紧邻的上一个环境的重要信息,对于不太剧烈的外部环境变化起到了跟踪作用,而长期记忆提取了以往环境的历史信息,对于环境的周期、类周期变化的初始种群的设定提供了有用的参考。实验验证了所提出策略的有效性。
Artificial immune system (AIS) is an intelligent method of simulating the naturalimmune system, which realizes a natural defense mechanism inspired from biologicalimmune system, and provides noise tolerance, teacherless learning, self-organizing,memory and other characteristics. Moreover, equipped with advantages as neuralnetwork, classifier, and inference system, AIS provides a novel solution to realisticproblems. The involved research achievements include optimization, control, dataprocessing and fault diagnosis etc. AIS has been a new hot topic in the field of artificialintelligence since neural network, fuzzy logic and evolutionary computation.
     However, researches on the model of AIS are quite few since the biologicalimmune system is very complex. Although the existing researches demonstrate the greatpotential of artificial immune algorithm in solving some practical problems and theadvantages in handling some optimization problems, current research on AIS is still inits infancy. Its broad application prospect still need more detailed development. In thefield of optimization, researches on AIS mainly focus on improving existing algorithmsthrough realizing immune mechanisms. Although most of these algorithms are titledwith "immune", they are essentially just the modified versions to the genetic algorithmbased on immune mechanisms, and most of them are static and non-adaptive. Moreover,comprehensive analysis on biological immune mechanism and exhaustive comparisonwith other natural heuristic algorithms are also ignored. Based on the existing clonalselection algorithm, learning recognition and defense mechanism of biological immunesystem are elaborated in the thesis. Through extracting the relative immune metaphor,the AIS-based algorithms are proposed to solve the constrained optimization anddynamic optimization problems. The main achievements and innovation are as follows:
     ①Based on immune metaphor, global optimization, constrained optimization andoptimization in dynamic environment are mapped with biological immune responsefrom different angles. A novel biological perspective and solid biological backgroundare provided to solve these problems. Stable information processing and reliabledefense mechanism are elaborated. We construct the AIS based algorithm on account ofcarefully exploring the functions and mechanisms of biological immune system ratherthan borrowing the "immune" concept directly.
     ②An immune-inspired algorithm based on information transfer (IAIS) is proposed. Immune metaphor is extracted from the dual roles B cells played in innateimmunity and adaptive immunity. Accordingly, the analogy between the mechanism ofbiological immune response and constrained optimization formulation is drawn.Individuals in population are classified into feasible and infeasible groups according totheir constraint violations that closely match with the two states, inactivated andactivated, of B cells in the immune response. Feasible group focuses on exploitation inthe feasible region, while infeasible group facilitates exploration along the feasibilityboundary. Although adopts only the traditional artificial immune operator, the IAISalgorithm with proposed framework and information transfer strategy shows greatpotential in solving constrained optimization problems.
     ③The IAIS algorithm was modified to solve the constrained optimizationproblems. On premise of great potential of immune-based algorithm in handlingconstrained optimization problems, some operators of IAIS are modified and theperformance of the modified IAIS algorithm is further improved. In order to overcomethe disadvantages that traditional clonal selection algorithm with prematureconvergence and limited search precision, Recombination operator and Recruitmentoperator are introduced, and hypermutation operator is modified. Meanwhile, Directioninformation extraction is adjusted. The modified IAIS is validated to be competitive incomparing with the state-of-the-art algorithms. The proposed algorithm compensatesthe weakness of the existing artificial immune algorithms in solving constrainedoptimization problems, and promotes the development of artificial immune algorithmitself. Through a lot of statistical experiments, the Modified IAIS is verified to haveglobal searching ability, high accuracy and good stability.
     ④To solve the optimization problems in dynamic environment, animmune-inspired algorithm based on quasi-gradient, clustering and memory mechanism(GCMAIS) is developed. On the basis of careful analysis, shortages of the generalframework of AIS in solving dynamic optimization problems are summarized at first,and then three coping mechanisms from different aspects to improve the performance ofalgorithm are put forward. Firstly, in order to improve the search speed, quasi-gradientinformation is extracted from the redundant information carried by clones. TraditionalJacobian vector and the Tangent vector are extended through the quasi-gradient toextend the search performance. Secondly, in order to improve the search ability of thealgorithm and maintain the diversity of population, clustering method is adopted formulti-population mechanism. The interaction among individuals in each subpopulation and among subpopulations is enhanced. The multi-population mechanism not onlydecreases the redundant information of population, but also promotes the precise search.Thirdly, in order to deal with dynamic characteristics of the cyclic and noncyclic changein dynamic environment, the immune memory mechanism is elaborated. The long-termand short-term memory mechanism is established according to the different life span ofmemory cells. Short-term memory extracts important information from last scenario,which is benefit for tracking the less dramatic changes, while long-term memoryretrieves history information from previous environments, providing references forpopulation initialization under cyclic environment or with recurrent change.Experiments validate the efficiency of the proposed method.
引文
[1]焦李成,杜海峰,刘芳,公茂果.免疫优化——计算、学习与识别[M].北京:科学出版社,2006.
    [2] A. A. Freitas, J. Timmis. Revisiting the foundations of artificial immune systems: Aproblem-oriented perspective [M].Artificial Immune Systems. Springer Berlin Heidelberg,2003:229-241.
    [3] P. K. Harmer, P. D. Williams, G. H. Gunsch, et al. An artificial immune system architecture forcomputer security applications [J]. IEEE transactions on Evolutionary computation,2002,6(3):252-280.
    [4] C. A. Laurentys, G. Ronacher, R. M. Palhares, et al. Design of an artificial immune system forfault detection: A negative selection approach [J]. Expert Systems with Applications,2010,37(7):5507-5513.
    [5] J. Kim, P. J. Bentley, U. Aickelin, et al. Immune system approaches to intrusion detection–areview [J]. Natural computing,2007,6(4):413-466.
    [6] M. Neal, J. Feyereisl, R. Rascuna, et al. Don’t touch me, I’m fine: Robot autonomy using anartificial innate immune system [M]. Artificial Immune Systems. Springer Berlin Heidelberg,2006:349-361.
    [7] W. Wei, G. Zhang. Artificial Immune System and Its Applications in the Control System [J].Control Theory&Applications,2002,2:001.
    [8] L. Xiao, R. Wang. Artificial Immune System: Principle, Models, Analysis and Perspectives [J].Chinese Journal of Computers,2002,12:000.
    [9]王自强,冯博琴.车间流程的免疫调度算法[J].西安交通大学学报,2004,38(10):1031-1034.
    [10] A. A. Freitas, J. Timmis. Revisiting the foundations of artificial immune systems for datamining [J]. IEEE Transactions on Evolutionary Computation.2007,11(4):521-540.
    [11] D. Yang, L. Jiao, M. Gong, et al. Artificial immune multi-objective SAR image segmentationwith fused complementary features [J]. Information Sciences.2011,181(13):2797-2812.
    [12] C. Xu, T. Li, X. Huang, et al. Artificial immune algorithm based system for forecastingweather [J]. Journal-Sichuan University Engineering Science Edition.2005,37(5):125.
    [13] P. Mitra, G. K. Venayagamoorthy. Artificial immune system based DSTATCOM control for anelectric ship power system[C]. Power Electronics Specialists Conference,2008. PESC2008.IEEE.2008:718-723.
    [14] L. Sun, W. Cai, X. Shao. A two-dimensional immune algorithm for resolution of overlappingtwo-way chromatograms [J]. Fresenius' journal of analytical chemistry,2001,370(1):16-21.
    [15] M. Basu. Artificial immune system for dynamic economic dispatch [J]. International Journalof Electrical Power&Energy Systems,2011,33(1):131-136.
    [16] V. Cutello, G. Nicosia, M. Pavone, et al. An immune algorithm for protein structure predictionon lattice models [J]. Evolutionary Computation, IEEE Transactions on,2007,11(1):101-117.
    [17] J. D. Farmer, N. H. Packard, A. S. Perelson. The immune system, adaptation, and machinelearning [J]. Physica D: Nonlinear Phenomena,1986,22(1):187-204.
    [18] H. Bersini, F. J. Varela. Hints for adaptive problem solving gleaned from immune networks
    [M]. Parallel problem solving from nature. Springer Berlin Heidelberg,1991:343-354.
    [19] Y. Ishida. Fully distributed diagnosis by PDP learning algorithm: towards immune networkPDP model[C].1990IJCNN International Joint Conference on Neural Networks. IEEE,1990:777-782.
    [20] S. Forrest, A. S. Perelson, L. Allen, et al. Self-nonself discrimination in a computer [C].Research in Security and Privacy,1994. Proceedings,1994IEEE Computer SocietySymposium on. IEEE,1994:202-212.
    [21] D. DasGupta. An overview of artificial immune systems and their applications [M]. SpringerBerlin Heidelberg,1999.
    [22] Andries P. Engelbrech著,谭营等译.计算群体智能基础[M].北京:清华大学出版社,2009.
    [23] Andries P. Engelbrech著,谭营等译.计算智能导论[M].北京:清华大学出版社,2010.
    [24] K. C. Tan, C. K. Goh, A. A. Mamun and E. Z. Ei. An Evolutionary Artificial Immune Systemfor Multi-Objective Optimization [J]. Eroupean Journal of Operational Research.2008,187(2):371-392.
    [25] F. Freschi, C. A. C. Coello, M. Repetto. Multiobjective optimization and artificial immunesystems: a review [J]. Handbook of Research on Artificial Immune Systems and NaturalComputing: Applying Complex Adaptive Technologies.2009,4:1-21.
    [26] D. H. Wolpert, W. G. Macready. No free lunch theorems for optimization [J]. IEEETransaction on Evolutionary Computation.1997,1(1):67-82.
    [27] C. Cruz, J. R. Gonzalez, D. A. Pelta. Optimization in dynamic environments: a survey onproblems, methods and measures [J]. Soft Computing.2011,15(7):1427-1448.
    [28]施光燕,董加礼.最优化方法[M].北京:高等教育出版社,2000.
    [29]夏定纯,徐涛.计算智能[M].北京:科学出版社,2008.
    [30]吴启迪,康琦,汪镭,陆金山.自然计算导论[M].上海:上海科学技术出版社,2011.
    [31]莫宏伟,左兴权.人工免疫系统[M].北京:科学出版社,2009.
    [32] L. N. de Castro, F. J. Von Zuben. Artificial immune systems: Part I–basic theory andapplications [R]. Universidade Estadual de Campinas, Dezembro de, Tech. Rep,1999.
    [33] F. M. Burnet. The clonal selection theory of acquired immunity [M]. NewYork: CambridgeUniversity Press,1959.
    [34] N. K. Jerne. Towards a network theory of the immune system [J]. Annual Immunology,1974,125C:373-389.
    [35] P. Matzinger. Tolerance danger and the extended family [J]. Annual Review of Immunology,1994,12:991-1045.
    [36] U. Aicklin, P. Bentley, S. Cayzer, et al. Danger theory: the link between AIS and IDS.Proceedings of the2nd International Conference on Artificial Immune System,2003:147-155.
    [37] C. A. Laurentys, R.M. Palhares, W.M. Caminhas. Design of an artificial immune systembased on Danger Model for fault detection [J]. Expert Systems with Applications.2010,37(7),5145-5152.
    [38] Q. Xu. Improved Danger Model Immune Algorithm [J]. Procedia Engineering.2012,29,2754-2758.
    [39] Q. Xu, S. Wang, C. Zhang. Structural design of the danger model immune algorithm [J].Information Sciences.2012,205(1),20-37.
    [40] L. N. de Castro, F. J. von Zuben, The clonal selection algorithm with engineering applications
    [C]. In Proceedings of Genetic and Evolutionary Computation Conference.2000,36-39.
    [41] L. N. de Castro, F. J. von Zuben. Learning and optimization using the clonal selectionprinciple [J]. IEEE Transactions on Evolutionary Computation.2002,6(3):239-251.
    [42] L. N de Castro, J. Timmis. An artificial immune network for multimodal optimization [C]. InProceedings of IEEE Congress on Evolutionary Computation.2002,699-704.
    [43]焦李成,尚荣华,马文萍,公茂果等.多目标优化免疫算法、理论和应用[M].北京:科学出版社,2010.
    [44] J. Hu, M. Han, et al. Adaptive Control Algorithm Based on Clone Selection Optimization [C].Proceedings of the31st Chinese Control Conference,2012,2911-2916.
    [45] R. Liu, X. Zhang, N. Yang, et al. Immunodomaince based Clonal Selection ClusteringAlgorithm [J].Applied Soft Computing,2012,12,302-312.
    [46] J. Timmis, M. Neal. A resource limited artificial immune system for data analysis [J].Knowledge Based Systems.2001,14(3-4):121-130.
    [47] L. N. de Casto, F. J. von Zuben. An evolutionary immune network for data clustering [C].Proceedings6th Brazilian Symposium on Neural Networks,2000,84-89.
    [48] Y. Ding, L. Ren. Design of a bio-network architecture based on immune emergentcomputation [J]. Control and Decision,2003,18(2):185-189.
    [49] O. Nasaroui, F. Gonzalez, D. Dasgupta. The fuzzy artificial immune system: Motivations,basic concepts, and application to clustering and web profiling [C]. Fuzzy Systems,2002.FUZZ-IEEE'02. Proceedings of the2002IEEE International Conference on. IEEE,2002,1:711-716.
    [50] Q. J. Duan, R. X. Wang, H. S. Feng, et al. Applying synthesized immune networks hypothesisto mobile robots [C]. Autonomous Decentralized Systems,2005. ISADS2005. Proceedings.IEEE,2005:69-73.
    [51] R. Michelan, F. J. Von Zuben. Decentralized control system for autonomous navigation basedon an evolved artificial immune network [C]. Evolutionary Computation,2002. CEC'02.Proceedings of the2002Congress on. IEEE,2002,2:1021-1026.
    [52] D. Dasgupta, N. S. Majumdar. Anomaly detection in multidimensional data using negativeselection algorithm [C]. Evolutionary Computation,2002. CEC'02. Proceedings of the2002Congress on. IEEE,2002,2:1039-1044.
    [53] D. Dasgupta, K. KrishnaKumar, D. Wong, et al. Negative selection algorithm for aircraft faultdetection [M]. Artificial Immune Systems. Springer Berlin Heidelberg,2004:1-13.
    [54] D. W. Taylor, D. W. Corne. An investigation of the negative selection algorithm for faultdetection in refrigeration systems [M]. Artificial Immune Systems. Springer Berlin Heidelberg,2003:34-45.
    [55] D. Dasgupta. Artificial neural networks and artificial immune systems: similarities anddifferences [C]. Systems, Man, and Cybernetics,1997. Computational Cybernetics andSimulation.1997IEEE International Conference on. IEEE,1997,1:873-878.
    [56] S. Garrett. From Natural to Artificial Immune Systems.users.aber.ac.uk/smg/Modules/CX211-2001-2002/immunity.ppt,2004.
    [57] S. B. Hamida, M. Schoenauer. ASCHEA: new results using adaptive segregational constrainthandling [C]. In Proceedings of IEEE Congress on Evolutionary Computation, Honolulu, HI.82-87,2002.
    [58] D. B. Fogel. Evolutionary algorithms in theory and practice [J]. Complexity,1997,2(4):26-27.
    [59] B. L. Miller, D. E. Goldberg. Genetic algorithms, selection schemes, and the varying effectsof noise [J]. Evolutionary Computation.1996,4(2):113-131.
    [60] K. Deb. Multi-objective optimization [M]. Search Methodologies. Springer US.2005:273-316.
    [61] J. Liang, T. P. Runarsson, E. Mezura-Montes, et al. Problem definitions and evaluation criteriafor the CEC2006special session on constrained real-parameter optimization [J]. Journal ofApplied Mechanics,2006,41.
    [62] T. P. Runarsson, X. Yao. Stochastic ranking for constraint evolutionary optimization [J]. IEEETransactions on Evolutionary Computation.2000,4(3):284-294.
    [63] H. S. Bernardino, H. J. Barbosa, A. C. C. Lemonge, L. G. Fonseca. On GA-AIS hybrids forconstrained optimization problems in engineering, constraint-handling in evolutionaryoptimization [M]. Studies in Computational Intelligence.2009,198:167-192.
    [64] N. Cruz-Cortes. Handling constraints in global optimization using artificial immune systems:a survey [M]. Studies in Computational Intelligence.2009,198: pp.237-262.
    [65] V. S. Aragon, S. C. Esquivel, and C. A. Coello Coello. Artificial immune system for solvingconstrained optimization problems [J]. Revista Iberoamericana de Inteligencia Artificial.35:55-66,2007.
    [66] V. S. Aragon, S. C. Esquivel, and C. A. Coello Coello. A modified version of a T-cellAlgorithm for constrained optimization problem [J]. International Journal for NumericalMethod in Engineering.2010,84(3):351-378.
    [67] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning [M].Addison-Wesley Professional,1989.
    [68] S. Venkatraman and G. G. Yen. A generic framework for constrained optimization usinggenetic algorithms [J]. IEEE Transactions on Evolutionary Computation,2005,9(4):424-435.
    [69] J. Kennedy, R. C. Eberhart. Particle swarm optimization [C]. Proceedings of IEEEInternational Conference on Neural Networks, Piscataway, NJ.1995,1942-1948.
    [70] M. Daneshyari, G. G. Yen. Constrained multiple-swarm particle swarm optimization within acultural framework [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systemsand Humans,2012,42(2):475-490.
    [71] G. G. Yen, W. F. Leong. Dynamic multiple swarms in multiobjective particle swarmoptimization [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems andHuman.2009,39(4):890-911.
    [72] R. Storn, K. Price. Differential evolution-a simple and efficient heuristic for globaloptimization over continuous spaces [J]. Journal of Global Optimization11:341–359.
    [73] S. M. Elsayed, R.A. Sarker, D. L. Essam. On an evolutionary approach for constrainedoptimization problem solving [J]. Applied Soft Computing.2012,12(10):3208-3227.
    [74] S. M. Elsayed, R. A. Sarker, D. L. Essam. Multi-operator based evolutionary algorithms forsolving constrained optimization problems [M]. Computers&Operations Research.2011,38(12):1877-1896.
    [75] D. Karaboga, B. Basturk. A powerful and efficient algorithm for numerical functionoptimization: artificial bee colony (ABC) algorithm [J]. Journal of global optimization,2007,39(3):459-471.
    [76] E. M. Montes, O. C. Domínguez. Empirical analysis of a modified artificial bee colony forconstrained numerical optimization [J]. Applied Mathematics and Computation,2012,218(22):10943-10973.
    [77] T. B ck, F. Hoffmeister, H. Schwefel. A survey of evolution strategies [C]. In Proceedings ofInternational Conference on Genetic Algorithms, San Diego, CA.1991,2-9.
    [78] A. Homaifar, S. H. Y. Lai, X. Qi. Constrained optimization via genetic algorithms [J].Simulation.1994,62(4):242-254.
    [79] J. Joines, C. Houck. On the use of non-stationary penalty functions to solve nonlinearconstrained optimization problems with Gas [C]. In Proceedings of IEEE Congress onEvolutionary Computation, Orlando, FL.1994,579-584.
    [80] R. Farmani, J. Wrigth. Self-adaptive fitness formulation for constrained optimization [J].IEEE Transactions on Evolutionary Computation.2003,7(5):445-455.
    [81] J. C. Bean, A. B. Alouane. A dual genetic algorithm for bounded integer programs [R].University of Michigan, Dept. Industrial and Operations Engineering, Ann Arbor, MI, Tech.Rep. TR92-5,1992.
    [82] K. Deb. An efficient constraint handling methods for genetic algorithms [J]. ComputationalMethods in Applied Mechanical Engineering.2000,186(2):311-338.
    [83] T. P. Runarsson, X. Yao. Search bias in constrained evolutionary optimization [J]. IEEETransactions on Systems, Man, and Cybernetics.2005,35(2):233-243.
    [84] T. Takahama, S. Sakai. Constrained optimization by applying the-constrained method to thenonlinear simplex method with mutations [J]. IEEE Transactions on EvolutionaryComputation.2005,9(5):437-451.
    [85] T. Takahama, S. Sakai. Constrained optimization by the constrained differential evolutionwith gradient-based mutation and feasible elite [C]. In Proceedings of IEEE Congress onEvolutionary Computation, Vancouver, Canada.2006,308-315.
    [86] Y. Wang, Z. Cai. A multi-objective optimization based evolutionary algorithm for constrainedoptimization [C]. In Proceedings of IEEE Congress on Evolutionary Computation, Edinburgh,U.K.2005,1081-1087.
    [87] J. Aidanpaa, J. Anderson, A. Angantyr. Constrained optimization based on a multi-objectiveevolutionary algorithm [C]. In Proceedings of IEEE Congress on Evolutionary Computation,Canberra, Australia.2003,1560-1567.
    [88] C. A. C. Coello, N. C. Cortes. Hybridizing a genetic algorithm with an artificial immunesystem for global optimization. Engineering Optimization [J].2004,36(5):607-634.
    [89] H. S. Bernardino, H. J. Barbosa, A. C. C. Lemonge, L. G. Fonseca. A new hybrid AIS-GA forconstrained optimization problems in mechanical engineering [C]. In Proceedings of IEEECongress on Evolutionary Computation, Hong Kong, China.2008,1455-1462.
    [90] S. Rajasekaran, S. Lavanya. Hybridization of genetic algorithms with immune system foroptimization problems in structural engineering. Structural and Multidisciplinary Optimization[J].2007,34(5):415-429.
    [91] W. Ma, L. Jiao, M. Gong, R. Shang. Immune clonal selection evolutionary strategy forconstrained optimization [C]. In Proceedings of Pacific Rim International Conference onArtificial Intelligence, Guilin, China.2006,661-670.
    [92] A. R. Y ld z. A novel hybrid immune algorithm for global optimization in design andmanufacturing [J]. Robotics and Computer-Integrated Manufacturing.2009,25(2):261-270.
    [93] N. C. Cortes, D. T. Perez, C. A. C. Coello. Handling constraints in global optimization usingan artificial immune system [C]. In Proceedings of International Conference on ArtificialImmune Systems, Warsaw, Poland.2005,234-247.
    [94] J. Y. Wu. Solving constrained global optimization via artificial immune system [J].International Journal on Artificial Intelligence Tools.2011,20(1):1-27.
    [95] V. S. Aragon, S. C. Esquivel, C. A. Coello Coello. A novel model of artificial immune systemfor solving constrained optimization problems with dynamic tolerance factor [C]. InProceedings of Mexico International Conference on Artificial Intelligence, Aguascalientes,Mexico.2007,19-29.
    [96] Y. G. Woldesenbet, G. G. Yen, B. G. Tessema. Constraint handling in multiobjectiveevolutionary optimization [J]. IEEE Transactions on Evolutionary Computation.2009,13(3):514-525.
    [97] K. M. Woldemariam, G. G Yen. Vaccine-enhanced artificial immune system for multimodalfunction optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2010,40(1):218-228.
    [98] M. Pavone, G. Narzisi, and G. Nicosia. Clonal selection: an immunological algorithm forglobal optimization over continuous spaces [J]. Journal of Global Optimization.2012.53(4):769-808.
    [99] R. Mallipeddi, P. N. Suganthan. Problem definitions and evaluation criteria for the CEC2010competition on constrained real-parameter optimization [C]. In Proceedings of2010IEEECongress on Evolutionary Computation, Barcelona, Spain,2010.
    [100] A. W. Mohamed, H. Z. Sabry. Constrained optimization based on modified differentialevolution algorithm [J]. Information Sciences.2012,194:171-208.
    [101] A. Mu oz, A. Hernández, E. Villa. Continuous constrained optimization with dynamictolerance using COPSO algorithm [M]. in E. Mezura-Montes, editor, Constraint Handling inEvolutionary Optimization, Springer: Heidelberg, Germany.2009.1-23.
    [102] B. Tessema, G. G. Yen An adaptive penalty formulation for constrained evolutionaryoptimization [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems andHumans.2009,39(3):565-578.
    [103] T. Takahama, S. Sakai. Constrained optimization by the constrained differential evolutionwith an archive and gradient-based mutation [C]. in Proceedings of IEEE Congress onEvolutionary Computation, Barcelona, Spain.2010,1680-1688.
    [104] H. K. Singh, T. Ray, W. Smith. Performance of infeasibility empowered memetic algorithmfor CEC2010constrained optimization problems [C]. in Proceedings of IEEE Congress onEvolutionary Computation, Barcelona, Spain.2010.1-8.
    [105] P. N. Suganthan. Comparison of results on the CEC2010benchmark function set.[online],http://www3.ntu.edu.sg/home/EPNSugan/.
    [106] R. Merton. Continuous-Time Finance [M], Blackwell: Oxford, U.K.,1990.
    [107] D. Applegate, W. Cook. A computational study of the job-shop scheduling problem [J]. ORSAJournal on computing,1991,3(2):149-156.
    [108] S. Yang, H. Cheng, F. Wang. Genetic algorithms with immigrants and memory schemes fordynamic shortest path routing problems in mobile ad hoc networks [J]. IEEE Transactions onSystems, Man, and Cybernetics, Part C: Applications and Reviews.2010,40(1):52-63.
    [109] J. Branke. Evolutionary Optimization in Dynamic Environments [M]. Kluwer AcademicPublishers: Boston, MA,2002.
    [110] N. Nanas, A. D. Roeck. Multimodal dynamic optimization: from evolutionary algorithms toartificial immune systems [R]. Artificial Immune Systems Lecture Notes in Computer Science.2007,13-24.
    [111] K. A. Pape, J. J. Taylor, R. W. Maul. Different B cell populations mediate early and latememory during an endogenous immune response [J]. Science.2011,331(6021):1203-1207.
    [112] K. Minon. B cells: short-and long-term memory [J]. Nature Reviews Immunology.2011,11(3):160-161.
    [113] L. N. de Castro, J. Timmis, Artificial Immune System: A New Computational IntelligenceApproach [M], Springer-Verlag: London, U. K.,1996.
    [114] C. M. Fernandes. Diversity-Enhanced Genetic Algorithms for Dynamic Optimization [D],Ph.D. Dissertation, Technical University of Lisbon,2009.
    [115] S. Yang, T. Renato. A hybrid immigrants scheme for genetic algorithms in dynamicenvironments [J]. International Journal of Automation and Computing.2007,4(3):243-254.
    [116] W. Cedeno, V. R. Vemuri. On the use of niching for dynamic landscapes [C]. in Proceedingsof IEEE Congress on Evolutionary Computation.1997,361-366.
    [117] H. C. Andersen. An Investigation into Genetic Algorithms, and the Relationship betweenSpeciation and the Tracking of Optima in Dynamic Functions [D]. Ph.D. Dissertation,Queensland Univ. Technol.,1991.
    [118] T. M. Blackwell. Swarms in dynamic environments, Genetic and Evolutionary Computation
    [R]. Lecture Notes in Computer Science,2003,2723:1-12.
    [119] H. G. Cobb, J. J. Grefenstette. Genetic algorithms for tracking changing environments [C]. inProceedings of International Conference on Genetic Algorithms.1993,523-530.
    [120] F. Vavak, T. C. Fogarty, K. Jukes. A genetic algorithm with variable range of local search fortracking changing environments [C]. in Proceedings of Parallel Problem Solving from Nature.1996,1141-1146.
    [121] K. Weicker, N. Weicker. Dynamic rotation and partial visibility [C]. In Proceedings of IEEECongress on Evolutionary Computation.2000,1125-1131.
    [122] J. Branke, T. Kaubler, C. Schmidt, H. Schmeck. A multi-population approach to dynamicoptimization problems [C]. in Proc. Adaptive Comput. Conf. Design Manuf.,2000,96-101.
    [123] R. K. Ursem. Multi-national GA optimization techniques in dynamic environments [C]. inProceedings of Genetic and Evolutionary Computation Conference.2000.19-26.
    [124] T. Blackwell, J. Branke. Multi-swarm optimization in dynamic environments [J]. Applicationsof Evolutionary Computing.2004.489-500.
    [125] S. Yang, C. Li. A clustering particle swarm optimizer for locating and tracking multipleoptima in dynamic environment [J]. IEEE Transactions on Evolutionary Computation.2010.14(6):959-974.
    [126] T. Blackwell, J. Branke. Multiswarms, exclusion, and anti-convergence in dynamicenvironments [J]. IEEE Transactions on Evolutionary Computation.2006,10(4):459-472.
    [127] C. Ryan. Diploidy without dominance [C]. In Proc. Nordic Workshop on Genetic Algorithms.1997.63-70.
    [128] K. Trojanowski, Z. Michalewicz. Searching for optima in nonstationary environments [C]. InProceedings of IEEE Congress on Evolutionary Computation.1999,1843-1850.
    [129] Mori N, Kita H, Nishikawa Y. Adaptation to a changing environment by means of thethermodynamical genetic algorithm [J]. Transactions of the Institute of System, Control, andInformation Engineers (Japan),1999,12(4):240-249.
    [130] Richter H, Yang S. Learning behavior in abstract memory schemes for dynamic optimizationproblems [J]. Soft Computing,2009,13(12):1163-1173.
    [131] J. Branke. Memory enhanced evolutionary algorithms for changing optimization problems [C].in Proceedings of IEEE Congress on Evolutionary Computation.1999.3:1875-1882.
    [132] A. Sim es, E. Costa. An immune system-based genetic algorithm to deal with dynamicenvironments: diversity and memory [C]. in Proceedings of the Sixth International Conferenceon Neural Networks and Genetic Algorithms.2003.168-174.
    [133] S. Yang. A comparative study of immune system based genetic algorithms in dynamicenvironments [C]. in Proceedings of Genetic and Evolutionary Computation Conference.2006,120-127.
    [134] F. O de Franca, F. J. von Zuben, L.N. de Castro. An artificial immune network for multimodalfunction optimization on dynamic environments [C]. in Proceedings of Genetic andEvolutionary Computation Conference,2005.289-296.
    [135] F. O. de Franca, F. J. von Zuben. A dynamic artificial immune algorithm applied tochallenging benchmarking problems [C]. in Proceedings of IEEE Congress on EvolutionaryComputation.2009.423-430.
    [136] A. Gaspar, P. Collard. From GAs to artificial immune systems: improving adaptation in timedependent optimization [C]. in Proceedings of IEEE Congress on Evolutionary Computation,1999.1859-1866.
    [137] K. Trojanowski, S. T. Wierzchoń. Immune-based algorithms for dynamic optimization [J].Information Sciences.2009,179(10):1495-1515.
    [138] K. Trojanowski, S. T. Wierzchon. Studying properties of multipopulation heuristic approachto non-stationary optimization tasks [C]. in Proceedings of the International Conference onIntelligent Information Processing and Web Mining.2003.23-32.
    [139] J. Kelsey, J. Timmis. Immune inspired somatic contiguous hypermutation for functionoptimization [C]. in Proceedings of Genetic and Evolutionary Computation Conference.2003,207-218.
    [140] K. Trojanowski, Z. Michalewicz. Searching for optima in non-stationary environments [C]. inProceedings of IEEE Congress on Evolutionary Computation.1999,1843-1850.
    [141] V. S. Aragon, S. C. Esquivel, C. A. Coello Coello. A T-cell algorithm for solving dynamicoptimization problems [J]. Information Sciences.2011,181(17):3614-3637.
    [142] C. Li, S. Yang. A general framework of multipopulation methods with clustering inundetectable dynamic environments [J]. IEEE Transactions on Evolutionary Computation.2012,16(4):556-577.
    [143] L. de Mello Honório, A. M. da Silva, D. A. Barbosa. A Cluster and Gradient-Based ArtificialImmune System Applied in Optimization Scenarios [J]. IEEE Transactions on EvolutionaryComputation.2012,16(3):301-318.
    [144] Y. G. Woldesenbet, G. G. Yen. Dynamic evolutionary algorithm with variable relocation [J].IEEE Transactions on Evolutionary Computation.2009,13(3):500-513.
    [145] D. Dasgupta. Artificial Immune Systems and Their Application [M], Springer-Verlag:Heidelberg, Germany,1999.
    [146] R. I. Lung, D. Dumitrescu. A collaborative model for tracking optima in dynamicenvironments [C]. in Proceedings of IEEE Congress on Evolutionary Computation,2007,564-567.
    [147] T. T. Nguyen and X. Yao, Continuous dynamic constrained optimization-the challenges, IEEETransactions on Evolutionary Computation,2012,16(6),769–786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700