用户名: 密码: 验证码:
基于连续位错模型的热释电材料断裂理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热释电陶瓷作为功能材料,由于固有的压电、介电和热释电性质,被广泛的应用于传感器、转换器和制动器等智能系统中。然而,热释电材料本身呈脆性,在制备和使用过程中极易产生裂纹、孔洞和夹杂等缺陷。因此,针对含裂纹等缺陷热释电材料的热、电、应力场的分析是非常有必要的。弄清楚热释电材料断裂的物理和力学机制,从而可以更好的为这些智能系统的结构强度、稳定性、使用寿命和设计等方面提供理论参考。基于扩展的Stroh型解、Green函数方法和奇异积分方程方法,本文针对热释电材料直裂纹扩展、裂纹尖端分叉、界面裂纹和裂纹面热-电边界条件等问题作了系统的研究。具体内容如下:
     首先,针对热-电-机械多场耦合载荷作用下含裂纹的热释电材料,建立了求解应力场和电位移场的裂纹部分接触模型。裂纹模型分别假设为电绝缘的和电流可导通的。基于Green函数方法,问题简化为具有封闭解的一系列奇异积分方程的求解。在裂纹面应力和电荷自由的假定下,除非有一足够大的远场拉应力作用,否则将有裂纹一端的张开位移为负值。因此,上述热释电介质的热-电-力耦合问题转化为裂纹尖端存在部分接触的断裂模型重新求解。作为外部机械载荷、电位移载荷和热流载荷的函数,分别给出了接触区长度、裂纹尖端应力强度因子和电位移强度因子等重要断裂参量的封闭解。结果显示,对于电绝缘裂纹模型来说,电位移不仅在裂纹尖端具有奇异性,而且在接触区前沿也具有奇异性。对于电流可导通裂纹模型,只有裂纹尖端电位移才具有平方根的奇异性。
     其次,研究了热释电材料在承受热-电-机械多场耦合载荷作用下裂纹尖端分叉的问题,其中裂纹模型假设为电绝缘的。给出了裂纹与热释电位错(即,位于同一点的热学位错、力学位错和电偶极子)相互作用的Green函数。问题转化为求解在分叉裂纹上具有未知热释电位错密度函数的一组奇异积分方程。并获得了重要的断裂力学参量,如:分叉裂纹尖端的应力和电位移强度因子、能量释放率等。通过数值结果分析了热流和电位移载荷对裂纹扩展路径的影响。
     众所周知,在理论分析方面,双材料界面裂纹尖端存在着振荡奇异性。为了去除这种不合理的界面断裂振荡奇异性,提出了修正界面位错模型。在数学上,界面位错基本解中的Dirac函数由正态分布函数来表示;在物理上,Dirac函数所表征的单位点力解释为区域分布力,成功的消除了裂纹尖端振荡奇异性。基于上述模型,界面裂纹问题从而转化为求解一组第一类奇异积分方程问题。获得了特定材料配比的应力强度因子、断裂混合度和能量释放率等断裂参量。并成功的将修正界面位错模型应用到解释热释电材料界面裂纹问题。
     最后,基于有限厚度裂纹模型,研究了裂纹面热电边界条件对热释电材料断裂力学问题的影响。假设裂纹内部充满空气(或真空)。利用Green函数和奇异积分方程方法,获得了有限厚度裂纹尖端的应力和电位移强度因子、以及裂纹内部热流和电位移的封闭解,并与理想裂纹面热电边界条件的数值结果进行对比。结果发现对于裂纹面电边界条件来说,电绝缘裂纹模型是更为合理的。而对于裂纹面热边界条件来说,完全导热和热绝缘裂纹模型都不能准确的反映相关的断裂物理参量,裂纹内部空气类介质的导热率是不能忽略的。
Thermopiezoelectric ceramics, as a typical smart material, are widely used assensors, transducers and actuators in intelligent systems due to their pronouncedpiezoelectric, dielectric and pyroelectric properties. However, these materials are brittleand susceptible to cracking. It is of vital importance to investigate thethermoelectroelastic fields as a result of the presence of defects, such as crack andinclusions in thermal environments. The requirements of structural strength, reliabilityand lifetime of these intelligent systems call for a better understanding of the fracturemechanics of thermopiezoelectric materials. The problems of crack, crack branching,interface crack and thermoelectric boundary conditions of crack surfaces areinvestigated based on the extended Stroh formalism, Green’s function method andsingular integral equation technique in this paper. The main research contents andconclusions are as follows:
     A partial contact zone model is developed for the stress and electric displacementfields due to the obstruction of a uniform heat flux in thermopiezoelectric materials inthe charpters two and three. The crack is assumed electrically impermeable andelectrically permeable, respectively. Green’s function method is used to reduce theproblem to a set of singular integral equations which are solved in closed-form. Whenthe crack is assumed to be traction free, the crack opening displacement is found to benegative over one half of the crack unless a sufficiently large far field tensile stress issuperposed. The problem is reformulated assuming a contact zone at one crack tip. Theextent of this zone, the stress and electric displacement intensity factors at each crack tipare obtained as functions of the applied mechanical stress and heat flux. The resultshows that the electric displacement intensity is not only singular at both crack tips, butalso at contact zone tip for the electrically impermeable crack. For the electricallypermeable, the singularity only exists at the crack tips.
     Solutions are presented for an electrically impermeable crack branching out of thecrack plane in a thermopiezoelectric medium under thermo-electro-mechanical loadsbased on Stroh formalism in charpter four. Explicit Green’s functions for the interactionof a crack and a thermopiezoelectric dislocation (i.e., a thermal dislocation, amechanical dislocation and an electric dipole located at the same point) are developed.The problem then can be expressed in terms of coupled singular integral equations forthe thermopiezoelectric dislocation density functions associated with a branched crack. Some essential fracture mechanics parameters, such as stress and electric displacementintensity factors, and energy release rate at the branched crack tip are obtained.Numerical results are presented for the effect of applied thermal flux loads and electricfield on the crack propagation path.
     It is well known that there is oscillation singularity near the interface crack tip,which is physically unreasonable. A modified interface dislocation model is developedto remove such oscillation singularity for interface fracture in charpter five. The Diracdelta function in the fundamental solution of interface dislocation is explained bylocally-distributed continuous function. The oscillation singularity at the crack tip ofrinterface fracture is eliminated. Then the problem is reduced to the solution of a systemof singular integral equations. The critical interfacial fracture mechanics parameters,such as the stress intensity factor, the mode mixity and the energy release rates forparticular materials group of the isotropic solids are obtained. Finally, the modifiedinterface dislocation model is extended to the thermopiezoelectric bimaterials interfacecrack problem.
     The applicability and effect of the crack surfaces thermoelectric boundaryconditions in thermopiezoelectric fracture mechanics problem are discussed by usingthe finite thickness notch approach in charpter six. The notch in these materials is full ofair (or vacuum). The stress and electric displacement intensity factors at the notch tips,and thermal flux and electric displacement inside the notch are derived in closed-form.The numerical results are compared with the ideal crack solutions. It is found that theelectrically impermeable crack boundary condition assumption is a reasonable one, andthe thermal conductivity of air or vacuum inside the crack must be considered.
引文
[1] Bravina S L, Morozovsky N V, Morozovska A N, et al. Investigations ofLiNbO3and LiTaO3single crystals for pyroelectric applications in the widetemperature range[J]. Ferroelectric.2007,353:202-211.
    [2] Kokhanchik L, Rosenman G, Kugel V D, et al. Pyroelectric properties ofLiNbO3crystals following[J]. Ferroelectrics Letters Section.2006,20:11-18.
    [3] Nagai T, Ikeda T. Pyroelectric and optical properties of Potassium LithiumNiobate[J]. Japanese Journal of Applied Physics.1973,12:199-204.
    [4] Shao S P, Liang H L. Dielectric and pyroelectric properties of LiTaO3singlecrystals[J]. Ferroelectric.1981,38:821-823.
    [5] Okuyama M, Togami Y, Hamakawa Y. Pyroelectric infrared–CCD imagesensor using LiTaO3[J]. Sensors and Actuators.1989,16:263-271.
    [6] Roundy C B, Byer R L. Sensitive LiTaO3pyroelectric detector[J]. Journal ofApplied Physics.1973,44:929-931.
    [7]孙洵,王民,史伟等.掺尿素的TGS晶体的生长及性质研究[J].功能材料,2000,31:63-65.
    [8]房昌水,王民,卓洪升等.掺杂改性TGS晶体的研究[J].硅酸盐学报.1992,20:138-142.
    [9] Banan M, Lal R B, Batra Ashock. Modified triglycine sulphate (TGS) singlecrystals for pyroelectric infrared detector applications[J]. Journal ofMaterials Science.1992,27:2291-2297.
    [10] Choe H M, Judy J H, Van Der Ziel A. Pyroelectric figures of merit of TGS[J].Ferroelectric.1977,15:181-184.
    [11] Binnie T D, Weller H J, He Z Q, et al. An integrated16×16PVDFpyroelectric sensor array[J]. Ultrasonics, Ferroelectrics and FrequencyControl, IEEE Transactions on.2000,47:1413-1420.
    [12] Fujitsuka N, Sakata J, Miyachi Y, et al. Monolithic pyroelectric infraredinmage sensor using PVDF thin film[J]. Solid State Sensors and Actuators.1997,2:1237-1240.
    [13] Franzan A H, Leite N F, Miranda L C M. Investigation of poling field effectson PVDF pyroelectric detectors: Photoacoustic thermal diffusivitymeasurements[J]. Applied Physics A: Materials Science&Processing.1990,40:431-438.
    [14] Neumann N, Kohler R, Hofmann G. Pyroelectric thin film sensors and arraysbased on P(VDF/TrFE)[J]. Integrated Ferroelectrics: An International Journal.1995,6:213-230.
    [15] Setiadi D, Regien P P L. A VDF/TrFE copolymer on silicon pyroelectricsensor: Design consigerations and experiments[J]. Sensors and Actuators A:Physical.1995,47:408-412.
    [16] Setiadi D, Regtien P P L. Application of VDF/TrFE copolymer forpyroelectric image sensors[J]. Sensors and Actuators A: Physical.1994,42:585-592.
    [17] Tasaka S, Miyasato K, Yoshikawa M, et al. Piezoelectricity and remanentpolarization in vinylidene cyanide/vinyl acetate copolymer[J]. Ferroelectric,1984,57:267-276.
    [18] Takahashi Y, Lijima M, Fukada E. Pyroelectricity in poled thin films ofaromatic polyurea prepared by vapor deposition polymerization[J]. JapaneseJournal of Applied physics.1989,28: L2245-L2247.
    [19] Cereceda N, Noheda B, Gonzalo J A. Investigation of the character of thephase transitions in Nb doped Zr-rich PZT by pyroelectric and dielectricmeasurements[J]. Journal of the European Ceramic Society.1999,19:1201-1206.
    [20] Dai X H, Wang Y L. Study on the order of the FR(LT)-FR(HT) phasetransition of PZT ceramics[J]. Physica Status Solidi (a).1991,124:435-440.
    [21] Koval V, Alemany C, Briancin J, et al. Dielectric properties and phasetransition behavior ofxPMN-(1-x)PZT ceramics systems[J]. Journal ofElectroceramics.2003,10:19-29.
    [22] Kuwata J, Uchino K J, Nomura S. Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3system[J]. Ferroelectric.1981,37:579-582.
    [23] Du X H, Zheng J H, Belegundu U, et al. Crystal orientation dependence ofpiezoelectric properties of lead zirconate titanate near the morphotropicphase boundary[J]. Applied physics Letters.1998,72:2421-12421-3.
    [24] Zhang T J, Ni H. Pyroelectric and dielectric properties of sol-gel derivedbarium strontium titanate (Ba0.64Sr0.36TiO3) thin films[J]. Sensors andActuators A; Physical.2002,100:252-256.
    [25] Wu C G, Zhang W L, Li Y R, et al. High pyroelectric Ba0.65Sr0.35TiO3thinfilms with Ba0.65Sr0.35RuO3seeding-layer for monolithic ferroelectricbolometer[J]. Infrared Physics&Technology.2006,48:187-191.
    [26] Liu S B, Liu M D, Zeng Y K, et al. Preparation and characterization ofBa1-xSrxTiO3thin films for uncooled infrared focal plane arrays[J]. MaterialsScience and Engineering: C.2002,22:73-77.
    [27]罗豪甦.新型热释电材料及其在高性能红外探测器中的应用[J].红外与激光工程.2008,37:30-34.
    [28] Winzer S R, Shankar N, Ritter A P. Designing cofired multiplayerelectrostrictive actuators for reliability. Journal of the American CeramicSociety.1989,72:2246-2257.
    [29] Mehta K, Virkar A V. Fracture mechanisms in ferroelectric-ferroelastic leadzirconate titanate (Zr:Ti=0.54:0.46) ceramics[J]. Journal of the AmericanCeramic Society.1990,73:567-574.
    [30] Schneider G A, Heyer V. Influence of the electric field on Vickers indentationcrack growth in BaTiO3[J]. Journal of the European Ceramic Society.1999,19:1299-1306.
    [31] Cao H C, Evans A G. Electric-field-induced fatigue crack growth inpiezoelectric[J]. Journal of the American Ceramic Society.1994,77:1783-1786.
    [32] dos Santos e Lucato S L, Lupascu D C, R del J. Effect of poling direction onR-curve behavior in lead zirconate titanate[J]. Journal of the AmericanCeramic Society.2000,83:424-426.
    [33] Park S B, Sun C T. Fracture criteria for piezoelectric ceramics[J]. Journal ofthe American Ceramic Society.1995,78:1475-1480.
    [34] Fu R, Zhang T Y. Effects of an electric field on the fracture toughness ofploed lead zirconate titanate ceramics[J]. Journal of the American CeramicSociety.2000,83:1215-1218.
    [35] Wang H, Singh R N. Crack propagation in piezoelectric ceramics: effect ofapplied electric fields[J]. Journal of Applied Physics.1997,81:7471-7479.
    [36] Heyer V, Schneider G A, Balke H, et al. A fracture criterion for condutingcracks in homogeneously poled piezoelectric PZT-PIC151ceramics[J]. ActaMaterialia.1998,46:6615-6622.
    [37] Zhang T Y, Zhao M, Guo N L. Failure behavior and failure criterion ofconductive cracks (deep notches) in piezoelectric ceramics. I. The chargefree zone model. II. Experimental verification[J]. Acta Materialia.2004,52:2013-2035.
    [38] Lynch C S. Fracture of ferroelectric and relaxor electro-ceramics[J]. ActaMaterialia.1998,46:599-608.
    [39] F rderreuther A, Thurn G, Zimmermann A, et al. R-curve effect, influence ofelectric field and process zone in BaTiO3ceramics[J]. Journal of theEuropean Ceramic Society.2002,22:2023-2031.
    [40] Parton V Z. Fracture mechanics of piezoelectric materials[J]. ActaAstronautica.1976,3:671-683.
    [41] Deeg W F. Analysis of dislocation, cracks, and inclusion problems inpiezoelectric solids[D]. Stanford: PhD Thesis, Stanford University,1980:1-57.
    [42] Sosa H, Pak Y E. Three-dimensional eigenfunction analysis of a crack in apiezoelectric material[J]. International Journal of Solids and Sturctures.1990,26:1-15.
    [43] Sosa H. On the fracture mechanics of piezoelectric solids[J]. InternationalJournal of Solids and Sturctures.1992,29:2613-2622.
    [44] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectricceramics[J]. Journal of the Mechanics and Physics of Solids.1992,40:739-765.
    [45] Pak Y E. Linear electro-elastic fracture mechanics of piezoelectricmaterials[J]. International Journal of Fracture.1992,54:79-100.
    [46] Park S B, Sun C T. Fracture criteria for piezoelectric ceramics[J].International Journal of Fracture.1995,70:203-216.
    [47] Xu X L, Rajapakse R K N D. Analytical solution for an arbitrarily orientedvoid/crack and fracture of piezoceramics[J]. Acta Materialia.1999,47:1735-1747.
    [48] Xu X L, Rajapakse R K N D. A theoretical study of branched cracks inpiezoelectric[J]. Acta Materialia.2000,48:1865-1882.
    [49] Chen W Q, Shioya T. Fundamental solution for a penny-shaped crack in apiezoelectric medium. Journal of the Mechanics and Physics of Solids.1999,47:1459-1475.
    [50] Wang B. Three-dimensional analysis of a flat ellipsoidal inclusion in apiezoelectric material[J]. International Journal of Solids and Structures.1992,30:781-791.
    [51] Wang Z K, Huang S H. Fields near elliptical crack in piezoelectricceramics[J]. Engineering Fracture Mechanics.1995,51:447-456.
    [52] Zhang T Y, Zhao M H, Tong P. Fracture of piezoelectric ceramics[J].Advances in Applied Mechanics.2002,38:147-289.
    [53] Chen Y H, Lu T J. Cracks and fracture in piezoelectris[J]. Advances inApplied Mechanics.2003,39:121-215.
    [54] Chen Y H, Hasebe N. Current understanding on fracture behavior offerroelectric/piezoelectric materials[J]. Journal of Interlligent MaterialSystems and Structures.2005,16:673-687.
    [55] Kuna M. Fracture mechanics of piezoelectric materials–where are we rightnow[J]. Engineering Fracture Mechanics.2010,77:309-326.
    [56] Yu S W, Qin Q H. Damage analysis of thermopiezoelectric properties: Part I-crack tip singularities[J]. Theoretical and Applied Fracture Mechanics.1996,25:263-277.
    [57] Yu S W, Qin Q H. Damage analysis of thermopiezoelectric properties: Part II–Effective crack model[J]. Theoretical and Applied Fracture Mechanics.1996,25:279-288.
    [58] Qin Q H, Mai Y W. Thermoelectroelastic Green’s function and its applicationfor bimaterial of piezoelectric materials[J]. Archive of Applied Mechanics.1998,68:433-444.
    [59] Gao C F, Wang M Z. Collinear permeable cracks in thermopiezoelectricmaterisl[J]. Mechanics of Materials.2001,33:1-9.
    [60] Shang F, Wang Z, Li Z. Thermal stresses analysis of a three-dimensionalcrack in a thermopiezoelectric solid[J]. Engineering Fracture Mechanics.1996,55:737-750.
    [61] Niraula P, Noda N. Thermal stress analysis in thermopiezoeletric strip with anedge crack[J]. Journal of Thermal Stresses.2002,25:389-405.
    [62] Wang B L, Noda N. The exact thermoelectroelasticity solution for apenny-shaped crack in piezoelectric materials[J]. Journal of Thermal Stresses.2004,27:241-251.
    [63] Ueda S, Kondo H, Iogawa T. Thermoelectromechanical response of afunctionally graded piezoelectric strip with two parallel axisymmetriccracks[J]. Acta Materialia.2010,214:205-224.
    [64] Qin Q H. Thermoelectroelastic Green’s function for a piezoelectric platecontaining an elliptic hole[J]. Mechanics of Materials.1998,30:21-29.
    [65] Qin Q H, Mai Y W. BEM for crack-hole problems in thermopiezoelectricmaterials[J]. Engineering Fracture Mechanics.2002,69:577-588.
    [66] Wang Y J, Gao C F. Thermoelectroelastic solution for edge cracks originatingfrom an eleiptical hole in a piezoelectric solid[J]. Journal of Thermal Stresses.2012,35:138-156.
    [67] Qin Q H. Green’s function for thermopiezoelectric plates with holes ofvarious shapes[J]. Archive of Applied Mechanics.1999,69:406-418.
    [68] Gao C F, Zhao Y T, Wang M Z. An exact and explicit treatment of an elliptichole problem in thermopiezoelectric media[J]. International Journal of Solidsand Structures.2002,39:2665-5685.
    [69] Qin Q H. A new solution for thermopiezoelectroelectric solid with aninsulated elliptic hole[J]. ACTA Mechanica Sinica.1998,14:157-170.
    [70] Liu J X, Zhang X S, Liu X L, et al. Anisotropic thermopiezoelectric solidswith an elliptic inclusion or a hole under uniform heat flow[J]. ACTAMechanica Sinica.2000,16:148-163.
    [71] Dai L C, Wang X W. An elliptic thermopiezoelectric inclusion problem in ananisotropic thermopiezoelectric medium[J]. Journal of Intelligent MaterialSystems and Structures.2008,269-276.
    [72] Qin Q H, Lu M. BEM for crack-inclusion problems of planethermopiezoelectric solids[J]. International Journal for Numerical Methodsin Engineering.2000,48:1071-1088.
    [73] Stroh A N. Dislocations and cracks in anisotropic elasticity[J]. PhilosophicalMagazine.1958.7:625-646.
    [74] Mindlin R D. Equations of high frequency vibrations of thermopiezoelectriccrystal plates[J]. International Journal of Solids and Structures.1974,10:625-637.
    [75] Lo K K. Analysis of branched cracks[J]. Journal of Applied Mechanics.1978,45:797-802.
    [76] Obata M, Nemat-Nasser S, Goto Y. Branched cracks in anisotropic elasticsolids[J]. Journal of Applied Mechanics.1989,56:858-864.
    [77] Azhdari A, Nemat-Nasser S. Hoop stress intensity factor and crack kinding inanisotropic brittle solids[J]. International Journal of Solids and Structures.1996,33:2023-2037.
    [78] Azhdari A, Nemat-Nasser S. Energy-release rate and crack kinking inanisotropic brittle solids[J]. Journal of the Mechanics and Physics of Solids.1996,44:929-951.
    [79] Miller G R, Stock W L. Analysis of branched interface cracks between twodissimilar anisotropic media[J]. Journal of Applied Mechanics.1989,56:844-849.
    [80] Wang T C. Kinking of an interface crack between two dissimilar anisotropicelastic solids[J]. International Journal of Solids and Structures.1994,31:629-641.
    [81] Wang T C, Shih C F, Suo Z. Crack extension and kinking in laminates andbicrystals[J]. International Journal of Solids and Structures.1992,29:327-344.
    [82] McHenry K D, Koepke B G. Electric field effects on subcritical crack growthin PZT[J]. Fracture mechanics of ceramics.1983,5:337-352.
    [83] Furuta A, Uchino K. Dynamic observation of crack propagation inpiezoelectric multilayer acturators[J]. Journal of the American CeramicSociety.1993,76:1615-1617.
    [84] Zhu T, Yang W. Crack kinking in a piezoelectric solid[J]. InternationalJournal of Solids and Structrues.1999,36:5013-5027.
    [85] Qin Q H, Mai Y W. Crack branch in piezoelectric bimaterial system[J].International journal of engineering science.2000,38,673-693.
    [86] Jeong K M, Lee J S, Beom H G. Effect of a transverse electric field on crackkinking in ferroelectric ceramics[J]. Acta Mechanica.2008,199:131-141.
    [87] Hasebe N, Tamai K, Nakamura T. Analysis of kinked crack under uniformheat flow[J]. Journal of Engineering Mechanics.1986,112:31-42.
    [88] Chao C K, Shen M H. Thermoelastic problem of curvilinear cracks in thebonded dissimilar materials[J]. International Journal of Solids and Structrues.1993,30:3041-3057.
    [89] Li R, Kardomateas G A. Thermo-elastic crack branching in generalanisotropic media[J]. International Journal of Solids and Structrues.2005,42:1091-1109.
    [90] Li R, Kardomateas G A. A solution to the thermo-elastic interface crackbranching in dissimilar anisotropic bi-material media[J]. InternationalJournal of Solids and Structrues.2006,43:913-942.
    [91] Wiliiams M L. The stresses around a fault or crack in dissimilar media[J].Bulletin of the Seismological Society of America.1959,49:199-204.
    [92] England A H. A crack between dissimilar media[J]. Journal of AppliedMechanics.1965,32:400-402.
    [93] Erdogan F. Stress distribution in bonded dissimilar materials with cracks[J].Journal of Applied Mechanics.1965,32:403-410.
    [94] Suo Z. Singularities, interfaces and cracks in dissimilar anisotropic media[J].Proceedings of the Royal Society of London A.1990,427:331-358.
    [95] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectricceramics[J]. Journal of the Mechanics and Physics of Solids.1992,40:739-765.
    [96] Huw C. Thermoelastic interface crack problems in dissimilar anisotropicmedia[J]. International Journal of Solids and Structures.1992,29:2077-2090.
    [97] Shen S P, Kuang Z B. Interface crack in bi-piezothermoelastic media and theinteraction with a point heat source[J]. International Journal of Solids andStructures.1998,35:3899-3915.
    [98] Comninou M. The interface crack[J]. Journal of Applied Mechanics.1977,44:631-636.
    [99] Comninou M, Schmueser D. The interface crack in a combinedtension-compression and shear field[J]. Journal of Applied Mechanics.1979,46:345-348.
    [100]Rice J R. Elastic fracture mechanics concepts for interfacial cracks[J].Journal of Applied Mechanics.1988,55:98-103.
    [101]Gautesen A K, Dundurs J. The interface crack under combined loading[J].Journal of Applied Mechanics.1988,55:580-586.
    [102]Deng X. A note on interface cracks with and without friction in contactzone[J]. Journal of Applied Mechanics.1994,61:994-995.
    [103]Wang S S, Choi I. The interface crack between dissimilar anisotropiccomposite materials[J]. Journal of Applied Mechanics.1983,50:169-178.
    [104]Anderson P M. Small scale contact conditions for the linear elastic interfacecrack[J]. Journal of Applied Mechanics.1988,55:814-817.
    [105]Lee J, Gao H. Generalized Comninou contact model for interface cracks inanisotropic elastic solids[J]. International Journal of Fracture.1994,67:53-58.
    [106]Herrmann K P, Loboda V V. Special approach for the determination offracture mechanical parameters at an interface crack tip[J]. Archive ofApplied Mechanics.1998,68:227-236.
    [107]Herrmann K P, Loboda V V. On interface crack models with contact zonessituated in an anisotropic bimaterial[J]. Archive of Applied Mechanics.1999,69:317-335.
    [108]Xiao Z M, Zhao J F. Electro-elastic stress analysis for a Zener-Stroh crack atthe metal/piezoelectric bi-material interface[J]. International Journal ofSolids and Structures.2004,41:25001-2519.
    [109]Herrmann K P, Loboda V V. Fracture mechanical assessment of electricallypermeable interface cracks in piezoelectric bimaterials by consideration ofvarious contact zone models[J]. Archive of Applied Mechanics.2000,70:127-143.
    [110]Herrmann K P, Loboda V V, Govorukha V B. On contact zone models for anelectrically impermeable interface crack in a piezoelectric bimaterial[J].International Journal of Fracture.2001,111:203-227.
    [111]Qin Q H, Mai Y W. A closed crack tip model for interface cracks inthermopiezoelectric materials[J].1999,36:2463-2479.
    [112]Needleman A. An analysis of temsile decohesion along an interface[J].Journalof the Mechanics and Physics of Solids.1990,38:289-324.
    [113]Tvergaard V, Hutchinson J W. The influence of plasticity on mixed modeinterface toughness. Journalof the Mechanics and Physics of Solids.1993,41:1119-1135.
    [114]Tvergaard V. Resistance curves for mixed mode interface crack growthbetween different elastic-plastic solids[J]. Journalof the Mechanics andPhysics of Solids.2001,49:2689-2703.
    [115]Loboda V, Lapusta Y, Sheveleva A. Electro-mechanical pre-fracture zones foran electrically permeable interface crack in a piezoelectric bimaterial[J].International Journal of Solids Structures.2007,44:5538-5553.
    [116]Govorukha V, Kamlah M. Prefracture zone modeling for an electricallyimpermeable interface crack in a piezoelectric bimaterial compound[J].Journalof the Mechanics and Physics of Solids.2008,3:1447-1463.
    [117]Kit G S, Podstrigach Ya S. Determination of the stationary temperature fieldand stresses in the vicinity of a slit possessing hear resistance[J]. MaterialsScience.1967,2:177-181.
    [118]Koizume T, Takakuda K, Shibuya T, et al. An infinite plate with a flaw andsubjected to uniform heat flow[J]. Journal of Thermal Stresses.1979,2:341-351.
    [119]Barber J R. Imperfectly onducting penny-shaped crack in an elastic solid[J].Journal of Thermal Stresses.1980,3:77-83.
    [120]Brown B J, Erdogan F. Thermal stresses in bonded materials containing cutson the interface[J]. International Journal of Engineering Science.1968,6:517-529.
    [121]Kuo A Y. Effects of crack surface heat conductance on stress intensityfactors[J]. Journal of Applied Mechanics.1990,57:354-358.
    [122]Thangjitham S, Choi H J. Thermal stress singularities in an anisotropic slabcontaining a crack[J]. Mechanics of Materials.1993,14:223-238.
    [123]Lee K Y, Park S J. Thermal stress intensity factors for partially insulatedinterface crack under uniform heat flow[J]. Engineering Fracture Mechanics.1995,475-482.
    [124]Zhou Y T, Li X, Yu D B. A partially insulated interface crack between agraded orthotropic coating and a homogeneous orthotropic substrate underheat flux supply[J]. International Journal of Slids and Structures.2010,47:768-778.
    [125]Kit G S, Frenchko Yu S. Influence of the thermal permeablility of anare-shaped crack on the thermoelastic state in its neighborhood[J]. MaterialsScience.1975,9:70-74.
    [126]Ricoeur A, Kuna M. The thermoelectromechanical J-integral and the thermalpermeability of cracks[J]. Key Engineering Materials.2008,385-387:569-572.
    [127]Dunn M L. The Effects of crack face boundary conditions on the fracture ofpiezoelectric solids[J]. Engineering Fracture Mechanics.1994,48:25-39.
    [128]Shindo Y, Ozawa E, Nowacki J P. Singular stress and electric fields of acracked piezoelectric strip[J]. International Journal of AppliedElectromagnetics and Mechanics.1990,1:77-87.
    [129]Shindo Y, Watanabe K, Narita F. Electroelastic analysis of a piezoelectricceramic strip with a central crack[J]. International Journal of EngineeringScience.2000,38:1-19.
    [130]Hao T H, Shen Z Y. A new electric boundary condition of electric fracturemechanics and its application[J]. Engineering Fracture Mechanics.1994,47:793-802.
    [131]Wang B L, Mai Y W. Impermeable crack and permeable crack assumptions,which one is more realistic[J]? Journalof Applied Mechanics.2004,71:575-578.
    [132] Wang B L, Mai Y W. Applicability of the crack-face electromagneticboundary conditions for fracture of magnetoelectroelastic materials[J].International Journal of Slids and Structures.2007:44:387-398.
    [133]Barnett D M, Lothe J. Dislocations and line charges in anisotropic media[J].Physica Status Solidi (B),1975,67:105-111.
    [134]方岱宁,刘金喜.压电与铁电体的断裂力学[M].北京:清华大学出版社,2008:74-82.
    [135]Ting T C T. Explicit solution and invariance of the singularities at aninterface crack in anisotropic composites[J]. International Journal of Solidsand Structures,1986,22:965-983.
    [136]Muskhelishvili N I. Some basic problems of the mathematical theory ofelasticity[M]. Leiden: Noordhoff,1975:73-160.
    [137]Rudin W. Real and complex analysis[M]. New York: McGraw-Hill,1987:136-219.
    [138]Erdogan F, Gupta G D, On the numerical solution of singular integralequations[J]. Quarterly of Applied Mathematics,1972,32:525-534.
    [139]Bogy D B. Two edge-bonded elastic wedges of different materials and wedgeangles under surface tractions[J]. Journal of Applied Mechanics.1971,38:377-386.
    [140]Keer L M, Miller G R. Approximate analysis model of anchor pull-out test[J].ASME Journal of Applied Mechanics.1982,49:768-772.
    [140]Tsamasphyros G, Song Z F. Analysis of a crack in a finitethermopiezoelectric plate under heat flux[J]. International Journal of Fracture,2005,136:143-166.
    [141]Zhang T Y, Qian C F, Tong P. Linear electro-elastic analysis of a cavity of acrack in a piezoelectric material[J]. International Journal of Solids andStructures,1998,35:2121-2149.
    [142]Qin, Q.H., Mai, Y.W.,1997. Crack growth prediction of an inclined crack ina half-plane thermopiezoelectric solid. Theor. Appl. Fract. Mech.26,185-191.
    [143]Bilby B A, Eshelby J D. Dislocations and the theory of fracture. Fracture: AnAdvanced Treatise[M]. New York: Academic Press,1968:99-182.
    [144]Malyshev B M, Salganik R L. The strength of adhesive joints suing thetheory of cracks[J]. International Journal of Fracture Mechanics.1965,5:114-128.
    [145]Hutchinson J W, Suo Z. Mixed mode cracking in layered materials[J].Advanced in Applied Mechanics.1992,29:63-191.
    [146]Liechti K M, Chai Y S. Asymmetric shielding in interfacial fracture underinplane shear[J]. Journal of Applied Mechanics.1992,59:295-304.
    [147]Erdogan F, Ozturk M. On the singularities in fracture and contactmechanics[J]. Journal of Applied Mechanics.2008,75:05111.1-051111.12.
    [148]Liu C B, Bain Z G, ChenW Q, et al. Three-dimensional pyroelectric analysisof a functionally graded piezoelectric hollow sphere[J]. Journal of ThermalStresses.2012,35:499-516.
    [149]Sun C T, Jih C J. On strain energy release rates for interfacial cracks inbimaterial media[J]. Engineering Fracture Mechanics.1987,28:13-20.
    [150]Williams M L. The stress around a fault or crack in dissimilar media.Bulletin of the Seismological Society of America1959,49:199-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700