用户名: 密码: 验证码:
阳光泵浦Cr/Nd:YAG陶瓷激光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳光泵浦固体激光器在空间电站、清洁能源、海洋和大气探测、深度空间通讯等领域有着潜在应用价值。目前,太阳光直接泵浦固体激光器普遍存在阈值泵浦功率偏高、体积庞大和难于维护等问题,本文以Cr/Nd:YAG陶瓷作为激光工作物质,针对太阳光泵浦固体激光器中的几个关键问题进行了研究,主要包括激光介质的基本特性,菲涅尔聚焦透镜的设计以及低阈值激光器的设计与实验。力求实现一种低阈值、小体积、便于操作的太阳光直接泵浦固体激光器。
     本论文首先研究了Cr/Nd:YAG陶瓷的光谱特性及Cr~(3+)向Nd~(3+)能量转移机制。将Nd~(3+)掺杂浓度相同的Nd/Cr:YAG陶瓷与Nd:YAG晶体的吸收谱进行对比研究,发现在各自吸收峰值处Cr~(3+)的吸收截面比Nd~(3+)的吸收截面大。测算出利用808nm激光单独激励的Cr/Nd:YAG陶瓷在1064nm处的有效受激发射截面为3×10~(-19)cm~2。太阳光同时激励Cr~(3+)与Nd~(3+)时,计算得出Cr/Nd:YAG陶瓷的有效受激发射截面为单独激励Nd~(3+)(或Nd:YAG晶体)的三倍。采用理论计算与实验两种方法,分析了Cr/Nd:YAG陶瓷在579nm到601nm的可调谐激光激励下的有效能级寿命,证明了不同泵浦源激励下激光上能级有效寿命随之变化,本论文中以菲涅尔透镜聚焦后光谱为基础,计算了此泵浦光谱下的激光上能级有效寿命为0.55ms。因此选择Cr/Nd:YAG陶瓷激光介质将大幅度地降低激光输出的阈值泵浦功率,有利于太阳光低辐射功率密度下获得激光输出。
     在菲涅尔透镜设计方面,本文提出了聚焦光谱与Cr/Nd:YAG陶瓷吸收谱相匹配的菲涅尔透镜设计方法。首先,根据几何光学原理及预估校正算法对直径600mm焦距为600mm的菲涅尔透镜参数进行求解;其次,基于蒙特卡洛算法,比较三种菲涅尔透镜设计方法对直径5mm厚度3mmCr/Nd:YAG陶瓷的聚焦平均功率密度与平均吸收功率密度的影响。采用菲涅尔透镜强聚焦设计方法计算出的聚焦平均功率密度比菲涅尔透镜成像设计方法提高了18.8%,同时Cr/Nd:YAG陶瓷吸收的平均功率密度被提高了16.3%。而强吸收设计方法获得的平均吸收功率密度比传统的成像设计方法提高~20%,有利于实现太阳光低辐射功率密度下的激光振荡输出。
     在理论方面,建立了菲涅尔透镜聚焦混合泵浦Cr/Nd:YAG陶瓷连续运转理论模型,解释了国外报道的激光输出特性现象,并提出了低泵浦阈值功率实验运转方案。首先,采用光迹追踪算法计算了泵浦效率,并提出泵浦阈值功率密度概念,建立了平均泵浦束腰随入射的太阳光功率变化的物理模型,数值计算了激光振荡过程的模式交叠积分与模式交叠效率;其次,此理论模型数值计算出的激光输出特性与国外文献所给出的实验结果相吻合,并对实验结果给予定性分析。最后,理论分析得出1.3m~2菲涅尔透镜的聚焦效果下,选择直径为5mm长为50-60mm棒状的激光介质可降低激光泵浦阈值功率,有利于低辐射密度太阳光下获得激光输出。
     在实验方面,使用1.3m~2菲涅尔透镜以及入口直径为25mm、出口直径为9mm的锥型陶瓷腔聚焦泵浦直径5mm、长度60mm的Cr/Nd:YAG陶瓷,在太阳光辐射为760W/m~2与800W/m~2的天气条件下进行了太阳光泵浦固体激光器的研究工作。两种天气下,输出耦合反射率为99%激光输出功率分别为0.58W与0.94W,输出耦合反射率为97%时激光输出功率分别为0.62W与1.4W。在此设计方案下,通过跟踪偏差实验计算出的有效泵浦阈值功率约为190W明显低于国外采用尺寸为直径9mm、长度100mm的Cr/Nd:YAG陶瓷的有效泵浦阈值功率272W。最后通过能流密度模型给出了近似条件下泵浦光强分布函数,找到了由于实验条件限制导致实验结果低于预期的原因,并且理论计算了理想情况下的激光输出特性。
Solar-pumped lasers have potential applications in space solar power system(SSPS), atmospheric and ocean sensing, deep space communications and other fields.Currently, the key issues of solar-pumped solid-state lasers are generally researched asfollowing:(a), the threshold pumped power is higher.(b), the volume is large.(c), it isharder to maintain. In this paper, based on Cr/Nd:YAG ceramic laser medium, severalcrucial questions are researched including the basic characteristic of laser medium, thedesign of Fresnel lens, and design and experimental scheme of the lower thresholdpumped power.
     The spectrum characteristic of Cr/Nd:YAG ceramic laser medium and energytransition mechanism are firstly researched. With the same dilution Nd~(3+)concentration,both absorption spectrum of Nd:YAG crystal and Nd/Cr:YAG ceramic were comparied,The effective absorption cross section of Cr~(3+)is larger than Nd~(3+)at their absorbancepeaks. The stimulated emission spectrum was measured, when Nd~(3+)was excited at808nm, and the calculation result of effective stimulated cross-section was3×10~(-19)cm~2.The stimulated cross-section was largly enhanced because of resonance energy transferbetween Cr~(3+)and Nd~(3+), when Cr~(3+)and Nd~(3+)were exicted by solar spectrum at the sametime. The stimulated cross-section was three times larger than Nd:YAG crystal. Thetheory and experiment two kinds of methods were used to analyze the effective lifetimeof Nd upper level of Cr/Nd:YAG ceramic excieted by tunable pulsed dye laser between579nm and601nm.The results show that the lifetime of Nd upper level for Cr/Nd:YAGceramic was dependent of various exicting spectum. In this paper, based on solarspectrum focused by Fresnel lens, the calculation result of the effective lifetime of Ndlaser upper level was0.55ms. Therefore, Cr/Nd:YAG ceramic was used for solarpumped laser which was helpful for realizing the laser output on the low irradiancedays.
     On the design of Fresnel lens, the design method of Fresnel lens was proposed onmatching spectrum focused by Frsenel lens and the absorption spectrum of Cr/Nd:YAGceramic. Firstly, On the basis of geometrical principle and predictor-correctingalgorithm, the parameters of Fresnel lens with diameter600mm and focused length600mm was calculated, comparing with three design schemes which influencedmaximum power density and maximum absorption densiy of5mm×3mmCr/Nd:YAGceramic. Maximum foucsed power density design was18.8%higher than the designbased on the purpose of image projection, the absorption power density of Cr/Nd:YAG ceramic is16.3%higher than the design based on the purpose of image projection in themeantime. The design based on the prupose of obtaining maximum absorb powerdensity is about20%higher than image projection design. The design method of Fresnellens for the prupose of obtaining maximum absorb power denstiy is useful for obtainingthe laser output on low irradiance days in conclusion.
     In the theory, the physical model of the solar-pumped with Fresnel lenses andCr/Nd:YAG ceramic had been set up, on the basis of which the laser outputcharacteristics of foreign reported paperwere analyzed, and the experimental scheme oflow threshold pumping power was proposed. Firstly, the pumping efficiency wascalculated based on the trace ray algorithm, the conception of threshold pumping powerdensity and the physical model which aveage pumping beam waist was along withincident sunlight power were proposed. The model overlapping integral and efficiencyof laser oscillation were calculated. Secondly, the calculation result of laser outputcharacteristics were consistent with reported experimental result by qualitativelyanalyzing. Based on above physical model, for1.3m~2Fresnel lens, choosingФ5mm×50~60mm Cr/Nd:YAG ceramic laser medium was effectively decreasing lowpumping threshold power and helpful for obtaining laser oscillation on low irradiancedays.
     On the source sunlight760W/m~2and800W/m~2, laser output power ofsolar-pumped laser system were stuied with Fresnel lens of1.3m~2surface area, conicalcavity with25mm in inlet diameter and9mm in outlet diameter and Ф5mm×60mmCr/Nd:YAG ceramic. On the two kinds of conditions, laser output power had achieved0.62W and1.4W repectively when the reflectivity of the output coupling mirror is97%.0.58W and0.94W have achieved when the reflectivity of the output coupling mirror is99%. On the basis of thisexperimental scheme, the calculation result of effectivethreshold pumping power is about190W, which was lower than the reported272Wfrom foreign literatures. Finally, distribution function of pumping power was establishedaccoring to power density model, and the reason of the experimental results performedbelow expectations was explained. Under ideal experimental conditions, the laser outputcharacteristics were calculated and analyzed.
引文
[1] Brauch U, Muckenschnabel J, Opower H, et al. Solar Pumped Solid State Lasersfor Space to Space Power Transmission[J]. Space Power,1991,10(3):285–294.
    [2] Duchet M, Cabaret L, Laurens A, et al. Space Power Supply Networks UsingLaser Leams[J]. Space Power,1992,11(4):241–250.
    [3] Hall R B. Lasers in Industrial Chemical Synthesis[J]. Laser Focus,1992:57–62.
    [4] Payziyev Sh D, Bakhramov S A, Kasimov A K. Transformation of ConcentratedSunlight into Laser Radiation on Small Parabolic Concentrators[J]. Journal ofRenewable and Sustainable Energy,2011,3:053102-1-053102-8
    [5] Vasile M, Maddockm Ca, Design of a Formation of Solar Pumped Lasers forAsteroid Deflection[J]. Advances in Space Research,2012,5(7):891-905.
    [6] DeY R J, Walbexg G D, Conway E J, et al. NASA High-power Space-based LaserResearch and Applications Program[C]. NASA Langley Research Center,NASA-SP-464, Langley AFB, VA,1983.
    [7] Mohamed S, Yabe T, Baasandash C, et al. Laser-induced Magnesium Productionfrom Magnesium Oxide Using Reducing Agents[J]. Journal of Applied Physics,2008,104(11):113110-1-113110-7.
    [8] Key World Energy Statistics. International Energy Agency.2007. http://www. iea.org/Textbase/nppdf/free/2007/Key_Stats_2007.pdf.
    [9] Glazer P E. Power from the Sun: Its Future[J]. Science,1968,162(3856):857-861.
    [10] Masahiro M, Hideshi K,Yuka S. Summary of Studies on Space Solar PowerSystems of Japan Aerospace Exploration Agency(JAXA)[J]. Acta Astronautica2006,59(6):132-138.
    [11] Brauch U, Opower H, Wittwer W, et al. Solar-pumped Solid State Lasers forSpace-Space Power Transmission[C]. Second International Symposium―Powerfroom Space‖SPS-91. Paris:Societe des Electriciens et des Electroniciens andSociete des Ingenieurs et Scientifiques de France,1991:320-326.
    [12] Fay E H, Stavnes M, Cull R C. Beam Power Options for the Moon[C]. Proceedings,Second International Symposium―Power froom Space‖SPS-91, Paris:Societe desElectriciens et des Electroniciens and Societe des Ingenieurs et Scientifiques deFrance,1991:239-247.
    [13] Landis G A. Space power by Ground-Based Laser Illumination[J]. IEEE Aerospaceand Electronic Systems Magazine,1991,6(11):3-7.
    [14] Smakhtin A P. Laser space power system for Moon: ecological safety and highefficiency[C]. Energy Conversion Engineering Conference IECEC-97Proceedingsof the32nd Intersociety. Moscow:Aerospace Power Systems and Technologies,1997,1:609-641.
    [15] Oda M, Mori. JAXA‘s Current Study Status of the1GW Class Operational SSPSand its Precursor[C].54th International Astronautical Congress of the InternationalAstronautical Federation Stepwise development of SSPS54IAC. Japan:International Astronautical Federation,2003,3:151-156.
    [16] Mori M, Kagawa H, Saito Y, et al. Current Status of Study on Hydrogen Productionwith Space Solar Power Systems[C]. Proceedings of the Fourth InternationalConferenceon Solar Power from Space-SPS‘04-together with The FifthInternational Conferenceon Wireless Power Transmission WPT5. Granada:European Space Agency,2004,567:3-9.
    [17] Shinohara Y, Kisara K, Suzuki H, Prospect of YAG Laser Medium for Laser SpaceSolar Power System and Possible Application of Graded Structure for EfficientCooling System[C].10th International Symposium on Multiscale, Multifunctionaland Functionally Graded Materials. JAPAN:Multiscale, Multifunctional andFunctionally Graded Materials.2008,631:9-14.
    [18] Sakurai Y, Yabe T, Ikuta K, et al. Magnesium Energy Cycle System for the PowerProduct[J]. Chnese Optcis Letters,2008,5:S102-S104.
    [19] Yabe T, Uchida S, Ikua K, et al. Demonstrated Fossil-Fuel-Free Engery CycleUsing Magnesium and Laser[J]. Appl Phys Letters2006,89:261107-1-261107-3.
    [20] Yabe T, Mohamed M S, Uchida S. Noncatalytic Dissociation of MgO by LaserPulses Towards Sustainable Energy Cycle[J]. Journal of Applied Physics,2007,101(12):123106-1-123106-7.
    [21] Saiki T, Uchida S, Motokoshi S, et al. Development of Solar-Pumped Lasers forSpace Solar Power Station[C]. International Astronautical Federation-56thInternational Astronautical Congress. Fukuoka: International AstronauticalFederation,2005,7:4250-4255.
    [22] Yabe T, Ohkubo T, Uchida T, et al. Experimental Study of Solar Pumped Laser forMagnesium-Hydrogen Energy Cycle[C].5th International Conference on InertialFusion Sciences and Applications. Japan:Journal of Physics: Conference Series,2008,112:042072-1-042072-6.
    [23] Kiss Z J, Lewis H R, Duncan R C. Sun Pumped Continuous Optical Laser [J].Applied Physic Letter,1963,2(5):93-94.
    [24] Yong C G. A Sun-Pumped CW One-Watt Laer[J]. Applied Optics,1966,5(6):993-998.
    [25] Jenkins D, Lando M, Gallagher O, et al. A Solar Pumped Nd:YAG Laser with aRecord Efficiency of4.7W/m2of Primary Mirror Area[J], Bulletin Israeli PhysicalSocitey,1996,101(12):305-314.
    [26] http:www.opticsjournal.net/lop.htm? action=post&oid=PT080814000013Lh.
    [27]李洪波.空间太阳能电源[J].世界科学,2006,4:28-30.
    [28]克希耐尔W.固体激光工程[M].孙文,江泽文,程国祥译.北京:科学出版社,2002:120-126.
    [29] Ohkubo T, Yabe T, Yoshida K, et al. Solar-pumped80W Laser Irradiated by aFresnel lens[J]. Optics. Letter,2009,34(2):175-177.
    [30] Landoa M, Kagana J, Linyekin B, et al. A solar-pumped Nd:YAG Laser in the HighCollection Efficiency Regime[J]. Optics Communications,2003(222):371-381.
    [31] Falk J, Huff L, Taynai J D. Solar-pumped, Mode-locked, Frequency DoubledNd:YAG Laser[C]. Conference on Laser Engineering and Applications (OSA,Washington, D.C.),1975:14-15.
    [32] Kiss Z J, Dunca R C. Cross-Pumped Cr3+-Nd3+:YAG Laser System[J]. AppliedPhysic Letter,1964,5(10):200-202.
    [33] Liang D, Monteiro F L, Teixeira R M, et al. Collares-Pereira. Fiber-optic SolarEnergy Transmission and Concentration[J]. Solar Energy Materials and Solar Cells,1998,54(1):323-331.
    [34] Liang D, Bernardes P, Martins R. Sun-Pumped Nd:YAG Laser with ExcellentTracking Error Compensation Capacity[C]. Technical Digest Series of CLEO/Europe-EQEC. Munich:Institute of Electrical and Electronics Engineers Inc.2005,29B:39.
    [35] Pedro H, Bernardes, Liang D. End-side Pumped Solar Laser by a Fused SilicaLight Guide Assembly[C]. Quantum Electronics and Laser Science Conference,2005,2:871-873.
    [36] Almeida J, Liang D, Guillot E. Improvement in Solar-Pumped Nd:YAG LaserBeam Brightness[J]. Optics and Laser Technology,2012,44(7):2115-2119.
    [37] Geraldes P J, Liang D, An Alternative Solar Pumping Approach by a Light GuideAssembly Elliptical-cylindrical Cavity[J]. Solar Energy Materials and Solar Cells,2008,92(8):836-843.
    [38] Yabe T, Ohkubo T, Uchida S, et al. High-efficiency and Economical Solar-energy-pumped Laser with Fresnel Lens and Chromium Codoped Laer Medium[J].Applied Physic Letter,2008,90(26):261120-1-261120-3.
    [39] Yabe T, Ohkubo T, Uchida S, et al.100W-class Solar Pumped Laser for SustainableMagnesium-Hydrogen[J]. Journal of Applied Physic,2008,104(8):083104-1-083104-8.
    [40] Dinh T H, Ohkubo T, Yabe T, et al.120watt Continuous Wave Solar-Pumped Laserwith a Liquid Light-Guide Lens and an Nd:YAG Rod[J]. Optics Letters2012,37(13):2670-2672.
    [41]赵长明,赵彬,何建伟.太阳光泵浦固体激光器及其空间应用[J].红外与激光工程,2006,25(3):95-99.
    [42]何建伟,赵长明,杨苏辉等.太阳能泵浦固体激光器设计[J].北京理工大学学报,2007,27(12):1115-1117.
    [43]何建伟,赵长明,杨苏辉.太阳能直接抽运Nd:YAG激光器[J].中国激光,2009,36(1):255-256.
    [44]赵长明,何建伟,杨苏辉.太阳能直接抽运的激光器研究史与发展趋势[J].中国激光,2009,36(7):1671-1678.
    [45]罗萍萍,刘诚,徐鹏,赵长明等.使用菲涅耳透镜的太阳光抽运Nd:YAG激光器[J].中国激光,2011,38(10):1002002-1-1002002-3.
    [46]何建伟,赵长明,杨苏辉等.用于太阳光泵浦激光器的菲涅尔透镜设计方法.光学技术,2008,34(4):552-554.
    [47]张幼文.红外光学工程[M].上海:上海科学技术出版社,1982:25-42.
    [48] Shaham Y J, Umbricht M, Rudin S. Cold Shield Effectivenss in MWIR Cameras[J].Proceedings of SPIE,1994,2269:438-440.
    [49] Winston R, Wilford W. High Collection Nonimaging Optics[M]. Academic press,San Diego, USA:Springer,1989:198-199.
    [50] Winston R, Gleckman P, O'Gallagher J J. Approaching the Irradiance of the Surfaceof the Sun[C]. In Proceedings of the fourth international symposium on research,development, and applications of solar thermal technology,1988:579-586.
    [51] Krupkin V, Kagan Y, Yogev A. Non Imaging Optics and Solar Laser Pumping at theWeizmann Institute[J]. SPIE,1993,(2016):50-59.
    [52]张延炘.尺寸误差及表面发射率对复合抛物面聚光器特性的影响[J].仪器仪表学报,1988,(9):346-351.
    [53] Weksler M, Shwartz J. Solar-Pumped Solid-state Lasers[J]. IEEE Journal ofQuantum Electron,1988,24(6):1222.
    [54] Cooke D. Sun-pumped Laser: Revisiting an Old Lproblem with NonimagingOptics[J]. Applied Optics,1992,31(36):7541-7546.
    [55] Bernstein H, Thompson G, Yogev A. Beam Quality Measurements and Improve-ment in Solar Pumped Laser Systems[C]. SPIE,1990,1442:81-88.
    [56] NaftaW N, Peer I, Yogev A. Beam Quality of Solar Pumped Lasers[C]. Part of theSPIE Conference on Nonimagincj Optics: Maximum Efficiency LiQht Transfer V,1999,3781:79-84.
    [57] Arashi H, Kaneda Y. Solar-pumped Laser and Its Second Harmonic Generation[J].Solar Energy,1993,50(5):447-451.
    [58] Lando M, Jenkins D G, Bernstein H, et al. High-brightness So1ar Pumped Nd:YAGLaser Design[C]. in: I. Shladov (Ed.),9th Meeting on Optical Engineering in Israel,Proc, SPIE,1995,2426:478-490.
    [59] Jenkins D, Lando M, Gallagher J O, et al. A Solar Pumped Nd:YAG Laser with aRecord Efficiency of4.7W/m2of Primary Mirror Area[J]. Bulletin Israeli PhysicalSocitey,1996,101.
    [60] Lando M, Kagan J, Linyekin B, et al. A Solar-pumped Nd:YAG Laser in the HighCollection Efficiency Regime[J]. Optics. Communications,2003222(1):371-381.
    [61] Saiki T, Uchida S, Imasaki K, et al. Solar-pumped Nd Doped Multimode-fiberLaser with D-shaped Large Clad[C]. Proceedings of2nd International Symposiumon Beamed Energy Propulsion. Sendai:AIP Conference Proceedings,2004,702:378-389.
    [62] Mizuno S, Ito H, Hasegawa K, et al. Laser Emission from a Solar-Pumped Fiber[J].Optics Express,2012,20(6):5891-5895.
    [63] Mak A A, Belousova I M, Kiselev V M, Converting Solar Energy into LaserRadiation Using a Fullerene-Oxygen-Iodine Laser with Solar Pumping[J]. Journalof Optical Technology.2009,76(4):172-186.
    [64] Mizuno S, Ito H, Hasegawa K, et al. Spectroscopic Properties of Nd, Er CodopedGlasses for Solar Pumped Fiber Lasers[C]. Conference on Optical Componentsand Materials VIII. San Francisco:Optical Components and Materials VIII,2011,7934.
    [65] Ikesue A, Kinoshita T, Kamata K, et al.“Fabrication and Optical Properties ofHigh-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers[J].Journal of the American Ceramic Society.1995,78(4):1033-1040.
    [66] Young D, R J. Beam Profile Measurement of a Solar-pumped Iodine Laser[J].Applied Optics,1986,25(21):3850-3854.
    [67] Young D, R J, Weaver, W R. Low-threshold Solar-pumpded Laser Using C2F5I[C].Applied Physics Letters,1986,49(18):369-370.
    [68] Seregin A A, Seregina E A. Solar-Pumped Ground-based Pulsed Liquid Laser.Laser physics,2005,15(3):401-404.
    [69] Lando M, Kagan J, Shimony Y, et al. Solar Pumped Solid State Laser Program[J].SPIE,1997,3110:196-201.
    [70] Xie W T, Dai Y J, Wang R Z, et al. Spectroscopic Investigation of Nd3+-DopedZBLAN Glass for Solar-Pumped Laser[J]. Renewable and Sustainable EnergyReviews,2011,28(8):2001-2006.
    [71] Naichia Y. Optical Geometry Approach for Elliptical Fresnel Lens Design andChromatic Aberration[J]. Solar Energy Materials and Solar Cells,2009,93(8):1309-1317.
    [72] Hideki Y, Takagimi Y, Kazunori T. The Optical Properties and Laser Characteristicsof Cr3+and Nd3+Co-doped Y3Al5O12Ceramics[J]. Optics and laser Technology,2008,39(16):1295-1300.
    [73] Nakatsuka M, Yoshida H, Fujimoto Y, et al. Recent Topics in Engineering forSolid-State Peak-Power Lasers in Repetitive Operation [J]. Journal Korean PhysicSociety,2003,43(4):607-615.
    [74] Okada H, Yoshida H, Sumimura K, et al. Data Replica Allocation MethodsConsidering Power Consumptions in Ad Hoc Networks[J]. Information ProcessingSociety of Japan Journal,2006,47(1):15-27.
    [75] Yagi H, Yanagitani T, Yoshida H, et al. Highly Efficient Flashlamp-Pumped Cr3+and Nd3+Codoped Y3Al5O12Ceramic Laser[J]. Japanese Journal of Applied Physic,2006(45):133-135.
    [76] Saiki T, Imasaki K, Motokoshi S, et al. Disk-type Nd/Cr:YAG Ceramic LasersPumped by Arc-Metal-Halide-Lamp[J]. Optics Communication,2006,268(1):155-159.
    [77] Thompson G A, Yogev A, Reich A, et al. Effects of Coolant Temperature and PumpPower on the Power Output of Solar-pumped Solid State Lasers[J]. OpticalEngineering,1992,31(11):2488-2491.
    [78] Lee J H, Lee M H, Weaver W R. High Power CW Iodine Laser pumped by SolarSimulator[C]. Lasers '86Proceedings of the Ninth International Conference onLasers and Applications. Orlando:STS Press,1987,3:150-156.
    [79] Saiki T, Motokoshi S, Imasaki K. High Repetition Rate Laser Pulses Amplified byNd/Cr:YAG Ceramic Amplifier under CW Arc-Lamp-Light Pumping[J]. OpticsCommunications,2009,282(13):2556-2559.
    [80] Saiki T, Motokoshi S, Imasaki K, et al. Nd/Cr:YAG Ceramic Rod Laser PumpedUsing Arc-Metal-halide-Lamp[J]. Japanese Journal of Applied Physics,2006,46(1):156-160.
    [81] Saiki T, Motokoshi S, Imasaki K, et al. Oscillation Property of Rod-TypeNd/Cr:YAG Ceramic Lasers with Quasi-Solar Pumping[C]. CLEO(OSA),2007:CThT3.
    [82] Saiki T, Motokoshi S, Imasaki K, et al. Two-pass Amplification of CW Laser byNd/Cr:YAG Ceramic Active Mirrorunder Lamp Light Pumping[J]. OpticsCommunications,2009,282(5):936-939.
    [83] Kiss Z J, Duncan R C. Cross-Pumped Cr3+-Nd3+:YAG Laser System[J]. AppliedPhysic Letters,1964,5(10):200-202.
    [84] Koechner W. Solid-State Laser Engieering[M]. Springer:Verlag Heidelberg (fifthEd.),2005:57.
    [85] Saiki T, Motokoshi S, Imasaki K, et al. Nd/Cr:YAG Ceramic Rod Laser PumpedUsing Arc-Metal-Halide-Lamp[J]. Japanese Journal of Applied Physics,2007(46):156-160.
    [86] Saiki T, Motokoshi S, Imasaki K, et al. Laser pulses amplified by Nd/Cr:YAGceramic amplifier using lamp and solar light sources[J]. Optics Communications,2009,282(7):1358-1362.
    [87] Saiki T, Nakatsuka M, Imasaki K. Highly Efficient Lasing Action of Nd3+and Cr3+Doped YAG Ceramics Based on Phonon-Assisted Cross-Relaxation Using SolarLight Source[J]. Japanese Journal of Applied Physic,2010(49):082702-1-082702-8.
    [88] Saiki T, Motokoshi S, Imasaki K, et al. Effective Fluorescence Lifetime andStimulated Emission Cross-Section of Nd/Cr:YAG Ceramics under CW LamplightPumping[J]. Japanese Journal of Applied Physic,2008,47(7):7896-7902.
    [89] Hideki Y, Takagimi Y, Kazunori T. Highly Efficient Flashlamp-Pumped Cr3+andNd3+Codoped Y3Al5O12Ceramic Laser[J]. Japanese Journal of Applied Physics,2006,45(1):133-135.
    [90] Hideki Y, Takagimi Y, Kazunori T, et al. Characterizations and Laser Performancesof Highly Transparent Nd3+:Y3Al5O12Laser Ceramics[J]. Optical Materials,2008,29(10):1258–1262.
    [91] Krupke W F, Shinn M D, Marion J E, et al. Spectroscopic, optical, and thermo-mechanical properties of Nd and Cr Doped GSGG[J]. Journal Optical SocietyAmerica B,1986,3(1):102-114.
    [92] Moulton P F. Spectroscopic and Laser Characteristics of Ti:Al2O3[J]. JournalOptical Society America B,1986,3(1):125-133.
    [93] Payne S A, Chase L L, Smith L K, et al. Infrared Cross-Section Measurements forCrystals Doped with Er3+, Tm3+, and Ho3+[J]. IEEE Journal of quantum electronic,1992,28(11):2619-2629.
    [94] Kumar G A, Jianren L, Kaminskii A A, et al. Spectroscopic and StimulatedEmission Characteristic of Nd3+in Transparent YAG ceramics[J]. IEEE Journal ofquantum electronic,2004,40(6):747-757.
    [95] Koechner W. Solid-State Laser Engieering[M]. Springer:Verlag Heidelberg (fifthEd.)2005:26.
    [96] Koechner W. Solid-State Laser Engieering[M]. Springer:Verlag Heidelberg (fifthEd.)2005:106.
    [97] Endo M. Optical Characteristics of Cr3+and Nd3+Codoped Y3Al5O12Ceramics[J].Optics and Laser Technology,2010,42(4):610-616.
    [98] Saiki T, Nakatsuka M, Fujioka K, et al. Cross Relaxation and Spectral broadeng ofgain for Nd/Cr:YAG Ceramic Lasers with white-light pump source underhigh-temperature operation[J]. Optics Communications,2011,284:2980-2984.
    [99] Mizuno S, Ito H, Hasegawa K. The Efficiencies of Energy Transfer from Cr to NdIons in Silicate Glasses[C]. Conference on Optical Components and Materials VII.San Francisco:Optical Components and Materials VII,2010,7598:75980A1-75980A8.
    [100]Hong P, Zhang X X. Luminescence of Cr3+and Energy Tansfer Between Cr3+andNd3+ions in Yttrium Aluminum Garnet[J]. Journal of Applied Physic,1995,78(7):4659-4667.
    [101]Pruss D, Huber G, Beimowski A. Efficient Cr3+Sensitized Nd3+: GdSCGa-GarnetLaser at1.06μm[J]. Applied Physic B,1982,28:355-358.
    [102]Koechner W. Solid-State Laser Engieering[M]. Springer:Verlag Heidelberg (fifthEd.)2005:48.
    [103]Fujioka K, Siki T, Motokoshi S, Fujimoto Y. Luminescence Properties of HighlyCr co-doped Nd:YAG Power Produced by Sol-Gel Method[J]. Journal ofLuminescence,2010,130(3):455-459.
    [104]Koechner W. Solid-State Laser Engieering[M]. Springer:Verlag Heidelberg (fifthEd.)2005:109.
    [105]Honda Y, Yoshida M, Motokoshi S, et al. Temperature Dependences ofFluorescence Characteristic for Nd/Cr:YAG Materials[C].43rd Annual LaserDamage Symposium on Optical Materials for High Power Lasers. Natl Inst Standand Technol, Boulder, CO:Laser-Induced Damage in Optical Materials,2011,8190:819014-1-819014-5.
    [106] Samuel P, Yagi H, Yanagitani T, et al. Energy Transfer and Lasing Properties ofNd/Cr:YAG Transparent Laser Ceramics at Different Cr Concentration[C].56thDAE-Solid State Physics Symposium. SRM Univ:AIP Conference Proceedings2011,1447:1253-1254.
    [107] Saiki T, Nakatsuka M, Fujioka K, Cross-relaxation and Spectral Broadening ofGain for Nd/Cr:YAG Ceramic Lasers with White-light Pump Source underHigh-temperature Operation[J]. Optics Communications,2011,284(12):2980-2984.
    [108]Zhang Z Y, Grattan K T V, Palmer A W. YAG:Cr3+for Wide Ranging TemperatureSensing: Correlation of Theory and Experiment[J]. SPIE-The International Societyfor Optical Engineering.1995,2388:190-195.
    [109] Saiki T, Funahashi K, Motokoshi S, et al. Temperature Characteristics of SmallSignal Gain for Nd/Cr:YAG Ceramic Laser[J]. Optics Communications,2009,282(4):616-622.
    [110]Lando M, Kagan J, Shimon Y Y, e t al. Solar Pumped Solid State Laser Program[C]SPIE,1997,3110:196-201.
    [111]Winston R, Minano J. Nonimaging Optics[M]. Springer,2005:2-64.
    [112]Kuo C J, Feriyonika, Huang C C, et al. Analysis of Processing Parameters inFabrication of Fresnel Lens Solar Collector[J]. Energy Conversion andManagement,2012,57:33-41.
    [113]Xie W T, Dai Y J, Wang R Z. Theoretical and Experimental Analysis on EfficiencyFactors and Heat Removal Factors of Fresnel Lens Solar Collector Using DifferentCavity Receivers[J]. Solar Energy,2012,86(9):2458-2471.
    [114]Hornung T, Steiner M, Nitz P. Estimation of the Influence of Fresnel LensTemperature on Energy Generation of a Concentrator Photovoltaic System[J].Solar Energy Materials and Solar Cells,2012,99:333-338.
    [115]Xie W T, Dai Y J, Wang R Z, et al. Concentrated solar energy applications usingFresnel lenses: A review[J]. Renewable and Suatainable Energy Reviews,2011,15(6):2588-2606.
    [116]Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables[M]. New York:Dover,1972:896-897.
    [117]Arfken G. Mathematical Methods for Physicists[M],3rd editor. FL:Orlando,Academic Press,1985:493-494.
    [118]Mehrotra S. On the Implementation of a Primal-Dual Interior Point Method [J]Society for Industrial and Applied Mathematics Journal on Optimization,1992,2:575-601.
    [119]龚小玉,胡振鹏,王先甲.非单调线性互补问题的宽邻域预估校正算法[J].中国科学技术大学学报,2011,41(12):1075-1079.
    [120]Leutz R, Suzuki A. Nonimaging Fresnel Lenses: Design and Performance of SolarConcentrators[M], Springer, Berlin (Heidelberg/New York),2001:143.
    [121]ASTM. Standard Tables for Reference Solar Spectral Irradiances: Direct Normaland Hemispherical on370Tilted Surface[S], Book of Standards, Vol.14.04, ASTMG173-03e1,2003.
    [122]Fresnel Technologies Inc., Fresnel Lenses[OL].(2003-10-15)[2009-5-10]. http://www. fresneltech.com/pdf/Fresnel Lenses.pdf.
    [123]Laporta P, Brussard M. Design Ceriteria for Mode Size Optimization in Diode-Pumped Solide-state Lasers[J]. IEEE Journal of Quantum Elecronics,1991,27(10):2319-2326.
    [124]Fan T Y, Byer R L. Modeling and CW Operation of a Quasi-Three-Level946nmNd:YAG Laser[J]. IEEE Journal of Quantum Elecronics,1987, QE-23(5):605-612.
    [125]Kapoor R, Mukhopadhyay P K, George J. A New Approach to Computer Overlapefficiency in axially pumped Solid State Lasers[J]. Optics Express,1999,5(6):125-133.
    [126]Chen Y F, Liao T S, Kao C F, et al. Optimization of Fiber-Coupled Laser-DiodeEnd-Pumped Laser: Influence of Pump-Beam Quality[J]. IEEE Journal ofQuantum Elecronics,1996,32(11):2010-2016.
    [127]Barnes N P, Storm M E, Cross P L, et al. Efficiency of Nd laser materials withlaser diode pumping[J]. IEEE Journal of quantum electronics.1990,26:558-568.
    [128]Laporta P, Magni V, Svelto O. Comparative study of the optical pumpingefficiency in solid-state lasers[J]. IEEE Journal of Quantum Electronics,1985,21(8):1211-1218.
    [129]Koechner W. Solid-State Laser Engieering,5th ed.(Springer-Verlag Heidelberg),1996:101.
    [130]Digonnet M J F, Gaeta C J. Theoretical Analysis of Optical fiber laser amplifiersand oscillators[J], Appl Opt.,1985,24(3):333-342.
    [131]Koechner W, Solid-State Laser Engieering,5th ed.(Springer-Verlag Heidelberg),1996:197.
    [132]Liang D, Almeida J. Highly efficient solar-pumped Nd:YAG Laser[J], OpticsExpress,2011,19(27):26399-1-26399-6.
    [133]B.do Couto, D. Liang, Optical Fiber Pumping of Solar Nd:YAG Disc Laser[C].International Conference on Applications of Optics and Photonics. Portugal:International Conference on Applications of Optics and Photonics,2011,8001:80014D-1-80014D-5.
    [134]J. Almeida, D. Liang, Efficient Solar-Pumped Nd:YAG Laser by a Double-StageLight-Guide/V-Groove Cavity[C]. International Conference on Applications ofOptics and Photonics,2011,8001:80014C-1-80014C-3.
    [135]Liang D. Design of Ultrahigh Brightness Solar-Pumped Disk Laser[J]. AppliedOptics,2012,51(26):6382-6388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700