用户名: 密码: 验证码:
过渡金属掺杂激光晶体的能隙调制与光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光晶体是晶体激光器的工作物质,它是由掺杂于固体基质中的激活离子(一般是金属离子)和固体激光基质所组成。工作物质的光谱性能主要由激活离子能级的结构所决定,而它的物理和化学性能和固体基质材料有关。尽管密度泛函理论还很难准确计算稀土金属离子、锕系离子里“巡游”的f电子,但是目前理论计算的发展已经使得我们可以重点关注过渡族金属离子。过渡金属(transitionmetal(TM))中的3d层电子由于没有外层电子的屏蔽,在基质晶体中直接受晶格场(lattice field)的作用,所以它的能级分布等特性和自由离子的情况有显著不同。本文采用第一性原理计算方法,以激光基质晶体MgF_2,Al_2O_3,ZnS和金刚石纳米线等为研究对象,探讨了在掺杂等调控手段下固体激光晶体系统的几何结构、形成能、电子性质和光学性质。主要内容如下:
     首先,基于密度泛函理论的第一性原理,计算了Co~(2+)掺杂MgF_2晶体的几何结构、电子结构和光学性质。结果表明,Co~(2+)掺杂导致MgF_2晶体结构畸变,可能发生一种类四方和斜方型结构相变。由于Co~(2+)原子的加入,体系的禁带宽度减小,可观察到半导体-金属性转变。计算也表明,Co~(2+)掺杂对静态介电常数和光吸收系数有重要调制作用。
     其次,基于第一性原理方法计算了Ti~(3+)掺杂α-Al_2O_3体系(Ti~(3+):α-Al_2O_3)的几何和电子结构。由于Ti~(3+)的掺入,局部的键长和键角发生畸变,可能导致一种三方-三斜型的结构相变。随着Ti~(3+)掺杂的增加,在Ti~(3+):α-Al_2O_3体系中可观察到绝缘体-半金属的转变,这是因为费米面上存在完全自旋极化态。进一步计算了介电函数和吸收边,发现与纯Al_2O_3其相比掺杂后吸收边明显降低,这和实验有很好的相符。同时我们研究了Mg~(2+)、Ti~(3+)共掺Al_2O_3晶体((Mg~(2+),Ti~(3+)):Al_2O_3)的优化几何结构、电子结构、Milliken电荷分布和光学性质。结果表明,Mg~(2+)、Ti~(3+)共掺导致(Mg~(2+),Ti~(3+)):Al_2O_3晶体的晶格常数相应增大,体系的禁带宽度相应减小。特别的是,它表明Mg~(2+)、Ti~(3+)共掺对介电函数虚部和光吸收系数有显著调制作用,所得结果与最近实验测量很好地相符。相关工作揭示了Mg~(2+)、Ti~(3+)共掺Al_2O_3体系在光学元器件方面的潜在应用。
     再次,基于密度泛函理论的第一性原理方法,系统的研究了过渡金属(TM=Cr~(2+), Mn~(2+), Fe~(2+), Co~(2+)和Ni~(2+))掺杂ZnS体系(TM:ZnS)的形成能、电子结构和光学性质。结果表明,TM掺杂后六角和立方结构的ZnS具有相同的稳定性,所以它们可以共存于TM掺杂ZnS体系里。特别的,TM=Cr~(2+), Ni~(2+)和Fe~(2+)掺杂六角ZnS体系后,获得了一个半满的中间带(IB),而TM=Mn~(2+)和Co~(2+)时却没有。由于费米能级处存在完全的自旋极化中间带,所以在红外、可见光和紫外区域得到了额外的吸收谱。
     最后,使用Heyd-Scuseria-Ernzerhof杂化泛函交换关联势和自旋极化计算,我们研究了氮和空位(NV)掺杂氢化的金刚石纳米线的电子结构和光性质。结果表明晶格常数和带隙随着纳米线截面积的增加而减小。由于NV的掺入,强的局域缺陷态导致自发的自旋极化和局域磁矩的形成,这主要是因为C2p轨道的洪特能(Hund energy)与TM的3d轨道接近从而产生强的自旋极化。掺杂体系的自旋极化态在室温以上稳定存在,这和实验的观测是一致的。此外,我们还计算了掺杂体系的折射率和吸收谱。发现小截面积的金刚石纳米线折射率接近1.0,这就意味着这类纳米线的单光子发射的收集效率比截面积大的纳米线高。同时,我们还观测到了吸收边的红移,其主要原因是中间带在C2p轨道的价带和导带之间的跃迁。特别是在可见光范围发现了强的吸收,这表明NV掺杂体系能够在光化学方面有潜在的应用。
It is well known that the laser crystals are fundamental matters for the laserdevices, which are formed by the laser hosts and the doped metal ions. The physicaland chemical properties of laser crystals depend mainly on laser hosts, while thespectral characteristics depend on energy levels of the metal ions. Although thedensity functional theory is not yet accurate to calculate the f electron of rare earthmetal ions, it has been developed to be suitable for transition metal doped laser hostssystem. Due to the fact that there are no shielding electrons outside the3d electrons oftransition metal, they are impacted by the lattice field directly. Thus, their leveldistribution properties are remarkably different from that of free ion. In this thesis, thegeometries, formation energy, electronic structures and optical properties of transitionmetal (TM) doped MgF_2, Al_2O_3, ZnS and diamond nanowires systems are studied byusing first-principles techniques.The main works of this thesis are organized asfollows:
     Firstly, based on the density functional theory, the geometries, electricalstructures and optical properties of Co~(2+)-doped MgF_2system (Co~(2+):MgF_2) are studiedby using first-principles plane-wave approach. With increasing Co~(2+)-doping, atetragonal-rhombic structural transition is obtained in Co~(2+):MgF_2. The band gapdecreases with increasing Co~(2+)-doping, and a semiconductor-conductor transition isobserved. Also, the calculations show that the static dielectric constant and theabsorption coefficient can be remarkably modulated by Co~(2+)-doping, indicating thepotential applications of Co~(2+): MgF_2optical system.
     Secondly, the geometric and electronic structures of Ti~(3+)doped α-Al_2O_3system(Ti~(3+):α-Al_2O_3) are calculated by using the first-principles method. Due to Ti~(3+)-doping,bond lengths and bond angles in the local geometries are both distorted, from which atrigonal-triclinic structural transition may be expected. With increasing Ti~(3+)-doping,an insulator-semimetal transition is observed in the Ti~(3+):α-Al_2O_3system, mainly dueto a complete spin polarization of electrons at the Fermi level. The dielectric functionand absorption edge are further calculated. It is found that the absorption edge isdecreased and is much lower than that of pure Al_2O_3crystal, which is in goodagreement with the experiment. The results indicate the potential applications ofTi~(3+):α-Al_2O_3optical system. Moreover, the geometries, electrical structures, Milliken population and optical properties of Mg and Ti~(3+)co-doped α-Al_2O_3system((Mg~(2+),Ti~(3+)):α-Al_2O_3) are studied by using first-principles. The result shows that, withincreasing Mg and Ti~(3+)co-doping, the lattice parameter increases, but the band gapdecreases. Also, the calculations show that the imaginary parts of dielectric functionand the absorption coefficient can be remarkably modulated by Mg and Ti co-doping,indicating the potential applications of (Mg~(2+),Ti~(3+)):α-Al_2O_3optical system.
     Thirdly, the formation energies, electronic structures and optical properties ofTM:ZnS systems (TM=Cr~(2+), Mn~(2+), Fe~(2+), Co~(2+)and Ni~(2+)) are investigated by using firstprinciples method. It is found that the wurtzite and zinc blende structures almost havethe same stability and thus can coexist in the TM:ZnS system. From the wurtziteTM:ZnS, especially, a partially filled intermediate band (IB) is obtained whenTM=Cr~(2+), Ni~(2+)and Fe~(2+), while it is absent for TM=Mn~(2+)and Co~(2+). The additionalabsorptions are realized in infrared, visible and ultraviolet (UV) regions, due to thecompletely spin-polarized IB at Fermi level. The results are very useful for thedesigns and applications of TM:ZnS opto-electronics devices such as solar-cellprototype.
     Finally, by using the advanced Heyd-Scuseria-Ernzerhof hybridexchange-correlation and spin-polarization, we investigate the electronic structuresand optical properties of the hydrogenated diamond nanowires (DNW) systems withnitrogen-vacancy (NV) centers. It is shown that the lattice constants and band gaps ofthe hydrogenated DNW decrease with its cross-sectional area. In the presence of NVdoping, the strong localization of defect states results in spontaneous spin polarizationand local moment formation, which are mainly due to C2p orbitals with Hund energyclose to that of transition metal atoms. The spin polarized state of the doped systemshould be stable above room temperature, consistent with the previous experimentalreport. The refractive index and absorption coefficients are further calculated. It isfound that the refractive index for the smaller cross section areas is closer to1.0, thusmeaning the higher collection efficiency of single-photon emission in the thinnerDNW. A red-shift of optical adsorption edge is observed, basically due to theintraband transition of the spin polarized C2p orbitals’ valence bands and theconduction bands. In particular, a strong absorption in the visible-light region is found,suggesting that the NV-doped diamond nanowire systems could be a potentialcandidate for photoelectrochemical application.
引文
[1] Maiman T. H. Stimulated Optical Radiation in Ruby[J]. Nature,1960,187:493-494
    [2] Kincade K. Consumer applications boost laser sales10%[J]. Laser Focus. World,2005,41
    [3] Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D. Iterative minimizationtechniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J].Rev. Mod. Phys.,1992,64:1045-1097
    [4] Kaminskii A. A. Modern developments in the physics of crystalline laser materials[J]. PhysicaStatus Solidi (a),2003,200:215-296
    [5]徐军,苏良碧,徐晓东,赵志伟,赵广军.激光晶体的现状及发展趋势[J].无机材料学报,2006,5:1025-1030
    [6]张国威.可调谐激光技术[M].北京:国防工业出版社,2002:2
    [7]汪思,智广林,梅炳初,周卫兵.溶液pH值对直接沉淀法制备CaF2纳米粉体的影响[J].纳米加工工艺,2010,7:32-39
    [8] Sorokin P., Stevenson M. Stimulated Infrared Emission from Trivalent Uranium[J]. Phys. Rev. Lett.,1960,5:557-559
    [9] Deng C.-Y., He D.-W., Zhuang W.-D., Yong-Sheng W., Kai K., Xiao-Wei H. Luminescence ofBa20.090.85MgAl10O16.94:Eu+with different fluxes[J]. Chinese. Phys.,2004,13:473-480
    [10]张计划,丁建文,卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究[J].物理学报,2009,58:1901-1907
    [11] Wojciechowska M., Zieliński M., Pietrowski M. MgF2as a non-conventional catalyst support[J]. J.Fluorine. Chem.,2003,120:1-11
    [12] Wevers M. A. C., Sch n J. C., Jansen M. Characteristic regions on the energy landscape ofMgF2[J]. Journal of Physics A: Mathematical and General,2001,34:4041-4052
    [13] Barker A. Transverse and Longitudinal Optic Mode Study in MgF2and ZnF2[J]. Phys. Rev.,1964,136: A1290-A1295
    [14] Rines D. M., Moulton P. F., Welford D., Rines G. A. High-energy operation of a Co:MgF2laser[J].Opt. Lett.,1994,19:628-630
    [15] Spence D. E., Kean P. N., Sibbett W.60-fsec pulse generation from a self-mode-locked Ti:sapphirelaser[J]. Opt. Lett.,1991,16:42-44
    [16]鲍国君,陈钰清.一种新颖的宽带可调谐掺钛蓝宝石激光器[J].激光与红外,1994,6:42-44
    [17]李成凤. Nd:YAG激光器的特性及其在医学领域的应用[J].现代物理知识,2006,18:38-40
    [18][苏]卡明斯基著AA,陈长康,林付达(译).激光晶体[M].北京:科学出版社,1981:166-167
    [19]曹东茂,任兆玉.秒、太瓦级钛宝石激光系统[J].应用光学,2000,21:7-12
    [20]陈治明.半导体概论[M].北京:电子工业出版社,2008:83-87
    [21] Yamamoto T., Kishimoto S., Iida S. Control of valence states for ZnS by triple-codopingmethod[J]. Physica. B,2001,308:916-919
    [22] Bredol M., Merikhi J. ZnS precipitation: morphology control[J]. J. Mater. Sci.,1998,33:471-476
    [23] Calandra P., Goffredi M., Liveri V. T. Study of the growth of ZnS nanoparticles inwater/AOT/n-heptane microemulsions by UV-absorption spectroscopy[J]. Colloids and SurfacesA:Physicochemical and Engineering Aspects,1999,160:9-13
    [24] Ruffner J. A., Himel M. D., Mizrahi V., Stegeman G. l., Gibson U. J. Effects of low substratetemperature and ion assisted deposition on composition, optical properties, and stress of ZnS thinfilms[J]. Appl. Optics.,1989,28:5209-5214
    [25] Ledger A. M. Inhomogeneous interface laser mirror coatings[J]. Appl. Opt.,1979,18:2979-2989
    [26] Xu C. N., Watanabe T., Akiyama M., Zheng X. G. Direct view of stress distribution in solid bymechanoluminescence[J]. Appl. Phys. Lett.,1999,74:2414-2416
    [27] Agyeman O., Xu C. N., Suzuki M., Zheng X. G. Upgrading the triboluminescence of ZnS:Mn filmby optimization of sputtering and thermal annealing conditions[J]. J. Mater.Res.,2002,17:959-963
    [28] Kennedy T. A., Glaser E. R., Klein P. B., Bhargava R. N. Symmetry and electronic structure of theMn impurity in ZnS nanocrystals[J]. Phys. Rev. B,1995,52: R14356-R14359
    [29] Sorokina I. T., Sorokin E., Mirov S., Fedorov V., Badikov V., Panyutin V., Schaffers K. I. Broadlytunable compact continuous-wave Cr2+:ZnS laser[J]. Opt. Lett.,2002,27:1040-1042
    [30] Keller S. P., Gelles I. L., Smith W. V. Paramagnetic Resonance Absorption in Mn-ActivatedHexagonal ZnS[J]. Phys. Rev.,1958,110:850-855
    [31]花景田,陈宝玖,孙佳石,程丽红,仲海洋.稀土掺杂材料的上转换发光[J].中国光学与应用光学,2010,3:301-309
    [32] Bloembergen N. Solid State Infrared Quantum Counters[J]. Phys. Rev. Lett.,1959,2:84-85
    [33] Auzel F. Compteur quantique par transfert d'énergie enttre deux ions de terres rares dans untungstate mixte et dans un verre[J]. C. R. Acad. Sci.,1966,262:1016-1019
    [34] Johnson L. F. Infrared-Pumped Visible Laser[J]. Appl. Phys. Lett.,1971,19:44-47
    [35] Wenger O., Salley G., Valiente R., Güdel H. Luminescence upconversion under hydrostaticpressure in the3d-metal systems Ti2+:NaCl and Ni2+:CsCdCl3[J]. Phys. Rev. B,2002,65:212108
    [36] Heer S., Wermuth M., Kr mer K., Güdel H. Sharp2E upconversion luminescence of Cr3+inY3Ga5O12codoped with Cr3+and Yb3+[J]. Phys. Rev. B,2002,65:125112
    [37] Heer S., Petermann K., Güdel H. U. Upconversion excitation of Cr3+emission in YAlO3codopedwith Cr3+and Yb3+[J]. J. Lumin.,2003,102-103:144-150
    [38] Heer S., Wermuth M., Kr mer K., Ehrentraut D., Güdel H. U. Up-conversion excitation of sharpCr3+2E emission in YGG and YAG codoped with Cr3+and Yb3+[J]. J. Lumin.,2001,94-95:337-341
    [39] Micheletti R., Minguzzi P., Noginov M. A., Tonelli M. Upconversion luminescence of Er and Cr inYSGG laser crystals[J]. Journal of the Optical Society of America B,1994,11:2095-2099
    [40] Reinhard C., Valiente R., Güdel H. U. Exchange-Induced Upconversion in Rb32MnCl4:Yb+[J]. J.Phys. Chem. B,2002,106:10051-10057
    [41] Gerner P., Wenger O. S., Valiente R., Güdel H. U. Green and Red Light Emission byUpconversion from the near-IR in Yb3+Doped CsMnBr3[J]. Inorg. Chem.,2001,40:4534-4542
    [42] Valiente R., Wenger O., Güdel H. U. New photon upconversion processes in Yb3+doped CsMnCl3and RbMnCl3[J]. Chem. Phys. Lett.,2000,320:639-644
    [43] Gerner P., Reinhard C., Gudel H. U. Cooperative near-IR to visible photon upconversion inYb3+-doped MnCl2and MnBr2: comparison with a series of Yb3+-doped Mn2+halides[J].Chemistry,2004,10:4735-4741
    [44] Chen W., Joly A., Zhang J. Up-conversion luminescence of Mn2+in ZnS:Mn2+nanoparticles[J].Phys. Rev. B,2001,64:041202
    [45] Reinhard C. Near-infrared to green photon upconversion in Mn2+and Yb3+doped lattices[J]. Chem.Phys. Lett.,2004,386:132-136
    [46] Wenger O., Valiente R., Güdel H. Optical spectroscopy of the Ni2+-doped layer perovskitesRb2MCl4(M=Cd, Mn): Effects of Ni2+-Mn2+exchange interactions on the Ni2+absorption,luminescence, and upconversion properties[J]. Phys. Rev. B,2001,64:235116
    [47] Schr dinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules[J]. Phys. Rev.,1926,28:1049-1070
    [48] Lieb E. Thomas-fermi and related theories of atoms and molecules[J]. Rev. Mod. Phys.,1981,53:603-641
    [49] Hohenberg P. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136: B864-B871
    [50]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,2007
    [51] Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys. Rev.,1965,140: A1133-A1138
    [52]李正中.固体物理[M].北京:高等教育出版社,2002
    [53] Yang W., Ayers P., Wu Q. Potential Functionals: Dual to Density Functionals and Solution to thev-Representability Problem[J]. Phys. Rev. Lett.,2004,92:146404
    [54] Lüders M., Ernst A., Temmerman W. M., Szotek Z., Durham P. J. Ab initioangle-resolvedphotoemission in multiple-scattering formulation[J]. J. Phys: condens. Mat.,2001,13:8587-8606
    [55] Stowasser R., Hoffmann R. What Do the Kohn Sham Orbitals and Eigenvalues Mean?[J]. J. Am.Chem. Soc.,1999,121:3414-3420
    [56] Kohn W., Sham L. Quantum Density Oscillations in an Inhomogeneous Electron Gas[J]. Phys.Rev.,1965,137: A1697-A1705
    [57] Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys.Rev. Lett.,1996,77:3865-3868
    [58] Becke A. D. Density-functional exchange-energy approximation with correct asymptoticbehavior[J]. Phys. Rev. A,1988,38:3098-3100
    [59] Perdew J. Density-functional approximation for the correlation energy of the inhomogeneouselectron gas[J]. Phys. Rev. B,1986,33:8822-8824
    [60] Perdew J. P., Yue W. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Phys. Rev. B,1986,33:8800-8802
    [61] Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlationenergy[J]. Phys. Rev. B,1992,45:13244-13249
    [62]陈幼松.最新激光技术的无穷魅力[J].中国青年科技,1996, Z5:20-23
    [63] Saha S., Sinha T. P., Mookerjee A. Electronic structure, chemical bonding, and optical propertiesof paraelectric BaTiO3[J]. Phys. Rev. B,2000,62:8828-8834
    [64]谢林华,丘岷. MgF2+2:Mn光谱、超精细常数和局部结构的关联[J].物理学报,2005,54:5845-5848
    [65]崔益本,姜芸芸,纪玉峰. Co:MgF2光谱特性与可调谐激光技术[J].光电子技术与信息,1995,8:13-16
    [66]侯碧辉,邵萌,徐新龙,汪力,王吉有,范志达. MgF2单晶的THz光谱研究[J].物理学报,2007,56:1370-1374
    [67] Welford D., Moulton P. F. Room-temperature operation of a Co:MgF2laser[J]. Opt. Lett.,1988,13:975-977
    [68] Moulton P. F., Mooradian A. Broadly tunable cw operation of Ni: MgF2and Co: MgF2lasers[J]. Appl. Phys. Lett.,1979,35:838-840
    [69] Di Lieto A. Development of a cw Co:MgF2laser[J]. Opt. Laser. Eng.,2003,39:309-315
    [70] Vidal-Valat G., Vidal J. P., Zeyen C. M. E., Kurki-Suonio K. Neutron diffraction study ofmagnesium fluoride single crystals[J]. Acta Crystallographica Section B StructuralCrystallography and Crystal Chemistry,1979,35:1584-1590
    [71] Catti M., Pavese A., Dovesi R., Roetti C., Causà M. Quantum-mechanical Hartree-Fockself-consistent-field study of the elastic constants and chemical bonding of MgF2(sellaite)[J].Phys. Rev. B,1991,44:3509-3517
    [72] Simanovskii D., Schwettman H., Lee H., Welch A. Midinfrared Optical Breakdown in TransparentDielectrics[J]. Phys. Rev. Lett.,2003,91:107601
    [73]徐凌,唐超群,戴磊,唐代海,马新国. N掺杂锐钛矿TiO2电子结构的第一性原理研究[J].物理学报,2007,56:1048-1053
    [74] Osuch K., Lombardi E., Gebicki W. First principles study of ferromagnetism in Ti0.0625Zn0.9375O[J].Phys. Rev. B,2006,73:075202
    [75] Godby R. W., Schlüter M., Sham L. J. Accurate Exchange-Correlation Potential for Silicon and ItsDiscontinuity on Addition of an Electron[J]. Phys. Rev. Lett.,1986,56:2415-2418
    [76] Lin Z., Orlov A., Lambert R. M., Payne M. C. New Insights into the Origin of Visible LightPhotocatalytic Activity of Nitrogen-Doped and Oxygen-Deficient Anatase TiO2[J]. J. Phys. Chem.B,2005,109:20948-20952
    [77] Tian F. H., Liu C. B. DFT Description on Electronic Structure and Optical Absorption Propertiesof Anionic S-Doped Anatase TiO2[J]. J. Phys. Chem. B,2006,110:17866-17871
    [78]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001:61-63
    [79] Mo S.-D., Ouyang L., Ching W., Tanaka I., Koyama Y., Riedel R. Interesting Physical Propertiesof the New Spinel Phase of Si3N4and C3N4[J]. Phys. Rev. Lett.,1999,83:5046-5049
    [80]张增明,姚焜,崔益本,王震,侯碧辉,李福利.室温Co:MgF2激光器的偏振特性[J].量子电子学报,1999,16:147-151
    [81] Yourdshahyan Y., Engberg U., Bengtsson L., Lundqvist B. I., Hammer B. Theoretical investigationof the structure of κ-Al2O3[J]. Phys. Rev. B,1997,55:8721-8725
    [82] Thomson K. T., Wentzcovitch R. M., Bukowinski M. S. T. Polymorphs of Alumina Predicted byFirst Principles: Putting Pressure on the Ruby Pressure Scale[J]. Science,1996,274:1880-1882
    [83] French R. H., Müllejans H., Jones D. J. Optical Properties of Aluminum Oxide: Determined fromVacuum Ultraviolet and Electron Energy-Loss Spectroscopies[J]. J. Am. Ceram. Soc.,1998,81:2549-2557
    [84] Tanaka I., Adachi H. Calculation of core-hole excitonic features on Al L23-edge x-ray-absorptionspectra of α-Al2O3[J]. Phys. Rev. B,1996,54:4604-4608
    [85] O’Brien W., Jia J., Dong Q. Y., Callcott T., Mueller D., Ederer D., Kao C. C. Soft-x-rayinvestigation of Mg and Al oxides: Evidence for atomic and bandlike features[J]. Phys. Rev. B,1993,47:15482-15486
    [86] Tomiki T., Ganaha Y., Shikenbaru T., Futemma T., Yuri M., Aiura Y., Sato S., Fukutani H., Kato H.,Miyahara T., Yonesu A., Tamashiro J. Anisotropic Optical Spectra of α-Al2O3Single Crystals inthe Vacuum Ultraviolet Region. I. Spectra of Absorption Tail and Reflectivity[J]. J. Phys. Soc.Jpn.,1993,62:573-584
    [87] Matsunaga K., Nakamura A., Yamamoto T., Ikuhara Y. First-principles study of defect energeticsin titanium-doped alumina[J]. Phys. Rev. B,2003,68:214102
    [88] Mohapatra S. K., Kr Ger F. A. Defect Structure of α-Al2O3Doped with Titanium[J]. J. Am.Ceram. Soc.,1977,60:381-387
    [89] Nakamura A., Matsunaga K., Tohma J., Yamamoto T., Ikuhara Y. Conducting nanowires ininsulating ceramics[J]. Nat Mater,2003,2:453-456
    [90] Stone J., Chraplyvy A. R., Burrus C. A. Gas-in-glass: new way to generate light[J]. Optics News,1982,8:9
    [91] Schulz P. A. Single-frequency Ti:Al2O3ring laser[J]. IEEE. J. Quantum. Elect,1988,24:1039-1044
    [92] Barnes N. P., Williams J. A., Barnes J. C., Lockard G. E. A self-injection locked, Q-switched,line-narrowed Ti:Al2O3laser[J]. IEEE. J. Quantum. Elect,1988,24:1021-1028
    [93] Powell R. C., Caslavsky J. L., AlShaieb Z., Bowen J. M. Growth, characterization, and opticalspectroscopy of Al2O3:Ti3+[J]. J. Appl. Phys.,1985,58:2331-2336
    [94] Arakawa E. T., Williams M. W. Optical properties of aluminum oxide in the vacuum ultraviolet[J].J. Phys. Chem. Solids,1968,29:735-744
    [95] Mo S.-D., Ching W. Electronic and optical properties of θ-Al2O3and comparison to α-Al2O3[J].Phys. Rev. B,1998,57:15219-15228
    [96] Gutiérrez G., Taga A., Johansson B. Theoretical structure determination of γ-Al2O3[J]. Phys. Rev.B,2001,65:012101
    [97] Pinto H., Nieminen R., Elliott S. Ab initio study of γ-Al2O3surfaces[J]. Phys. Rev. B,2004,70:125402
    [98] Andersson J., Wallin E., Chirita V., Münger E., Helmersson U. Ab initio calculations on the effectsof additives on alumina phase stability[J]. Phys. Rev. B,2005,71:014101
    [99]王银海,牟季美,蔡维理,许彦旗.纳米Cu/Al2O3组装体模板合成与光吸收[J].物理学报,2001,50:1751-1755
    [100]曾智江,杨秋红,徐军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析[J].物理学报,2005,54:5445-5449
    [101] Tard o M. M., Ram rez R., González R., Chen Y., Kokta M. R. Enhancement of electricalconductivity in α-Al2O3crystals doped with magnesium[J]. J. Appl. Phys.,2001,90:3942-3951
    [102] Brockman P., Bair C. H., Barnes J. C., Hess R. V., Browell E. V. Pulsed injection control of atitanium-doped sapphire laser[J]. Opt. Lett.,1986,11:712-720
    [103] Moulton P. F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the OpticalSociety of America B,1986,3:125-133
    [104] Sanchez A., Fahey R. E., Strauss A. J., Aggarwal R. L. Room-temperature continuous-waveoperation of a Ti:Al2O3laser[J]. Opt. Lett.,1986,11:363-364
    [105]杨秋红,曾智江,徐军,丁君,苏良碧. Mg,Ti共掺Al2O3透明多晶陶瓷光谱性能研究[J].物理学报,2006,55:2726-2729
    [106] Wyckoff R. W. G. Crystal Structures[M].2nd edn edn.: New York: Interscience,1963
    [107] French R. H. Electronic Band Structure of Al2O3, with Comparison to Alon and AIN[J]. J. Am.Ceram. Soc.,1990,73:477-489
    [108] Tian F., Liu C. DFT description on electronic structure and optical absorption properties ofanionic S-doped anatase TiO2[J]. J. Phys. Chem. B,2006,110:17866-17871
    [109] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293:269-271
    [110] Verdozzi C., Jennison D. R., Schultz P. A., Sears M. P., Barbour J. C., Potter B. G. UnusualStructural Relaxation for Rare-Earth Impurities in Sapphire: Ab Initio Study of Lanthanum[J].Phys. Rev. Lett.,1998,80:5615-5618
    [111]倪建刚,刘诺,杨果来,张曦.第一性原理研究BaTiO3(001)表面的电子结构[J].物理学报,2008,57:4434-4440
    [112] Ray B. II-VI compounds[M]. Oxford: Pergamon Press1969
    [113] Xu Y. N., Ching W. Y. Electronic, optical, and structural properties of some wurtzite crystals[J].Phys. Rev. B,1993,48:4335-4351
    [114] Tran T. K., Park W., Tong W., Kyi M. M., Wagner B. K., Summers C. J. Photoluminescenceproperties of ZnS epilayers[J]. J. Appl. Phys.,1997,81:2803-2809
    [115] Stern R. A., Schuler T. M., MacLaren J. M., Ederer D. L., Perez-Dieste V., Himpsel F. J.Calculated half-metallic behavior in dilute magnetically doped ZnS[J]. J. Appl. Phys.,2004,95:7468-7470
    [116] Bevilacqua G., Martinelli L., Vogel E. E., Mualin O. Jahn-Teller effect in the emission andabsorption spectra of ZnS: Cr2+and ZnSe: Cr2+[J]. Phys. Rev. B,2004,70:075206-075212
    [117] Sorokina I. T., Sorokin E., Mirov S., Fedorov V., Badikov V., Panyutin V., Di Lieto A., Tonelli M.Continuous-wave tunable Cr2+:ZnS laser[J]. Applied Physics B: Lasers and Optics,2002,74:607-611
    [118] Buch T., Clerjaud B., Lambert B., Kovacs P. Electron-Paramagnetic-Resonance Study of3d5Ionsin Mixed-Polytype Zinc Sulfide[J]. Phys. Rev. B,1973,7:184-191
    [119] Tablero C. Electronic and magnetic properties of ZnS doped with Cr[J]. Phys. Rev. B,2006,74:195203-195209
    [120] Shockley W., Queisser H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells[J].J. Appl. Phys.,1961,32:510-519
    [121] Luque A., Martí A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitionsat Intermediate Levels[J]. Phys. Rev. Lett.,1997,78:5014-5017
    [122] Schr er P., Krüger P., Pollmann J. First-principles calculation of the electronic structure of thewurtzite semiconductors ZnO and ZnS[J]. Phys. Rev. B,1993,47:6971-6980
    [123] Kisi E., Elcombe M. u Parameters for the wurtzite structure of ZnS and ZnO using powderneutron diffraction[J]. Acta Crystallographica Section C,1989,45:1867-1870
    [124] Rabadanov M. Anharmonic temperature factors and charge density in ZnS[J]. Crystallogr. Rep+.1995,40:17-22
    [125] Zhao Z. Y., Liu Q. J. Effects of lanthanide doping on electronic structures and optical propertiesof anatase TiO2from density functional theory calculations[J]. Journal of Physics D: AppliedPhysics,2008,41:085417-085425
    [126] Cui X. Y., Medvedeva J. E., Delley B., Freeman A. J., Newman N., Stampfl C. Role ofEmbedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN[J]. Phys. Rev. Lett.,2005,95:256404-256407
    [127] Hass K. C., Ehrenreich H. Electronic and magnetic properties of II-VI diluted magneticsemiconductors[J]. J. Cryst. Growth,1990,86:8-14
    [128] Furdyna J. K. Diluted magnetic semiconductors[J]. J. Appl. Phys.,1988,64: R29-R64
    [129] Ding J. X., Zapien J. A., Chen W. W., Lifshitz Y., Lee S. T., Meng X. M. Lasing in ZnSnanowires grown on anodic aluminum oxide templates[J]. Appl. Phys. Lett.,2004,85:2361-2363
    [130] Zhang J. H., Ding J. W., Zhang Y. L. Electronic and optical properties of doped crystals:First-principles calculations[J]. Solid State Commun.,2009,149:1188-1192
    [131] McNorton R. D., Schuler T. M., MacLaren J. M., Stern R. A. Systematic trends of first-principleselectronic structure computations of Zn1-xAxB diluted magnetic semiconductors[J]. Phys. Rev. B,2008,78:075209-075211
    [132] Yang P., Wu Y., Fan R. INORGANIC SEMICONDUCTOR NANOWIRES[J]. InternationalJournal of Nanoscience,2002,1:1-39
    [133] Shenderova O. A., Zhirnov V. V., Brenner D. W. Carbon Nanostructures[J]. Crit. Rev. Solid State,2002,27:227-356
    [134] Hsu C.-H., Cloutier S. G., Palefsky S., Xu J. Synthesis of Diamond Nanowires UsingAtmospheric-Pressure Chemical Vapor Deposition[J]. Nano Lett.,2010,10:3272-3276
    [135] Barnard A. S., Russo S. P., Snook I. K. Electronic band gaps of diamond nanowires[J]. Phys. Rev.B,2003,68:235407
    [136] Acosta V., Bauch E., Ledbetter M., Santori C., Fu K. M., Barclay P., Beausoleil R., Linget H.,Roch J., Treussart F., Chemerisov S., Gawlik W., Budker D. Diamonds with a high density ofnitrogen-vacancy centers for magnetometry applications[J]. Phys. Rev. B,2009,80
    [137] Rabeau J. R., Reichart P., Tamanyan G., Jamieson D. N., Prawer S., Jelezko F., Gaebel T., Popa I.,Domhan M., Wrachtrup J. Implantation of labelled single nitrogen vacancy centers in diamondusing15N[J]. Appl. Phys. Lett.,2006,88:023113
    [138] Fu K. M. C., Santori C., Barclay P. E., Beausoleil R. G. Conversion of neutral nitrogen-vacancycenters to negatively charged nitrogen-vacancy centers through selective oxidation[J]. Appl. Phys.Lett.,2010,96:121907
    [139] BradacC, GaebelT, NaidooN, Sellars M. J., TwamleyJ, Brown L. J., Barnard A. S., PlakhotnikT,Zvyagin A. V., Rabeau J. R. Observation and control of blinking nitrogen-vacancy centres indiscrete nanodiamonds[J]. Nat Nano,2010,5:345-349
    [140] Rondin L., Dantelle G., Slablab A., Grosshans F., Treussart F., Bergonzo P., Perruchas S., GacoinT., Chaigneau M., Chang H. C., Jacques V., Roch J. F. Surface-induced charge state conversion ofnitrogen-vacancy defects in nanodiamonds[J]. Phys. Rev. B,2010,82
    [141] Degen C. L. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Appl.Phys. Lett.,2008,92:243111-243113
    [142] Balasubramanian G., Neumann P., Twitchen D., Markham M., Kolesov R., Mizuochi N., Isoya J.,Achard J., Beck J., Tissler J., Jacques V., Hemmer P. R., Jelezko F., Wrachtrup J. Ultralong spincoherence time in isotopically engineered diamond[J]. Nat Mater,2009,8:383-387
    [143] MaletinskyP, HongS, Grinolds M. S., HausmannB, Lukin M. D., Walsworth R. L., LoncarM,YacobyA. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancycentres[J]. Nat Nano,2012,7:320-324
    [144] Rondin L., Tetienne J. P., Spinicelli P., Dal Savio C., Karrai K., Dantelle G., Thiaville A., RohartS., Roch J. F., Jacques V. Nanoscale magnetic field mapping with a single spin scanning probemagnetometer[J]. Appl. Phys. Lett.,2012,100:153118
    [145] Taylor J. M., Cappellaro P., Childress L., Jiang L., Budker D., Hemmer P. R., Yacoby A.,Walsworth R., Lukin M. D. High-sensitivity diamond magnetometer with nanoscale resolution[J].Nat. Phys.,2008,4:810-816
    [146] Balasubramanian G., Chan I. Y., Kolesov R., Al-Hmoud M., Tisler J., Shin C., Kim C., Wojcik A.,Hemmer P. R., Krueger A., Hanke T., Leitenstorfer A., Bratschitsch R., Jelezko F., Wrachtrup J.Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature,2008,455:648-651
    [147] Maze J. R., Stanwix P. L., Hodges J. S., Hong S., Taylor J. M., Cappellaro P., Jiang L., Dutt M. V.G., Togan E., Zibrov A. S., Yacoby A., Walsworth R. L., Lukin M. D. Nanoscale magnetic sensingwith an individual electronic spin in diamond[J]. Nature,2008,455:644-647
    [148] Fu C. C., Lee H. Y., Chen K., Lim T. S., Wu H. Y., Lin P. K., Wei P. K., Tsao P. H., Chang H. C.,Fann W. Characterization and application of single fluorescent nanodiamonds as cellularbiomarkers[J]. Proc Natl Acad Sci U S A,2007,104:727-732
    [149] Schrand A. M., Huang H., Carlson C., Schlager J. J., Omacr Sawa E., Hussain S. M., Dai L. Arediamond nanoparticles cytotoxic?[J]. J. Phys. Chem. B,2007,111:2-7
    [150] Holt K. B. Diamond at the nanoscale: applications of diamond nanoparticles from cellularbiomarkers to quantum computing[J]. Philos Transact A Math Phys Eng Sci,2007,365:2845-2861
    [151] Liu K.-K., Cheng C.-L., Chang C.-C., Chao J.-I. Biocompatible and detectable carboxylatednanodiamond on human cell[J]. Nanotechnology,2007,18:325102-325110
    [152] Neugart F., Zappe A., Jelezko F., Tietz C., Boudou J. P., Krueger A., Wrachtrup J. Dynamics ofdiamond nanoparticles in solution and cells[J]. Nano Lett.,2007,7:3588-3591
    [153] Babinec T. M., HausmannBirgit J. M., Khan M., Zhang Y., Maze J. R., Hemmer P. R., Loncar M.A diamond nanowire single-photon source[J]. Nat Nano,2010,5:195-199
    [154] Mori-Sanchez P., Cohen A. J., Yang W. Localization and Delocalization Errors in DensityFunctional Theory and Implications for Band-Gap Prediction[J]. Phys. Rev. Lett.,2008,100:146401
    [155] Anisimov V. I., Zaanen J., Andersen O. K. Band theory and Mott insulators: Hubbard U insteadof Stoner I[J]. Phys. Rev. B,1991,44:943
    [156] Mei D., Deskins N. A., Dupuis M., Ge Q. Density Functional Theory Study of MethanolDecomposition on the CeO2(110) Surface[J]. J. Phys. Chem. C,2008,112:4257-4266
    [157] Van de Walle C. G., Janotti A. Advances in electronic structure methods for defects and impuritiesin solids[J]. physica status solidi (b),2011,248:19-27
    [158] Heyd J., Scuseria G. E., Ernzerhof M. Hybrid functionals based on a screened Coulombpotential[J]. J. Chem. Phys.,2003,118:8207-8215
    [159] Heyd J., Scuseria G. E., Ernzerhof M. Erratum:“Hybrid functionals based on a screenedCoulomb potential”[J. Chem. Phys.118,8207(2003)][J]. J. Chem. Phys.,2006,124:219906
    [160] Paier J., Marsman M., Hummer K., Kresse G., Gerber I. C., Angyan J. G. Screened hybrid densityfunctionals applied to solids[J]. J. Chem. Phys.,2006,124:154709-154713
    [161] Heyd J., Peralta J. E., Scuseria G. E., Martin R. L. Energy band gaps and lattice parametersevaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. J. Chem. Phys.,2005,123:174101-174108
    [162]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001年
    [163] Venkatesan M., Fitzgerald C. B., Coey J. M. Thin films: unexpected magnetism in a dielectricoxide[J]. Nature,2004,430:630
    [164] Coey J. M. D., Venkatesan M., Stamenov P., Fitzgerald C. B., Dorneles L. S. Magnetism inhafnium dioxide[J]. Phys. Rev. B,2005,72:024450
    [165] Hong N. H., Sakai J., Poirot N., Brizé V. Room-temperature ferromagnetism observed inundoped semiconducting and insulating oxide thin films[J]. Phys. Rev. B,2006,73:132404
    [166] Sundaresan A., Bhargavi R., Rangarajan N., Siddesh U., Rao C. N. R. Ferromagnetism as auniversal feature of nanoparticles of the otherwise nonmagnetic oxides[J]. Phys. Rev. B,2006,74:161306
    [167] Das Pemmaraju C., Sanvito S. Ferromagnetism Driven by Intrinsic Point Defects in HfO2[J].Phys. Rev. Lett.,2005,94
    [168] Coey J. M. D. ferromagnetism[J]. Solid State Sci.,2005,7:660-667
    [169] Hori H., Teranishi T., Nakae Y., Seino Y., Miyake M., Yamada S. Anomalous magneticpolarization effect of Pd and Au nano-particles[J]. Phys. Lett. A,1999,263:406-410
    [170] Sampedro B., Crespo P., Hernando A., Litrán R., Sánchez López J. C., López Cartes C.,Fernandez A., Ramírez J., González Calbet J., Vallet M. Ferromagnetism in fcc Twinned2.4nmSize Pd Nanoparticles[J]. Phys. Rev. Lett.,2003,91
    [171] Liu X., Bauer M., Bertagnolli H., Roduner E., van Slageren J., Phillipp F. Structure andMagnetization of Small Monodisperse Platinum Clusters[J]. Phys. Rev. Lett.,2006,97
    [172] Wang W. C., Kong Y., He X., Liu B. X. Observation of magnetism in the nanoscale amorphousruthenium clusters prepared by ion beam mixing[J]. Appl. Phys. Lett.,2006,89:262511-262513
    [173] Smogunov A., Dal Corso A., Delin A., Weht R., Tosatti E. Colossal magnetic anisotropy ofmonatomic free and deposited platinum nanowires[J]. Nat Nanotechnol,2008,3:22-25
    [174] Hori H., Yamamoto Y., Iwamoto T., Miura T., Teranishi T., Miyake M. Diameter dependence offerromagnetic spin moment in Au nanocrystals[J]. Phys. Rev. B,2004,69
    [175] Crespo P., Litran R., Rojas T. C., Multigner M., de la Fuente J. M., Sanchez-Lopez J. C., GarciaM. A., Hernando A., Penades S., Fernandez A. Permanent magnetism, magnetic anisotropy, andhysteresis of thiol-capped gold nanoparticles[J]. Phys. Rev. Lett.,2004,93:087204
    [176] Dutta P., Pal S., Seehra M. S., Anand M., Roberts C. B. Magnetism in dodecanethiol-capped goldnanoparticles: Role of size and capping agent[J]. Appl. Phys. Lett.,2007,90:213102-213103
    [177] Michael F., Gonzalez C., Mujica V., Marquez M., Ratner M. Size dependence of ferromagnetismin gold nanoparticles: Mean field results[J]. Phys. Rev. B,2007,76
    [178] Yamamoto Y., Miura T., Suzuki M., Kawamura N., Miyagawa H., Nakamura T., Kobayashi K.,Teranishi T., Hori H. Direct Observation of Ferromagnetic Spin Polarization in GoldNanoparticles[J]. Phys. Rev. Lett.,2004,93
    [179] Barnard A. S., Russo S. P., Snook I. K. Ab Initio Modeling of Diamond Nanowire Structures[J].Nano Lett.,2003,3:1323-1328
    [180] Straumanis M. E., Aka E. Z. Precision Determination of Lattice Parameter, Coefficient ofThermal Expansion and Atomic Weight of Carbon in Diamond[J]. J. Am. Chem. Soc.,1951,73:5643-5646
    [181] Denham P., Lightowlers E. C., Dean P. J. Ultraviolet Intrinsic and Extrinsic Photoconductivity ofNatural Diamond[J]. Phys. Rev.,1967,161:762-768
    [182] Birch F. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According toMurnaghan's Theory of Finite Strain[J]. J. Appl. Phys.,1938,9:279-288
    [183] Birch F. Finite Elastic Strain of Cubic Crystals[J]. Phys. Rev.,1947,71:809-824
    [184] Mahadevan P., Mahalakshmi S. Suitability of p-type conditions for ferromagnetism inGaN:Mn[J]. Phys. Rev. B,2006,73:153201
    [185] Volnianska O., Boguslawski P. Magnetism of solids resulting from spin polarization of porbitals[J]. J. Phys: condens. Mat.,2010,22:073202-073219
    [186] Maze J. R., Stanwix P. L., Hodges J. S., Hong S., Taylor J. M., Cappellaro P., Jiang L., Dutt M. V.,Togan E., Zibrov A. S., Yacoby A., Walsworth R. L., Lukin M. D. Nanoscale magnetic sensingwith an individual electronic spin in diamond[J]. Nature,2008,455:644-647
    [187] Dev P., Xue Y., Zhang P. Defect-Induced Intrinsic Magnetism in Wide-Gap III Nitrides[J]. Phys.Rev. Lett.,2008,100:117204-117204
    [188] Bader R. F. W. Atoms in Molecules: A Quantum Theory[M]. Clarendon,Oxford: InternationalSeries of Monographs on Chemistry,1990
    [189] Beveratos A., Brouri R., Gacoin T., Poizat J.-P., Grangier P. Nonclassical radiation from diamondnanocrystals[J]. Phys. Rev. A,2001,64:061802
    [190] Hausmann B. J. M., Khan M., Zhang Y., Babinec T. M., Martinick K., McCutcheon M., HemmerP. R., Lon ar M. Fabrication of diamond nanowires for quantum information processingapplications[J]. Diam. Relat. Mater.,2010,19:621-629
    [191] Friedler I., Sauvan C., Hugonin J. P., Lalanne P., Claudon J., Gérard J. M. Solid-state singlephoton sources: the nanowire antenna[J]. Opt. Express,2009,17:2095-2110
    [192] Wyszecki G., Stiles W. S. Color Science: Concepts and Methods, Quantitative Data andFormulae[M]. New York: Wiley,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700