用户名: 密码: 验证码:
扎龙湿地浮游植物生态特征及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国寒冷地区自然湿地众多,冬季漫长而寒冷,夏季短暂而温暖,年平均气温低,气温年较差大,开展寒冷地区自然湿地研究对完善生态系统保护体系及可持续发展有着重要意义。针对寒冷地区自然湿地环境特征,以扎龙湿地为研究对象,系统地调查了扎龙湿地浮游植物群落时空分布特征;运用多元统计方法解析了扎龙湿地环境因子特征,将群落生态统计学方法应用于扎龙湿地环境因子与浮游植物群落结构动态关系研究,基于生物与理化指标耦合的方法评价了扎龙湿地营养状态,建立了基于生物指标的扎龙湿地水环境预测模型。本研究旨在较全面、系统地查明扎龙湿地浮游植物的群落生态学特征,探讨我国寒冷地区湿地浮游植物群落演替规律与环境演变的关系,同时为深入研究湿地浮游植物的长期变化、湿地生态系统动态变化机制、生物资源可持续利用、生态环境影响评价及生态环境保护措施的制定等提供基础资料和不可或缺的重要依据。
     通过扎龙湿地完整水文年的监测分析,查明了扎龙湿地浮游植物的种类组成和群落结构特征。扎龙湿地浮游植物种类繁多,组成复杂,经鉴定,共发现浮游植物303个分类单位,分别隶属于8门、11纲、24目、42科、93属、303种。扎龙湿地浮游植物种群丰富度存在时空异质性。扎龙湿地浮游植物丰度为409.52×10~4个·L~(-1)。其中,以隐藻门丰度最大,为287.70×10~4个·L~(-1),占浮游植物丰度的70.25%;金藻门次之,为39.66×10~4个·L~(-1),占浮游植物丰度的9.68%;硅藻门居第3位,为23.09×10~4个·L~(-1),占浮游植物丰度的5.64%;其余门类丰度依次为蓝藻门17.15×10~4个·L-(1占浮游植物丰度的4.19%)、裸藻门14.54×10~4个·L~(-1)(占浮游植物丰度的3.55%)、绿藻门12.34×10~4个·L~(-1)(占浮游植物丰度的3.01%)、甲藻门11.49×10~4个·L~(-1)(占浮游植物丰度的2.80%),最小为黄藻门,仅为3.55×10~4个·L~(-1)(占浮游植物丰度的0.87%)。扎龙湿地浮游植物丰度存在时空异质性。根据相似性系数进行聚类分析和多维定标分析,将枯、平、丰三个水期浮游植物群落结构分别分为4个、5个、5个组群。
     基于传统浮游植物系统学的群落结构研究方法,结合群落分析统计学原理,探讨扎龙湿地浮游植物群落结构与环境相关性。研究扎龙湿地不同水期环境因子主成分分析发现,对浮游植物起主要作用的指标中,枯水期和平水期非金属环境因子以物理指标为主,其次是有机、无机指标;丰水期非金属离子主成分主要为物理因子和生物因子;枯水期和丰水期对物种分布起主要作用的金属因子,分别为重金属和轻金属;平水期金属离子中轻金属是金属环境变化中的主要因素。通过去趋势分析对物种数据梯度判定,选择典型对应分析方法研究扎龙湿地浮游植物群落与环境因子的关系,得出枯、平、丰水期分别3个、9个、6个环境因子的回归图,浮游植物群落种类丰度与水环境有很好的回归关系。
     开展扎龙湿地浮游植物丰度、多样性、优势种群、指示生物法、污染指示值、综合营养状态指数法与水体状态的关系研究,探讨扎龙湿地水体状态时空变化趋势。从扎龙浮游植物丰度来看,所有水期的所有监测点位都为富营养型;从浮游植物多样性来看,扎龙湿地总体贫营养占4.11%,中营养占32.88%,富营养占65.75%;扎龙湿地浮游植物优势种存在时空差异,全年优势种为硅藻门的梅尼小环藻(Cyclotella meneghiniana)、隐藻门的啮蚀隐藻(Cryptomonaserosa)和绿藻门的狭形纤维藻(Ankistrodesmus angustus),可以推断全年属于中污带水质;从指示生物种类和污染指示值来看,浮游植物大部分种类属于α-中污带和β-中污带指示种,且指示的污染价较高,多污带指示种较少;从综合营养状态指数法来看,扎龙湿地中营养占16.44%,富营养占83.56%。总体来看,扎龙湿地总体以富营养状态为主,水体处于中污染状态。
Our country has numerous natural wetlands in cold areas. It is characterizedby winter long while cold, summer short but warm, the low annual averagetemperature, the large annual temperature difference. It is important for improvingthe ecosystem protection and keeping sustainable development to research on coldregions natural wetland. For the characteristics of cold regions to the Zhalongwetland example, a systematic study was carried on spatial and temporalcharacteristics of phytoplankton community populations. Using multivariatestatistical methods, Zhalong wetland environmental factors were resolved.Community ecology statistical methods was applied to the dynamic relationshipstudy between environmental factors and phytoplankton community structure.Based on biological, physical and chemical indicators coupled, Zhalong wetlandsnutrition status was evalued while Zhalong wetland water environment predictionmodel was set up. The purpose of this study was to reflect the characteristics of thephytoplankton community ecology fully, perfectly and systematicely in Zhalongwetlands, explore our cold regions phytoplankton community succession laws andthe relationship with environmental evolution, as well as provide basic informationin-depth study of long-term changes in phytoplankton of wetlands, wetlandecosystem dynamics change mechanism, bio-sustainable use of resources,ecological environment impact assessment, the formulation of the ecological andenvironmental protection measures.
     By Zhalong wetland monitoring and analysis of the integrity hydrologicalyear, comprehensive, systematic phytoplankton identification, species compositionand community structure was obtained in our studied regions. It had a wide varietyof complex phytoplankton composition in the Zhalong wetland.303phytoplanktontaxa were identified, belonging to8divisions,11classes,24orders,42families,93genera and303species. Phytoplankton abundance of Zhalong wetlandsoccurred temporal and spatial heterogeneity. The Zhalong Wetland phytoplanktonaverage abundance was409.52×10~4ind. L~(-1). Of them, Dryptophyta had thehighest abundance with287.70×10~4ind. L~(-1)and70.25%of the total abundance,Chrysophyta followed,39.66×10~4ind. L~(-1), accounting for9.68%, diatoms ranked3to23.09×10~4ind. L~(-1),5.64%of the total abundance; followed by Cyanophyta17.15×10~4ind. L~(-1)(4.19%), Euglenophyta14.54×10~4ind. L~(-1)(3.55%), theChlorophyta12.34×10~4ind. L~(-1)(3.01%), Dinophyta11.49×10~4ind. L~(-1)(2.80%),minimum Xanthophyta, only3.55×10~4ind. L~(-1)(0.87%). It occurredphytoplankton abundance temporal and spatial heterogeneity in Zhalong wetlands.Based on similarity coefficient, cluster analysis and multidimensional scale analysis (MDS) was carried on, water sampling points according on thephytoplankton community structure were divided into four, five, five groups.On the basis of traditional systematics of phytoplankton community, combinedwith the theory of community statistical analysis, we explored the relationshipbetween Zhalong wetlands phytoplankton community structure and environment.It was found from principal component analysis (PCA) for different environmentalfactors of Zhalong wetland that it played a major role to phytoplanktonnonmetallic environmental factors to physical indicators, followed by organic,inorganic indicators in the poor water period and the medium water. Non-metallicion main ingredient were the physical and biotic factors in the rich water period.Metal factors played a major role in the distribution of species, respectively, forthe heavy metals and light metal in the poor water period and the rich water period.The light metal metal ions in the metal environmental changes were the mainfactor in the medium water. By detrend analysis,it was determined the gradient ofspecies data to choose canonical correspondence analysis method to study therelationship between Zhalong wetland phytoplankton community andenvironmental factors. We obtained prediction maps of3,9,6environmentalfactors in the poor, medium and rich water period in Zhalong wetland and it hadgood regression for water environment.
     The Zhalong Wetland phytoplankton abundance, diversity, dominantpopulation, indicated taxa, pollution indicator values, trophic state index methodwere carried out to explore Zhalong wetland water status, its temporal and spatialtrends. View from the phytoplankton abundance, all the water of the monitoringsites were eutrophic. View from phytoplankton diversity,4.11%in oligotrophic,32.88%in mesotrophic,65.75%in eutrophic. It was different in space and time forZhalong wetlands phytoplankton dominant species. Cyclotella meneghiniana,Cryptomonas erosa and Ankistrodesmus angustus were dominant throughout theyear and we can infer water quality was in the dirt for the whole year. As wasshown from indicator organisms and pollution indicator values, phytoplanktonspecies belonging to the dirt with α-and β-in dirt indicator species, and wasindicative of a higher price, and more dirt with less taxa. from the trophic stateindex, accounted for16.44%in mesotrophic, accounted for83.56%of eutrophic.Overall, the Zhalong wetlands was mainly eutrophic state and in the moderatelypolluted state of water body.
引文
1M.Eiseltova,J.Pokorny.Filamentous algae in fish ponds of the Trebonbiosphere reserve-ecophysiological study [J].Vegetatio.1994,113:115-120.
    2S.Rodrigo,L.S.María,C.M.María,et al.Experimental study of thezooplankton impact on the trophic structure of phytoplankton and themicrobial assemblages in a temperate wetland (Argentina)[J].Limnologica.2007,37:88-99.
    3覃雪波,刘曼红,黄璞袆,等.寒区湿地春、夏浮游植物群落划分——以三江平原安邦河湿地为例[J].湖泊科学.2008,20(4):529-537.
    4杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展.2002,21(2):111-120.
    5R.P.Kurt.History of Delaware and New Jersey salt marsh restorationsites [J].Ecological Engineering.2005,25:214–230.
    6R. Nicolas, L. R. Robert. The marsh cone: a test or a rheologicalapparatus [J].Cement and Concrete Research.2005,5(35):823–830.
    7R.S. Barbero,A.D.Albani,M.Bonardi.Ancient and modern saltmarshes in the Lagoon of Venice [J]. Palaeogeography,Palaeoclimatology,Palaeoecology.2004,202:229-244.
    8A.Watanabe, Kunio Moroi, Hiromu Sato,et al.Contributions of humicsubstances to the dissolved organic carbon pool in wetlands from differentclimates [J].Chemosphere.2012,88:1265-1268.
    9S. G. W. Laurance, C. Baider. Drivers of wetland disturbance andbiodiversity impacts on a tropical oceanic island [J]. BiologicalConservation.2012,149:136-142.
    10D.Weixin,C.Zucong,T.Haruo.Plant species effects on methane emissionsfrom freshwater marshes [J]. Atmospheric Environment.2005,39:3199–3207.
    11F. A. Heinsch, J. L. Heilman, K. J. McInnes, et al. Carbondioxide exchange in a high marsh on the Texas Gulf Coast:effects offreshwater availability [J].Agricultural and Forest Meteorology.2004,125:159–172.
    12A. H. Alhashemi, M. S. Sekhavatjou, B. Hassanzadeh Kiabi, etal. Bioaccumulation of trace elements in water, sediment, and six fishspecies from a freshwater wetland, Iran [J].Microchemical Journal.2012,104:1-6.
    13A.Bottari,C.Bottari,P.Carveni,et al.Genesis and geomorphologicand ecological evolution of the Ganzirri salt marsh (Messina, Italy)[J].Quaternary International.2005,140–141:150–158.
    14M.Getachew, Argaw Ambelu, Seid Tiku.Ecological assessment of CheffaWetland in the Borkena Valley, northeast Ethiopia: Macroinvertebrate andbird communities [J].Ecological Indicators.2012,15:63-71.
    15L. K. Kirkman, L. L. Smith, F. P. Quintana-Ascencio, et al. Isspecies richness congruent among taxa? Surrogacy, complementarity, andenvironmental correlates among three disparate taxa in geographicallyisolated wetland [J].Ecological Indicators.2012,18:131-139.
    16J. K. Bush. The role of soil moisture, salinity, and oxygen on thegrowth of Helianthus paradoxus (Asteraceae) in an inland salt marsh ofwest Texas [J].Journal of Arid Environments.2006,64:22–36.
    17M.W.Alisa.,S.J.Ormerod.The distribution of three uncommonfreshwater gastropods in the drainage ditches of British grazing marshes[J].Biological Conservation.2004,118:455–466.
    18L.Jean-Claude,L.Pascal,F.Eric.Biodiversity in salt marshes:frompatrimonial value to ecosystem functioning, The case study of theMont-Saint-Michel bay [J].C.R.Biologies.2003,326:125–131.
    19L. F. Patricia. Vegetation change in the coastal-lowland rainforest atAvai’o’vuna Swamp, Vava’u, Kingdom of Tonga [J]. QuaternaryResearch.2005,64:451–459.
    20V.Ivan,R.Deborah,F.Sophia.Salt marshes:biological controls offood webs in adiminishing environment [J].Journal of Experimental MarineBiology and Ecology.2004,300:131–159.
    21P.Hazra, A.Sinha, P.Mondal, et al.Calendar-effects and temperature-impactsin migratory waterbirds at three tropical Indian wetlands [J]. ActaOecologica.2012,43:60-71.
    22J.L.O.Connell, L.A.Johnson, L.M.Smith, et al.Influence ofland-use and conservation programs on wetland plant communities of thesemiarid United States Great Plains [J].Biological Conservation.2012,146:108-115.
    23A.M.Franco,S.S.Tammo,J.Parlange.The hydrology of PiermontMarsh,a reference for tidal marsh restoration in the Hudson river estuary,New York [J].Journal of Hydrology.2006,316:108–128.
    24L. W. Lee, M. T. John, H. Ray. Stream order analysis in marshrestoration on Delaware Bay [J]. Ecological Engineering.2005,25:252–259.
    25H.B.John,V.H.Maureen,J.M.Hugh.Delaware Bay salt marshrestoration: Mitigation for a power plant cooling water system in NewJersey,USA [J].Ecological Engineering.2005,25:204–213.
    26M.T.John,W.Lee.Ecological engineering,adaptive management,and restoration management in Delaware Bay salt marshrestoration[J].Ecological Engineering.2005,25:304–314.
    27M.Martín,N.Olivera,C.Hernández-Crespoa,et al.The use of freewater surface constructed wetland to treat the eutrophicated waters of lakeL’Albufera de Valencia (Spain)[J].Ecological Engineering.2012:1-10.
    28P.N rhi, M.L.R is nen, M.Sutinen.Effect of tailings on wetland vegetationin Rautuvaara, a former iron–copper mining area in northern Finland[J]. Journal of Geochemical Exploration.2012,116-117:60-65.
    29M. E. Karpuzcu, W. T. Stringfellow. Kinetics of nitrate removal inwetlands receiving agricultural drainage [J].Ecological Engineering.2012,42:295-303.
    30K. Song, H. Kang, Z. Li, et al. Seasonal and spatial variations ofdenitrification and denitrifying bacterial community structure in createdriverine wetlands [J].Ecological Engineering.2012,38:130-134.
    31M.Martín, N.Oliver, C.Hernández-Crespo, et al.The use of free watersurface constructed wetland to treat the eutrophicated waters of lakeL’Albufera de Valencia (Spain)[J].Ecological Engineering.2012:1-10.
    32F.J.Díaz, A.T.O.Geena, R.A.Dahlgren.Agricultural pollutant removalby constructed wetlands: Implications for water management and design[J].Agricultural Water Management.2012,104:171-183.
    33L. Bernard,W.Philippe.Hydrochemical assessment of the Rochefortmarsh:Role of surface and groundwater in the hydrological functioning ofthe wetland [J].Journal of Hydrology.2005,314:22–42.
    34M.K.John,C.D.Daniel,J.W.Sambeek,et al.Soil propertiesand growth of swamp white oak and pin oak on bedded soils in the lowerMissouri River floodplain [J].Forest Ecology and Management.2005,204:315–327.
    35O.Mutanga, E.Adam, M.A.Cho.High density biomass estimation forwetland vegetation using World View-imagery and random forest regressionalgorithm [J]. International Journal of Applied Earth Observation andGeoinformation.2012,18:399-406.
    36R.S.Comeaux, M.A.Allison, T.S.Bianchi.Mangrove expansion inthe Gulf of Mexico with climate change:Implications for wetland health andresistance to rising sea levels [J]. Estuarine, Coastal and ShelfScience.2012,96:81-95.
    37M. J. Wilson, S. E. Bayley. Use of single versus multiple bioticcommunities as indicators of biological integrity in northern prairie wetlands[J].Ecological Indicators.2012,20:187-195.
    38D.C.Kotze, W.N.Ellery, D.M.Macfarlane, G.P.W.Jewitt.A rapidassessment method for coupling anthropogenic stressors and wetlandecological condition [J].Ecological.2012,13:284-293.
    39J. R. Morrison, H. A. Sandler, L. K. Romaneo. Management ofswamp dodder (Cuscuta gronovii Willd.) in cranberry maybe enhancedbythe integration of a nontoxic household cleaner[J]. CropProtection.2005,24:1–6.
    40M. Edraki, H. B. So, E. A. Gardner. Water balance of swampmahogany and rhodes grass irrigated with treated sewageeffluent[J].Agricultural Water Management.2004,67:157–171.
    41E.C.Volkmar,S.S.Henson,R.A.Dahlgren,et al.Diel patterns ofalgae and water quality constituents in the San Joaquin River, California,USA [J].Chemical Geology.2011,283:56–67.
    42辛琨,肖笃宁.盘锦地区湿地生态系统服务功能价值估算[J].生态学报.2002,22(8):1345-1349.
    43黄建辉.溪流两边的湿地对其含氮量的贡献(In English)[J].植物生态学报.1996,20(4):289-302.
    44金泰龙.三江平原沼泽生态系统的化学特征:中国沼泽研究[M].科学出版社.北京.1987,8(3):293-294.
    45F. Wang, Y. Liu, Y. X. Ma. Characterization of nitrification andmicrobial community in a shallow moss constructed wetland at coldtemperatures [J].Ecological Engineering.2012,42:124-129.
    46白军红,邓伟,朱颜明.湿地生物地球化学过程研究进展[J].生态学杂志.2002,21(1):53-57.
    47L. M. Cowardin, V. Carter, F. C. Golet, et al. Classification ofwetlands and deepwater habitats of the United States [J].US Fish andWildlife Service.1979:79-31.
    48M. M. Brinson. Changes in the Functioning of Wetlands AlongEnvironmental Gradients.Wetlands.1993,13:65-74.
    49陆健健.一个新的湿地分类系统.中国湿地研究和保护[M].上海华东师范大学出版社.1998:361-364.
    50G.P.Wang,J.S.Liu,J.Tang.The long-term nutrient accumulationwith respect to anthropogenic impacts in the sediments from two freshwatermarshes (Xianghai wetlands, Northeast China)[J].Water Research.2004,38:4462–4474.
    51L.Zeng, Y.H.Wu, P.Ji, et al.Effect of wind on contaminant dispersionin a wetland flow dominated by free-surface effect [J]. EcologicalModelling.2012,237-238:101-108.
    52李长安.中国湿地环境现状与保护对策[J].中国水利.2004,3:24-26.
    53Z.Y.Wang, S.P.Yuan.Ecological risk resulting from invasive species:a lesson from riparian wetland rehabilitation [J].Procedia EnvironmentalSciences.2012,13:1798–1808.
    54J.Czerepko.A long-term study of successional dynamics in the forestwetlands [J].Forest Ecology and Management.2008.255:630–642.
    55R. B. Owen, R. Potts, A. K. Behrensmeyer, et al. Diatomaceoussediments and environmental change in the Pleistocene OlorgesailieFormation, southern Kenya Rift Valley [J]. Palaeogeography,Palaeoclimatology,Palaeoecology.2008,269:17-37.
    56M.E.Lundya, D.F.Spencera,C.V.Kessela,et al.Managingphosphorus fertilizer to reduce algae, maintain water quality, and sustainyields in water-seeded rice [J]. Field Crops Research.2012,131:81–87.
    57S.T.Mereta, P.Boets, A.A.Bayih,et al.Analysis of environmental factorsdetermining the abundance and diversity of macroinvertebrate taxa in naturalwetlands of Southwest Ethiopia [J].Ecological Informatics.2012,7:52-61.
    58G.M.Amado-Filhoa,G.H.Pereira-Filhob,R.G.Bahiaa,et al.Occurrenceand distribution of rhodolith beds on the Fernando de Noronha Archipelago ofBrazil [J].Aquatic Botany.2012,101:41–45.
    59C.S.G.Rousseaux, R.Lowe, M.Feng, et al.The role of the LeeuwinCurrent and mixed layer depth on the autumn phytoplankton bloom offNingaloo Reef, Western Australia [J].Continental Shelf Research.2012,32:22–35.
    60K.R.Arrigon, K.E.Lowry, G.L.van Dijken.Annual changes in seaice and phytoplankton in polyny as of the Amundsen Sea, Antarctica[J].Deep-Sea Research II.2012,71-76:5–15.
    61S.T.Peng, X.B.Qin, H.H.Shi, et al.Distribution and controllingfactors of phytoplankton assemblages in a semi-enclosed bay during springand summer [J].Marine Pollution Bulletin.2012,64:941–948.
    62M. Devercellia, I. O’Farrell. Factors affecting the structure andmaintenance of phytoplankton functional groups in a nutrient rich lowlandriver [J].Limnologica.2012:1-12.
    63A.Rigosia, F.J.Ruedaa.Hydraulic control of short-term successionalchanges in the phytoplankton assemblage in stratified reservoirs[J].Ecological Engineering.2012,44:216-226.
    64S. J. Cardosoa, F. Rolanda, S. M. Loverde-Oliveirab, etal.Phytoplankton abundance, biomass and diversity within and betweenPantanal wetland habitats [J].Limnologica.2012,42:235–241.
    65G. M. Fragoso, W. O. Smith. Influence of hydrography onphytoplankton distribution in the Amundsen and Ross Seas,Antarctica[J].Journal of Marine Systems.2012,89:19–29.
    66R.B.Domingues, A.B.Barbosa, U.Sommer, et al.Phytoplanktoncomposition, growth and production in the Guadiana estuary (SW Iberia):Unraveling changes induced after dam construction [J].Science of the TotalEnvironment.2012,416:300–313.
    67V. David, M. Ryckaert, M. Karpytchev, et al. Spatial and long-termchanges in the functional and structural phytoplankton communities along theFrench Atlantic coast [J].Estuarine, Coastal and Shelf Science.2012:1-15.
    68E. Nogueira, G. González-Nuevo, L. Valdés. The influence ofphytoplankton productivity, temperature and environmental stability on thecontrol of copepod diversity in the North East Atlantic [J].Progress inOceanography.2012,97–100:92–107.
    69J.Franz, G.Krahmann, G.Lavik, et al.Dynamics and stoichiometry ofnutrients and phytoplankton in waters influenced by the oxygen minimumzone in the eastern tropical Pacific [J].Deep-Sea Research I.2012,62:20–31.
    70A.Beyene,T.Addis,D.Kifle,et al.Comparative study of diatomsand macroinvertebrates as indicators of severe water pollution:Case studyof the Kebena and Akaki rivers in Addis Ababa[J].Ethiopia,EcologicalIndicators.2009,9:381-392.
    71Zhou Q.F., Zhang J.B.,Fu J.J.,et al.Biomonitoring:Anappealing tool for assessment of metal pollution in the aquaticecosystem[J].Analytica Chimica Acta.2008,606:135-150.
    72Evelyn Gaiser.Periphyton as an indicator of restoration in the FloridaEverglades[J].Ecological Indicators.2008,410:1-9.
    73P.Carlsson, E.Granéli, W.Granéli, et al.Bacterial and phytoplanktonnutrient limitation in tropical marine waters, and a coastal lake inBrazil[J]. Journal of Experimental Marine Biology and Ecology.2012,418–419:37–45.
    74M.Kurihara, M.Iseda, T.Ioriya, et al.Brominated methane compoundsand isoprene in surface seawater of Sagami Bay: Concentrations, fluxes,and relationships with phytoplankton assemblages [J]. MarineChemistry.2012,134–13:71–79.
    75A. Rekik, Z. Drira, W. Guermazi, et al. Impacts of an uncontrolledphosphogypsum dumpsite on summer distribution of phytoplankton,copepods and ciliates in relation to abiotic variables along the near-shore ofthe southwestern Mediterranean coast [J].Marine Pollution Bulletin.2012,64:336–346.
    76M.T.Sebastia, M.Rodilla, J.A.Sanchis, et al.Influence of nutrientinputs from a wetland dominated by agriculture on the phytoplanktoncommunity in a shallow harbour at the Spanish Mediterranean coast[J].Agriculture, Ecosystems and Environment.2012,152:10–20.
    77A.Alderkamp, M.M.Mills, G.Dijken, et al.Iron from melting glaciersfuels phytoplankton blooms in the Amundsen Sea (Southern Ocean):Phytoplankton characteristics and productivity [J]. Deep-Sea ResearchII.2012,71-76:32–48.
    78L.J.A.Gerringa, A.Alderkamp, Patrick Laan, et al.Iron from meltingglaciers fuels the phytoplankton blooms in Amundsen Sea (SouthernOcean): Iron biogeochemistry [J].Deep-Sea Research II.2012,71–76:16–31.
    79V.Fleming-Lehtinen, M.Laamanen.Long-term changes in Secchi depthand the role of phytoplankton in explaining light attenuation in the Baltic Sea[J].Estuarine, Coastal and Shelf Science.2012,102-103:1-10.
    80C.Amengual-Morro, G.M.Niell, A.Martínez-Taberner.Phytoplanktonas bioindicator for waste stabilization ponds [J].Journal of EnvironmentalManagement.2012,95:S71-S76.
    81R.E.Lizotte, F.D.Shields, J.N.Murdock, et al.Knight.Responsesof Hyalella azteca and phytoplankton to a simulated agricultural runoff eventin a managed backwater wetland [J].Chemosphere.2012,87:684–691.
    82J.Y.Zhang, W.M.Ni, Y.Luo,et al.Response of freshwater algae towater quality in Qinshan Lake within Taihu Watershed, China [J].Physicsand Chemistry of the Earth.2011,36:360–365.
    83M.T.P.Coutinho, A.C.Brito, P.Pereira, et al.A phytoplankton toolfor water quality assessment in semi-enclosed coastal lagoons: Open vsclosed regimes [J].Estuarine, Coastal and Shelf Science.2012:1-13.
    84F.Lugolia, M.Garmendiad, S.Lehtinenb, et al.Application of a newmulti-metric phytoplankton index to the assessment of ecological status inmarine and transitional waters [J]. Ecological Indicators.2012,23:338–355.
    85N.Solovieva,V.Jones,H.B John.et al.Diatom responses to20thcentury climate warming in lakes from the northern Urals,Russia[J].Palaeogeography, Palaeoclimatology, Palaeoecology.2008,259:96-106.
    86S. S. Barinova, G. Yehuda, E. Nevo. Comparative analysis of algalcommunities in the rivers of northern and southern Israel as bearing onecological consequences of climate change [J]. Journal of AridEnvironments.2010,74:765–776.
    87J.L.Pappas.Phytoplankton assemblages, environmental influences andtrophic status using canonical correspondence analysis, fuzzy relations, andlinguistic translation [J].Ecological Informatics.2010,5:79–88.
    88M. Racaulta, C. Le Quéréb, E. Buitenhuisb, et al. Phytoplanktonphenology in the global ocean [J]. Ecological Indicators.2012,14:152–163.
    89D.Mari, R.Kraus, J.Godrijan, et al.Phytoplankton response to climaticand anthropogenic influences in the north-eastern Adriatic during the last fourdecades [J].Estuarine, Coastal and Shelf Science.2012:1-15.
    90N. Wu, B. Schmalz, N. Fohrer. Development and testing of aphytoplankton index of biotic integrity (P-IBI) for a German lowland river[J].Ecological Indicators.2012,13:158–167.
    91A.Abramic, J.Gonzalez del Rio, N.Martinez-Alzamora, et al.Evaluationof the possibility for phytoplankton monitoring frequency reduction in thecoastal waters of the Community of Valencia, in the scope of the WaterFramework Directive [J].Marine Pollution Bulletin.2012:1-11.
    92S. Hallstan, R. K. Johnson, E. Willen, et al. Comparison ofclassification-then-modelling and species-by-species modeling for predictinglake phytoplankton assemblages [J].Ecological Modelling.2012,231:11–19.
    93张怡,胡韧,肖利娟,等.南亚热带两座不同水文动态的水库浮游植物的功能类群演替比较[J].生态环境学报.2012,21(1):107-117.
    94张磊,张秀梅,吴忠鑫,等.荣成俚岛人工鱼礁区大型底栖藻类群落及其与环境因子的关系[J].中国水产科学.2012,19(1):116-125.
    95胡远东,吴妍,魏欣瑶,等.大庆市主要湖泊夏季藻类植物多样性及水质评价[J].东北林业大学学报.2012,40(4):65-74.
    96栾青杉,孙军,宋书群,等.长江口夏季浮游植物群落与环境因子的典范对应分析[J].植物生态学报.2007,31(3):445-450.
    97王翠红,张金屯.汾河太原段水体浮游藻类群落DCCA研究[J].农业环境科学学报.2006,25(6):1588-1593.
    98高彩凤,李学军,毛战坡.北运河浮游植物调查及水质评价[J].水生态学杂志.2012,33(2):85-90.
    99蒋嫣红,程婧蕾,王丽卿.公园水体浮游植物与环境因子的关系[J].生态学杂志.2012,31(3):606-613.
    100王瑜,刘录三,舒俭民等.白洋淀浮游植物群落结构与水质评价[J].湖泊科学.2011,23(4):575-580.
    101李仁全,王明书,孙敏,等.赤城湖藻类群落及其对水质的影响评价[J]绵阳师范学院学报.2010,29(5):80-83.
    102陈曦,刘如铟,王艳芬,等.若尔盖高原湿地藻类多样性研究[J].环境科学.2012,33(3):979-986.
    103刘文盈,张秋良,高润宏,等.盐沼湿地浮游植物多样性与环境关系研究[J].内蒙古林业科技.2012,38(1):5-8.
    104殷旭旺,渠晓东,李庆南,等.基于着生藻类的太子河流域水生态系统健康评价[J].生态学报.2012,32(6):1677-1691.
    105计勇,张洁,樊后保,等.赣江中下游浮游藻类群落结构与水质评价[J].中国农村水利水电.2012,4:28-31.
    106武琳,刘雪华,成小英,等.景观水体浮游藻类变化及与水质因子关系分析[J].环境科学与技术.2012,35(4):120-126.
    107陈春浩,张俊芳,马沛明,等.茜坑水库浮游植物时空分布及水质风险评价[J].水生态学杂志.2012,33(2):32-38.
    108郭劲松,谢丹,李哲,等.三峡水库开县消落区水域冬季蓄水期间藻类群落结构与水质评价[J].环境科学.2012,33(4):1129-1135.
    109卞少伟,于洪贤,马成学,等.桃山水库浮游植物群落结构及水质营养状态评价[J].水生态学杂志.2012,33(1):53-57.
    110胡芳,刘桢.湘江长沙段浮游藻类动态监测与水质评价[J].环境科学与管理.2012,37(2):111-113.
    111车娟,姜肖.扎龙湿地保护剂开发对策研究[J].齐齐哈尔大学学报.2007,23(5):74-76.
    112吴平,付强.扎龙湿地生态系统服务功能价值评估[J].农业现代化研究.2008,29(3):335-337.
    113孙硕石.气候变化对扎龙湿地生态环境的影响[J].黑龙江气象.2001,(l):32~34.
    114毛文永著.生态环境影响评价概论[M].北京:中国环境科学出版社,2003.
    115M. A. Mallin, D. C. Parsons, V. L. Johnson. Nutrient limitationand algal blooms in urbanizing tidal creeks [J].Journal of ExperimentalMarine Bilogy and Ecology.2004,98:211一231.
    116舒展.扎龙湿地生态环境评价[M].东北林业大学硕士论文,2006.
    117杨敏,吴庆明,齐锐,等.春季人为干扰活动对扎龙湿地鸟类群落结构影响的初步研究[J].野生动物杂志,2008,29(3):118-120.
    118宋文军,马玲,王慧,等.扎龙自然保护区湖泊边昆虫群落多样性[J].东北林业大学学报.2007,35(7):80-81.
    119杨敏,吴庆明,齐锐,等.春季人为干扰活动对扎龙湿地鸟类群落结构影响的初步研究[J].野生动物杂志.2008,29(3):118-120.
    120郭跃东,何岩,邓伟,等.扎龙河滨湿地对地表径流氮磷污染物的净化作用.环境科学[J].2005,26(3):49-55.
    121王永洁,邓伟.扎龙湿地水环境可持续性度量研究[J].地理科学.2006,26(6):722-727.
    122孟宪国.扎龙保护区地下水埋深的混沌分析[J].黑龙江水利科技.2008,36(3):130.
    123李波,苏岐芳,周晏敏,等.扎龙湿地的生态环境评价及防治对策[J].中国环境监测.2002,3(6):33-36.
    124周林飞,许士国,孙勇.扎龙湿地生态系统服务功能及恢复的研究[J].水土保持研究.2005,12(4):167-171.
    125杨开良.扎龙自然保护区湿地生物多样性现状及保护对策[J].中南林业调查规划.2005,24(2):27-30.
    126孙砳石.气候变化对扎龙湿地生态环境的影响[J].黑龙江气象.2001,(1):32-34.
    127孙砳石,王昊.扎龙湿地周边区域极端气温不对称变化分析[J].气象.2006,32(5):22-28.
    128戴向前,刘昌明,陈敏建.扎龙湿地生态需水研究[J].南水北调与水利科技.2007,5(5):41-47.
    129彭璇,安清平,赵丹.扎龙湿地生态修复与保护的思考[J].黑龙江水利科学.2007,35(3):98-99.
    130王永洁,陈凯.扎龙湿地土地利用类型评价研究[J].水文.2008,28(1):84-86.
    131王永洁,邓伟.扎龙湿地面积与土地利用类型变化的相关性分析[J].农业系统科学与综合研究.2007,23(2):150-157.
    132王志强,张树清,张柏,等.基于3S的湿地监测与空间决策支持系统研究—以扎龙国家级湿地保护区为例[J].计算机工程与应用.2008,44(4):204-207
    133衣伟宏,杨柳,张正祥.基于ETM_影像的扎龙湿地遥感分类研究[J].湿地科学.2004,2(3):208-212.
    134刘权,马铁民,王忠静,等.遥感技术在松嫩平原西部半干旱区扎龙湿地调水中应用研究[J].干旱区资源与环境.2005,19(3):83-87.
    135韩敏,孙燕楠,许士国,等.基于RS_GIS技术的扎龙沼泽湿地景观格局变化分析[J].地理科学进展.2005,24(6):42-49.
    136朱世龙,孙贵江.手龙湖饵料生物组成鱼产力及其渔业利用的探讨[J].黑龙江水产年.2000,80(2):27-28.
    137王雪松.扎龙生态资源在生物教学与科研中的优势[J].长春师范学院学报(自然科学版).2008,27(1):140-143.
    138张大鹏,孙化江.扎龙自然保护区面临的主要生态环境问题及其改善对策建议[J].地质灾害与环境保护.2005,16(1):58-61.
    139白红军,邓伟,张勇,等.扎龙自然保护区湿地生物生境安全保护[J].西北林学院学报.2003,18(3):6-9.
    140袁洪福,褚小立,王艳斌,等.水分析手册[M].中国石化出版社,2004.
    141国家环境保护总局.水和废水监测分析方法[M].中国环境科学出版社,2002.
    142胡鸿钧,魏印心.中国淡水藻类[M].北京:科学出版社.2006.
    143王明翠,刘雪芹,张明辉.湖泊富营养化评价方法及分级标准[J].中国环境监测.2002,18(5):47-49.
    144金相灿等.中国湖泊环境[M].海洋出版社.1955.
    145J.R.Bray, J.T.Curtis.An ordination of the upland forest communitiesof Southern Wisconsin.Ecological Monographs.1957,27:325-349.
    146K.R.Clarke.Non-parametric multivariate analyses of changes in communitystructure.Australian Journal of Ecology.1993,18(3):117-143.
    147S.Souissi, F.Ibanez Ben, R.Hamadou, et al.A new multivariate mappingmethod for studying species assemblages and their habitats: example usingbottom trawl surveys in the Bay of Biscay (France).Sarsia.2001,86:527-542.
    148K.R.Clarke, R.M.Warwick.Change in marine communities: An approachto statistical analysis and interpretation (2nd edition). Plymouth:Primer-E.2001.
    149J.B.Kruskal.Multidimensional scaling by optimizing goodness of fit to anon-metric hypothesis.Psychometrika.1964,29(1):1-27.
    150A.Naqinezhada,B.Hamzeh,F.Attarb.Vegetation-Environment relationshipsin the Alderwood Communities of Caspian Lowlands[J].N.Iran (toward anecological classification) Flora.2008,203:567-577.
    151C. J. F. ter Braak, P. milauer. CANOCO Reference Manual andCanoDraw for Windows User's Guide:Software for Canonical CommunityOrdination (version4.5)[M].Microcomputer Power.Ithaca,NY,USA.(2002).
    152S.F.Leska,G.Cythia.Using diatoms to assess the biological conditionof large rerivers in Idaho (USA)[J].Fresh water Bilogy.2002(47):2015-2037.
    153Zhao S.J.,Jiao N.Z.,WU C.W..Evolution of nutrient structureand PhytoPlankton composition in the Jiaozhou Bay ecosystem [J].Journalof Environmental Scienees.2005,17(1):95-102.
    154S. Komulaynen. Use of Phytoperiphyton to assess water quality innorth-western Russian rivers [J].Journal of Applied Phycology.2002,14:57-62.
    155V. H. Sommer. Growth and survival strategies of planktonicdiatoms. Sandgren CD, ed. Growth and Reproductive Strategies ofFreshwater Phytoplankton.Cambriodge University Press.1988.
    156M.Licursi,M.V.Sierra,N.Gómez.Diatom assemblages from a turbidcoastal plain estuary:Ríodela Plata(South America)[J].J.Mar.Syst.2006,62:35-45.
    157C.Nalewajko,T.P.Murphy.Effects of temperature and availability ofnitrogen and phosphorus on the abundance of anabaena and microcystis inlake Biwa,Japan:an experimental approach [J].Limnology.2001,2:45-48.
    158隋丰阳,范亚文.吉林省白城、松原地区部分湖泡藻类植物的初步研究[J].武汉植物学研究.2010,28(2):161-170.
    159刘德增,李光鹏.我国冷泉溪和泉流生物的拯救与保护[J].国土与自然资源.1991,4:50一52.
    160刘俊,胡自强.湘江中游江段软体动物的种类组成及其多样性[J].生态学报.2007,27(3):1153-1160.
    161O.J.R.Necchi,L.H.Z.Branco,C.C.Z.Branco.Ecologicaldistribution stream macroalgae communities from a drainage basin in theSerra da Canastra National Park, mMinas gerais, southeastern Brazil[J].Braz JBiol.2003,63:635-646.
    162陈宇炜,秦伯强,高锡云.太湖梅梁湾藻类及相关环境因子逐步回归统计和蓝藻水华的初步预测[J].湖泊科学.2001,13(1):63-71.
    163O.J.Necchi, L. Branco,C. Branco.Eeological distribution streammacroalgae communities from drainage basin in the Serrada CanastraNational Park, mMinas gerais, soultheastem Brazil [J]. Brazi JBtol.2003,63:635-646.
    164石瑛.娘子关泉域大型藻类群落结构特征的研究.山西大学博士学位论文.2008.
    165M.K.Lassen,K.D.Nielsen,K.Richardson,et al.2010. Theeffects of temperature increases on a temperate phytoplankton community:A mesocosm climate change scenario [J].Journal of Experimental MarineBiology and Ecology.383:79-88.
    166蒋嫣红,程婧蕾,王丽卿.公园水体浮游植物与环境因子的关系[J].生态学杂志.2012,31(3):606-613.
    167唐汇娟,谢平,刘丽,等.武汉东湖浮游植物群落结构的时空变化与环境因子的关系.中山大学学报:自然科学版.2008,47(3):100-104.
    168L.Manel.Diatom responses to Holocene environmental changes in a smalllake in northwest Spain [J].Quaternary International.2005,140-141:
    90-102.
    169杨红军,袁峻峰,张锦平.着生藻类群落在黄浦江水质监测中的应用[J].上海环境科学.2002,21(11):68-693.
    170顾泳洁,王秀芝,廖祖荷.利用着生生物群落动态变化监测水质的研究[J].华东师范大学学报(自然科学版).2005,4:87-94.
    171陈一申,吴国嚎.苏州河水环境污染现状分析[J].上海环境科学.1997,16(1):11-14.
    172刘冬燕,赵建夫,张亚雷,等.富营养水体生物修复中浮游植物的群落特征[J].水生生物学报.2005,9(2):177-182.
    173雷安平,施之新,魏印心.武汉东湖浮游藻类物种多样性的研究[J].水生生物学报.2003,7(2):179-184.
    174V.Rodrigo,N.Eberto.Seasonal changes in periphyton nitrogen fixationin a Protected tropical wetland.Biology and Fertility of SOils.2007,43:
    367-372.
    175C.E.Walker,PanY.D..Using diatom assemblages to asses urbanstreame conditions[J].Hydrobiologia.2006,561:179一189.
    176全国主要湖泊、水库富营养化调查研究课题组.湖泊富营养化调查规范(第二版)[M].中国环境科学出版社.1990.
    177沈治蕊,卞小红,赵燕,等.南京煦园太平湖富营养化及其防治[J].湖泊科学.1997,12(4):377-380.
    178覃雪波,马成学,黄璞袆.安邦河湿地浮游植物及营养现状评价[J].农业环境科学学报.2007,26(增刊):288-296.
    179詹玉涛.斧溪河浮游植物分布及其水质污染的相关性研究.中国环境科学.1991,11(1):29-33.
    180林碧琴,谢淑琦.水生藻类与水体污染监测[M].辽宁大学出版社.1988.
    181M.Zelinka, P.Marvan.Zur Prazisierung der biologischen Klassifikationder Reinbeit fliessender Gewasser.Archiv fur Hydrobiologie.1961,57:389-407.
    182熊金林.不同营养水平湖泊浮游生物和底栖动物群落多样性的研究[J].华中科技大学博士论文.2005.
    183覃雪波,马成学,黄璞袆.安邦河湿地浮游植物及营养现状评价[J].农业环境科学学报.2007,26(增刊):288-296.
    184R.E.M.Archibald.Diversity in some South African diatom associationsand its relation to water quality [J].Wat.Res..1972,6:1229-1238.
    185蒙仁宪,刘贞秋.以浮游植物评价巢湖水质污染及富营养化[J].水生生物学报.1988,12(1):14-26.
    186章宗涉,莫珠成,戎克文,等.用藻类监测和评价图们江的水污染[J].水生生物学集刊.1983,8(1):97-104.
    187罗民波,陆健健,王云龙,等.东海浮游植物数量分布与优势种[J].生态学报.2007,27(12):5076-5085.
    188C.S.Reynolds,J.P Descy.Are phytoplankton dynamics in rivers sodifferent from those in shallow lakes [J].Hydrobiologia.1994,289(1):1-7.
    189L.aselli-Flores, J.Padisak,M.Albay.Shape and size in phytoplanktonecology:do they matter [J].Hydrobiologia.2007,578(1):157-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700