用户名: 密码: 验证码:
海洋黑曲霉生产耐盐型纤维素酶和β-葡糖苷酶及其酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶是将纤维素降解为葡萄糖的酶,由内切酶、外切酶和p-葡糖苷酶组成。p-葡糖苷酶将纤维二糖降解为葡萄糖,是酶解纤维素过程中的关键步骤之一。耐盐纤维素酶可以在高盐环境下高效降解纤维素,造纸和纤维素预处理废水的治理,海洋垃圾、海藻和海草中纤维素的高效利用,盐碱地的修复等需要耐盐的纤维素酶。
     本论文从海洋中筛选产耐盐纤维素酶的菌株,通过对具有良好耐盐性能的纤维素酶和p-葡糖苷酶的发酵工艺、酶学性质、普遍的耐盐机制等的研究,为高盐环境中纤维素的降解打下基础。论文研究包括以下内容:
     首先,从海洋中筛选得到产耐盐纤维素酶的真菌,根据该真菌的形态,ITS序列和5%NaCl (w/v)最适生长盐度,鉴定该真菌为嗜盐海洋黑曲霉。海洋黑曲霉产生的纤维素酶最适温度和pH为58℃和4.5,在12%NaCl (w/v)溶液中的酶活最大,是在无NaCl溶液中酶活的1.33倍。该纤维素酶在黑液废水中降解纤维素,降解12h产生的葡萄糖比在自来水中降解纤维素产生的葡萄糖多了11.5%。研究结果表明,海洋黑曲霉产生的纤维素酶是一种具有良好耐盐耐热性能的纤维素酶。
     其次,研究了纤维素酶的固体发酵工艺,实现了纤维素酶的环境友好型生产。固体发酵的天然培养基最优组成为:76.9%水葫芦(w/w),8.9%玉米芯(w/w),3.5%稻草粉(w/w),10.7%麸皮(w/w)和干固体基质2.33倍的天然海水。天然海水中的主要无机盐都能增加纤维素酶的产量。发酵144h,纤维素酶的酶活达到17.80U/g干固体基质。
     第三,研究了液体发酵时海洋黑曲霉纤维素酶酶活和胞外蛋白表达对不同碳源的响应。海洋黑曲霉纤维素酶的酶活和胞外蛋白对不同碳源的响应有较大差异。在以玉米芯或稻草秆作为碳源时,液体发酵产生的内切酶、β-葡糖苷酶和纤维素酶的酶活分别为2.00U/mL和1.70U/mL、3.25U/mL和2.62U/mL、0.13和0.08U/mL,比活力分别为1.39U/mg蛋白和1.31U/mg蛋白,3.25U/mg蛋白和2.62U/mg蛋白,0.181U/mg蛋白和0.165U/mg蛋白。二维电泳分析表明,以玉米芯或稻草秆作为碳源时,海洋黑曲霉产生的胞外蛋白的种类差异达到15种。
     第四,用丝瓜囊作为固定化载体固定海洋黑曲霉,连续批次发酵生产p-葡糖苷酶。丝瓜囊固定的菌丝量达到3.1g/L,固定效率达到95%以上。固定化发酵缩短了发酵周期,达到最大产量的时间由游离发酵的7d降为固定化发酵的4.5d。固定化发酵的第3、4批次的产量高于游离发酵的产量,固定化连续5批次发酵的p-葡糖苷酶产量均高于110U/mL。
     第五,研究了p-葡糖苷酶在不同盐度下的酶学性质和热失活动力学。粗p-葡糖苷酶在6%NaCl(w/v)溶液中的酶活最高。在0%和6%NaCl(w/v)溶液中的最适温度和pH相同,都为66‰和5.0。在6%NaCl(w/v)溶液中的酶活是在无NaCl溶液中的1.46倍。在62℃,65℃,67℃和70℃,p-葡糖苷酶在6%NaCl (w/v)溶液中的半衰期均高于在无NaCl溶液中半衰期的2倍以上。p-葡糖苷酶在6%NaCl (w/v)溶液中的热失活自由能比在无NaCl溶液中的热失活自由能和熔点温度分别高了约2kJ/mol,熔点温度也略微提高。纯化后测得p-葡糖苷酶的分子量约为110kDao在高盐度环境下,纯p-葡糖苷酶的酶活和半衰期的增长与粗p-葡糖苷酶酶活和半衰期的增长相似。研究结果表明该海洋黑曲霉产生的p-葡糖苷酶是耐盐耐热型p-葡糖苷酶。
     第六,构建了p-葡糖苷酶的分子模型,探讨了该类酶的耐盐机制。建立了该类酶的分子模型,大量的谷氨酸和天冬氨酸残基分布在分子模型表面。在分子表面的大量酸性氨基酸残基赋予p-葡糖苷酶高负离子型表面,高负离子型表面和分子内核的作用可能增强了p-葡糖苷酶在高盐环境下的热稳定性。p-葡糖苷酶在高盐度下活性增加的原因可能是高盐的环境使p-葡糖苷酶异构化,异构体的催化位点更容易与底物纤维素二糖作用。
     本论文对耐盐纤维素酶和β-葡糖苷酶的高效生产,高盐环境下纤维素酶和p-葡糖苷酶性质、p-葡糖苷酶耐盐机理等的研究,对高盐环境下的纤维素的高效降解具有重要的意义。
Cellulase, consisted of endoglucanase, exoglucanase and β-glucosidase, can hydrolyze cellulose into glucose. P-glucosidase can transform cellobiose into glucose. Hydrolyzing cellobiose is a critical step of enzymatic cellulose hydrolysis.
     Under high salinity condition, salt tolerant cellulase can efficiently hydrolyze cellulose into glucose. Salt tolerant cellulase has important significance for treatment of papermaking and cellulosic materials pretreatment sewage, efficient utilization of cellulose in marine litter, algae and seaweed and reclamation of saline and alkaline lands.
     A marine fungus with salt tolerant cellulase was selected. The production process, properties and universal salt tolerant mechanism of β-glucosidase was studied. The results provided the foundation for practical application of salt tolerant cellulase. This article was consisted of the following:
     Firstly, a marine fungus was obtained to produce salt tolerant cellulase. According the morphology, ITS sequence and optimum growth salinity of5%NaCl (w/v) solution salinity, the marine fungus was identified as a halophile Aspergillus niger. Optimum pH, temperature and NaCl concentration of cellulase activity was4.5,58℃and12%(w/v). Cellulase activity in12%NaCl (w/v) solution was1.33times higher than that in NaCl free solution. The glucose production of hydrolyzing cellulose of cellulase in black liquor for12h increased by11.5percent compared with that in tap water. Cellulase from the marine Aspergillus niger was salt tolerant and thermostable.
     Secondly, a natural medium was designed to environment friendly produce cellulase under solid state fermentation conditions. The optimum natural medium was consisted of76.9%Eichhornia crassipes (w/w),8.9%raw corn cob (w/w),3.5%raw rice straw (w/w),10.7%raw wheat bran (w/w) and natural seawater (2.33times weight of the dry substrates). Incubation for144h, cellulase production was17.80U/g dry substrates.
     Thirdly, responses of cellulase activity and total extracellular proteins to different carbon sources under submerge fermentation were analyzed. The results showed that responses of cellulase activity and total extracellular proteins to different carbon sources were remarkably different. When corn cob or rice straw was used as carbon sources, endoglucanase, P-glucosidase and cellulase production was2.00and1.70U/mL,3.25and2.62U/mL,0.13and0.08U/mL. Endoglucanase, P-glucosidase and cellulase activity was1.39and1.31U/mg protein,3.25and2.62U/mg protein,0.181and0.165U/mg protein. Two-dimension electrolphoresis showed15different kinds of proteins in total extracellular proteins when corn cob or rice straw was used as carbon sources.
     Forthly, P-glucosidase was produced by immobilizing the marine Aspergillus niger on loofa sponges. Biomass of mycelia immobilized on loofa sponge carrier could be3.1g/L and the immobilization percentage could be over95%. The immobilization technology reduced the production circle, time to the maximum production by free or immobilized mycelia was7or4.5d. P-glucosidase production of the fourth and fifth bacthes was more than that by free mycelia β-glucosidase activities of five repeat batches were all over110U/mL.
     Fifthly, properties and thermodynamics of β-glucosidase was analyzed at different salinities. Crude P-glucosidase activity in6%NaCl (w/v) solution was the maximum. In free or6%NaCl (w/v) solution, optimum temperature and pH of crude β-glucosidase activity was same,66℃and5.0. Crude β-glucosidase activity in6%NaCl (w/v) solution was1.46folds higher than that in NaCl free solution. At62℃,65℃,67℃and70℃, half life of crude in6%NaCl (w/v) solution were more than twice of these in NaCl free solution. Gibb's free energy for denaturation and melt temperature of crude β-glucosidase was about2kJ/mol higher and slightly warmer than that in NaCl free solution. After purification, molecular weight of β-glucosidase was measured to be about110kDa. The increasing of activity and half life of pure P-glucosidase at high salinity was similar with that of crude β-glucosidase. P-glucosidase from the marine haloversatile Aspergillus niger was salt tolerant and thermostable.
     Sixthly, molecular model of β-glucosidase was constructed and the probable mechanism for salt tolerance was explained. Homology molecular model for the kind of β-glucosidase was constructed. Many glutamic acid and aspartic acid residues, acidic amino acid residues, on the surface of β-glucosidase molecular model, endow β-glucosidase molecular with a high electronegativivty surface. The interaction between high electronegativivty surface and molecular core probably enhances the kind of β-glucosidase thermostability at high salinity. The high concentration of Na+probably isomerizes β-glucosidase and catalytic sites of the isomer were probably more efficient to intreract with the substrate of cellobiose.
     Efficient producing of cellulase and β-glucosidase, studying properties of cellulase and P-glucosidase at high salinity, the explanation of mechanism for β-glucosidase salt tolerance was valuable for hydrolyzing cellulose at high salinity.
引文
[1]Henrissat, B.. Cellulases and their interaction with cellulose. Cellulose,1994, 23:169-196.
    [2]Zhang, Y.H.P., Lynd, L.. Toward an aggregated understanding of enzymatichydrolysis of cellulose:noncomplexed cellulase systems. Biotechnol. Bioeng.,2004,88:797-824.
    [3]Dashtban, M., Maki, M., Leung, K.T.. Cellulase activities in biomass conversion: measurement methods and comparison. Crit. Rev.Biotechnol.,2010,30:302-309.
    [4]Ghose, T.K.. Measurement of cellulase activities. Pure and Appl Chem.,1987,59: 257-268.
    [5]应红.需求不断扩大,我国造纸行业潜力巨大.中国造纸张,2011,1:1-2.
    [6]杨钧.造纸市场分析.印刷行业资讯,2011,2:2-3.
    [7]张远秋,宋海农,王双飞,艾矫燕郑艳民,郭凯.竹子硫酸盐法间歇蒸煮过程有效碱浓度数学模型研究.中国造纸学报,2004,1:140-145.
    [8]Hewitt, M.L., Kovacs, T.G., Dube, M.G., MacLatchy, D.L., Martel, P.H., Master, M.E., Paice, M.G., Parrott, J.P., Van, D.H.M.R., Van Der Kraak, G.J.. Altered reproduction in fish exposed to pulp and paper mill effluents:roles of individual compounds and mill operating conditions. Environ. Toxic. Chem.,2008,27:682-697.
    [9]沈文浩,龙周,陈小泉,李翠翠.造纸污水中有机污染物的分布分析.应用化学,2011,28:471-477.
    [10]Laccorte, S., Latorre, A., Barcelo, D.. Organic compounds in paper-mill process waters and effluents. Trends Anal. Chem.,2003,22:725-737.
    [11]Sillanpaa, M., Vickackaite, V., Niinisto, L., Sihvonen, M.L.. Distribution and transportation of ethylenediaminetetraacetic acid and diethylenetriaminepenaacetic acid in lake water and sediment. Chemosphere,1997,35:2797-2805.
    [12]Aksu, Z., Gonen, F.. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Proc. Biochem.,2004,39: 599-613.
    [13]Pokhrel, D., Viraraghavan, T.. Treatment of pulp and paper mill wastewater:a review. Sci. Total Environ..,2004,333:37-58.
    [14]Stefatos, A., Charalampakis, M., Papatheodorou, G., Ferentinos, G.. Marine litter on the seafloor of the Mediterranean Sea:example of two enclosed Gulfs in Western Greece. Mar. Poll Bull.,1999,36:389-393.
    [15]Galgani, F., Leaute, J.P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., Goraguer, H., Latrouite, D., Andral, B., Cadiou, Y., Mahe, J.C., Poulard, J.C., Nerisson, P.. Litter on the sea floor along European coasts. Mar. Poll. Bull.,2000,40: 516-527.
    [16]Moore, S.L., Allen, M.J.. Distribution of anthropogenic and natural litter on the mainland shelf of the Southern California Bight. Mar. Poll. Bull.,2000,40:83-88.
    [17]Katsanevakis, S., Katsarou, A.. Influences on the distribution of marine litter on the seafloor of swallow coastal areas in Greece (Eastern Mediterranean). Water, Air, and Soil Poll.,2004,159:325-337
    [18]Walker, T.R., Grant, J., Archambault, M.C.. Accumulation of marine debris on an intertidal beach in an urban park (Halifax Harbour, Nova Scotia). Water Qual. Res. J. Can.,2006,41:256-262.
    [19]Horsman, P.V.. The amount of garbage pollution from merchant ships. Mar. Poll. Bull.,1982,13:167-169.
    [20]Kuriyama, Y., Tokai, T., Tabata, K., Kanehiro, H.. Distribution and composition of litter on seabed of Tokyo Gulf and its age analysis. Nipp. Su. Gakk.,2003, 69:770-781.
    [21]Barnes, D.K.A.. Biodiversity-Invasions by marine life on plastic debris. Nature, 2002,416:808-809.
    [22]Boland, R.C., Donohue, M.J.. Marine debris accumulation in the nearshore marine habitat of the endangered Hawaiian monk seal, Monachus schauinslandi 1999-2001. Mar. Poll. Bull.,2003,46:1385-1394.
    [23]Koutsodendris, A., Papatheodorou, G., Kougiourouki, O., Georgiadis, M.. Benthic marine litter in four Gulfs in Greece, Eastern Mediterranean; abundance, composition and source identification. Estuar, Coastal Shelf Sci.,2008,77:501-512.
    [24]Mordecai, G., Tyler, P.A., Masson, D.G., Huvenne V.A.I.. Litter in submarine canyons off the west coast of Portugal. Deep-Sea Res. II,2011,58:2489-2496.
    [25]Silva-Iniguez L., Fischer, D.W.. Quantification and classification of marine litter on the municipal beach of Ensenada, Baja California, Mexico. Mar. Poll. Bull.,2003, 46:132-138.
    [26]Tomas, J., Guitart, R., Mate, R., Raga, J.A.. Marine debris ingestion in loggerhead sea turtles, Caretta caretta,from the Western Mediterranean. Mar. Poll. Bull.,2002,44:211-216.
    [27]苏茂尧,由利丽.纤维素科学与技术,1997,5:7-11.
    [28]Philipp, B.. Lignocellulosic-science technology and use. Kennedy J.F., Phillip G.O., Willams P.A., Ellin Horwood Limited,1992:467-477.
    [29]Kassim, E.A., El-shahed, A.S.. Enzymatic and chemical hydrolysis of certain cellulosic materials. Agr. Wastes,1986,17:229-233.
    [30]Xu, Z., Wang, Q. H., Jiang, Z. H.. Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenerg.,2007,311:62-167.
    [31]冯国芳,谢涛,符向辉,王梅,向海.酸处理竹笋壳纤维糖化艺的优化.湖南工程学院学报,2008,18:84-86.
    [32]Zhao, X.B., Zhang, L.H., Liu, D.H.. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of eroflon weed stem. Bioresourc. Technol.,2008,99:3729-3737.
    [33]He, Y.F., Pang, Y.Z., Liu, Y.P.. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energ. Fuel.,2008,22:2775-2781.
    [34]陈广银,郑正.碱处理对互花米草理化特性的影响研究.中国环境科学,2011.31:423-430.
    [35]Michele, A.T., Dibenedetto, A., Barberio, G.. Utilization of macro-algae for enhanced CO2 fixation and biofuels production:development of a computing software for an LCA study. Fuel Proc. Technol.,2005,86:1679-1693.
    [36]Lee, S.H., Terry, E., Sung-Ho Kang, W.. Spring time production of bottom ice algae in the landfast sea ice zone at Barrow, Alaska. J. Exp. Mar. Biol. Ecol.,2008, 367:204-212.
    [37]Lahaye, M., Ray, B.. Cell-wall polysaccharides from the marine green algae Ulvarigida (Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides. Carbohyd. Res.,1996,283:161-173.
    [38]Siddhanta, A.K., Prasad, K., Meena, R., Prasad, G., Mehta, G.K., Chhatbar, M.U., Oza, Mi.D., Kumar, S., Sanandiya, N.D.. Profiling of cellulose content in Indian seaweed species. Bioresourc. Technol.,2009,100:6669-6673.
    [39]Park, J.I., Woo, H.C., Lee, J.H.. Production of bio-energy from marine algae:status and perspectives. Korean Chem. Eng. Res.2008,46:833-844.
    [40]Gardner, K.H., Blackwell, J.. The substructure of the cellulose microfibrils from the cell walls of the algae Valonia ventricosa. J. Ultrastruct. Res.,1971,36:725-731
    [41]Chynoweth, D.P.. Review of Biomethane from Marine Biomass. Bioresourc. Technol.,2002,85:5655-5679.
    [42]John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A.. Micro and macroalgal biomass:a renewable source for bioethanol. Bioresour. Technol.,2011,102:186-193.
    [43]Sluiter, A.. Determination of structural carbohydrates and lignin in biomass. Carbohyd. Res.,1996,200:768-775.
    [44]Toffanin, R., Knutsen, S.H., Bertocchi, C., Rizzo, R., Murano, E.. Detection of cellulose in the cell wall of some red algae by 13C NMR spectroscopy. Carbohyd. Res.,1994,262:167-171.
    [45]Pate, Ron., Klise, G., Wu, B.. Resource demand implications for US algae biofuel production scale-up. App. Energ.,2011,88:3377-3388.
    [46]Yoshiyuki,U.. Ethanol production by dark fermentation in the marine breen alga, Chlorococcum littorale. Ferment. Biotechnol.,1998,86:38-43.
    [47]Kim, N., Li, H., Jung, K., Chang, H., Lee, P.Ch.. Ethanol production from .marine algal hydrolysates using Escherichia coli KO11. Bioresourc. Technol., 2011,102:7466-7469.
    [48]高伟,邵玉翠,杨军,高贤彪.中国盐碱地研究现状.中国农学通报,2011,27:154-160.
    [49]White, D.C., Flemming, C.A., Leung, K.T.. In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in bioflims. J. Microbiol. Meth.,1998,32: 93-105.
    [50]Marx, M.C., Wood, M., Jarvis, S.C.. A microplate fluorimetric assay forthe study of enzyme diversity in soils. Soil Biol. Biochem.,2001,33:1633-1640.
    [51]Ochoa, G.R., Hinojosa, M.B.. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem., 2008,40:105-108.
    [52]Cardenas, E.D., Castro, M.S., Sanchez-Montero, J.M.. Novel microbial li6pases: catalytic activity in reactions in organic media. Enzy. Micro. Tech.,2001,28:145-154.
    [53]张咏梅,周国逸,吴宁.土壤酶学研究进展.热带亚热带植物学报,2004,12:83-90.
    [54]董艳,董坤,郑毅.种植年限和种植模式对设施土壤微生物区系和酶活性的影响.农业环境科学学报,2009,28:527-532.
    [55]Yao, X. H., Min, H., Lu, Z. H.. Influence of acetamiprid on soil enzymatic activities and respiration. Eur. J. Soil Biol.,2006,42:120-126.
    [56]Ilyina, A.. The preparation of low-molecular-weight chitosan using chitinolytic complex from Streptomyces lipoferum. Proc. Biochem.,1999,34:875-878.
    [57]刘善江,夏雪,陈桂梅,卯丹,车升国,李亚星.土壤酶的研究进展.中国农学通报,2011,27:1-7.
    [58]周德平,吴淑杭,褚长彬,刘芳芳,姜震方,范洁群.盐胁迫对蔬菜地土壤微生物及土壤酶活的毒害效应.农业环境科学学报,2011,30:1602-1607.
    [59]Dashtban, M., Maki, M., Leung, K.T.. Cellulase activities in biomass conversion: measurement methods and comparison. Crit. Rev. Biotechnol.,2010,30:302-309.
    [60]Ghose, T.K.. Measurement of cellulase activities. Pure App. Chem.,1987,59: 257-268.
    [61]Nina, A., Marlja, I., Anu, S.. ACEI of Trichoderma reesei is a repressor,of cellulose and xylanase expression. App. Environ. Microb.,2003,69:56-65.
    [62]Zhang, X., Sathitsuksanoh, S., Zhang, Y.. Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans:Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresourc. Technol.,2010,101:5534-5538.
    [63]Thongekkaew, J., Ikeda H., Masakb, K., Iefuji, H.. An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2:purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Express. Purif,2008,60:140-146.
    [64]Wang, Y.G., Wang, X.N., Tang, R.T., Yu, S.S., Zheng, B.S., Feng, Y.. A novel thermostable cellulase from Fervidobacterium nodosum. J. Molecular Cat. B: Enzym.,2010,66:294-301.
    [65]Ionatal, E., Girfoglio, M., Marcolongol, L., Cara, F. L., Rossi, M., Cannio, R. Thermostable cellulolytic enzymes from sulfolobus strains:biotechnological applications. J. Biotechnol.,2010, S1:576-588.
    [66]Ando, S., Ishida, H., Kosugi, Y., Ishikawa, K.. Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl. Environ. Microbiol.,2002, 68:430-433.
    [67]Shirai, T., Ishida, H., Nodal, J., Yamane, T., Ozaki, K., Hakamada, Y.S.. Crystal structure of alkaline cellulase K:insight into the alkaline adaptation of an industrial enzyme. J. Mol. Biol.,2001,310:1079-1087.
    [68]Hodgkiss, I.J., Leung, H.C.. Cellulase associated with mangrove leaf decomposition. Bot. Mar.,1989,29:467-469.
    [69]Tanaka, Y.. Aerobic cellulolytic bacterial flora associated with decomposing Phragmites leaf litter in a seawater lake. Hydrobiologia,1993,263:145-154.
    [70]Bremer, G.. Lower marine fungi (Labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia,1995,295:89-95.
    [71]曾胤新,俞勇,陈波.低温纤维素酶产生菌的筛选、鉴定、生长特性及酶学性质.高科技通讯,2005,15:58-62.
    [72]熊鹏钧,文建军.交替假单胞菌(Pseudoal teromonas sp.) DY3菌株产内切葡聚糖酶的性质研究及基因克隆.生物工程学报,2004,20:233-237.
    [73]吕明生,吕凤霞,房耀维.低温纤维素酶产生菌的筛选、鉴定及酶学性质初步研究.食品科学,2007,28:235-239.
    [74]王玢,汪天虹,张刚.产低温纤维素酶海洋嗜冷菌的筛选及研究.海洋科学,2003,13:42-45.
    [75]游银伟,汪天虹.适冷海洋细菌交替假单胞菌(Pseudoalteromonas sp.)MB-1内切葡聚糖酶基因的克隆和表达.微生物学报,2005,46:142-144.
    [76]徐庆强,张志明,王延明等.产碱性纤维素酶海洋细菌的筛选、鉴定及酶学性质研究.海洋科学,2009,62:1-5.
    [77]Kim, B.K., Lee, B.H., Lee, Y.J.I.. Purification and characterization of carboxy-methylcellulase isolated from a marine bacterium, Bacillus subtilis subsp subtilis A-53. Enzyme Microb. Tech.,2009,44:411-416.
    [78]Lee, B.H., Kim., B.K., Lee, Y.J.. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp subtilis A-53. Enzyme Microb. Tech.,2010,46:38-42.
    [79]Trivedi, N., Gupta, V., Kumar, M.. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohyd. Polym.,2011,83: 891-897.
    [80]Nishida, Y., Suzuki, K., Kumagai, Y.. Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie,2007,89: 1002-1011.
    [81]游银伟,汪天虹,岳寿松.海洋青霉(Penicilliumsp)FS010441的形态学观察和产纤维素酶性质初步研究.山东农业科学,2005,1:11-13.
    [82]Feller, G., Payan, F., Theys, M.. Stability and structural analysis of a-amylase from the antarctic, psycbrophile Alteromonashalo planctisA23. Eur.J. Biochem.,1994: 441-443.
    [83]张亮,池振明.一株产纤维素酶海洋酵母菌的筛选、鉴定及发酵条件优化.中国海洋大学学报(自然科学版),2007,42:101-108.
    [84]Ueda, M., Goto, T., Nakazawa, M., Miyatake, K., Sakaguchi, M., Inouye, K.. A novel cold-adapted cellulase complex from Eisenia foetida:Characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1,3 glucanase, and β-xylosidase. Comp. Biochem. Phys.,2010,57:26-32.
    [85]Amann, R.I., Ludwig, W., Schleifer, K.H.. Phylegeneticidentification andin situ detection of individual microbial cells without cultivation. Microbiol. Rev.,1995,1: 143-169.
    [86]Jaruchoktaweechai, C., Suwanborirux, K., Tanasupawatt, S., Kittakoop, P., Menasveta, P.. New macrolactins from a marine Bacillus sp. ScO26. J. Nat. Prod.,2000,63:984-986.
    [87]Button, D.K., Schut. F., Quang, P.. Viability and isolation of marine bacteria by dilution culture:theory, procedures, and initial results. App. Environ. Microbiol., 1993,59:881-891.
    [88]Eilers, H., Pernthaler, J., Glockner, F.O.. Culturability and in situ abundance of pelagic bacteria from the North Sea. App. Environ. Microbiol.,2000,66:3044-3051.
    [89]Colwell, R., Grimes. D.. Nonculturable microorganisms in the environment. Am. Soc. Microbiol.,2000,68:360-369.
    [90]Ferguson, R.L., Buckley, E.N., Palumbo, A.V.. Response of marine bacterioplankton to differential filtration and confinement. App. Environ. Microbiol., 1984,47:49-55.
    [91]Walker, G.C.. The SOS response of Escherichia coli. Microbiol. Rev.,1996, 24:1400-1416.
    [92]Bruns, A., Cypionka, H., Overmann, J.. Cyclic AMP and Acyl. homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the Central Baltic Sea. App. Enviro. Microbiol.,2002,68:3978-3987.
    [93]Bloomfield, S., Stewart, G., Dodd, C.. The viable but non-culturable phenomenon explained. Microbiology,1998,144:1-3.
    [94]Marthi, B., Shaffer, B.T., Lighthart, B.. Resuscitation effects of catalase on airborne bacteria. App. Environ. Microbiol.,1991,57:2775-2776.
    [95]雷敬超,李传浩,黄惠琴,蔡海宝,鲍时翔.杀线虫海洋放线茵的筛选及菌株HA07011的鉴定.生物技术通报.2007,36:146-149.
    [96]王宏梅,赵心清.可培养海洋放线菌生物多样性的研究进展.微生物学通·报.2007,34:996-1000.
    [97]马桂珍,暴增海,浦寅芳.抗核盘菌海洋放线菌的分离筛选及其抗菌作用测定.湖北农业科学,2009,48:1151-1152.
    [98]Needham, J., Kelly, M. T, Ishige, M., Andersen, R. J.. Andrimidmoiramides A.C.. Metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens:Structure elucidation and biosynthesis. J. Org. Chem., 1994,59:2058-2063.
    [99]范国涛,朱天骄,崔承彬.海洋真菌KL EB207培养条件的研究.中国海洋药物杂志,2005,24:11-14.
    [100]Shinano, H.. Studies on yeasts isolated from various areas of the North Pacific. Bull. Jap. Soci. Sci. Fish,1996,228:1113-1122.
    [101]陈碧娥,欧阳明安,王丽娜.海洋真菌Penicilliun sp.W02A的生长特性及抑菌作用的研究.氨基酸和生物资源,2005,27:5-7.
    [102]Li, Q.Z., Wang, G.Y.. Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol. Res.,2009,164:233-241.
    [103]Das, Surajit., Lylaa, P.S., Khan, S. A.. Filamentous fungal population and species diversity from the continental slope of Bay of Bengal, India. Acta Oecol., 2009,35:269-279.
    [104]Damare, S., Raghukumar, C., Raghukumar, S.. Fungi in deep-sea sediments of the central Indian basin. Deep-Sea Rese. PTI.,2006,53:14-27.
    [105]Gadanho, M., Sampaio, J.P. Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microbiol. Ecol. 2005,50:408-417.
    [106]Nagahama, T., Hamamoto, M., Nakase, T., Takaki, Y., Horikoshi, K.. Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int. J. Sys. Evol. Mic.,2003,53:2095-2098.
    [107]Li, X., Qin, L.. Metagenomies-based drug diseoved and marine microbialdiversity. Trends Biotechnol.,2005,23:529-543.
    [108]Knietsch, A., Waschkowitz, T., Bowien, S., Henne, A., Daniel, R., Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J. Mol. Microbiol. Biotechnol.,2003,5:46-56.
    [109]Lee, S.W., Won, K., Lim, H.K.,Choi, G. J., Cho, K. Y.. Sereening for novel lipolytle enzymes from uneultured soil microorganisms. App. Mierobiol. Bioteehnol.,2004,65:720-726.
    [110]Stein, J.L., Marsh, T.L., Wu, K.Y., Shizuya, H., Delong, E.F.. Charaeterization of uncultivated prokaryotes:isolation and analysis of a 40-kilobase pair genome fragment from a planktoniemarixlearchaeon. J. Baeteriol.,1996,178:591-599.
    [111]Healy, F.G., Ray, R., Aldrieh, H.C., Wilkie, A.C., Ingram, L.O., Shanrnugam, K.T.. Direct isolation of funetional genesene olingeellulases from the mierobial consortia in a thermo philic anaerobie digeste rmaintained onlignoeellulose. APP. Microbiol. Bioteehnol.,1995,43:667-674.
    [112]Glazer, A.N., Nikaido, H..微生物生物技术-应用微生物学基础原.陈守文,喻子牛,刘子峰.北京,科学出版社,2002:41-43.
    [113]Woese, C.R.. Bacterial evolution. Microbiol. Rev.,1987,51:221-271.
    [114]刘志恒.现代微生物学.北京:科学出版社,2002:38-71.
    [115]毕春霞,闫志勇,王斌.16S rRNA基因及16S-23SrRNA基因区间在临床细菌学检验中的应用.青岛大学医学院学报,2003,39:493-498.
    [116]张修国,罗文富,杨艳丽.烟草黑胫病菌株亲缘关系的RAPD分析.菌物系统,2000,19:39-44.
    [117]Martin, F.N.. Variation in the ribosomal DNA repeat unite within singal oospore isolate of the genus Pythium. Genome,1990,33:585-591.
    [118]Singhania, R.R., Patel, A.K., Soccol, C.R., Pandey, A.. Recent advances in solid-state fermentation. Biochem. Eng. J.,2009,44:13-18.
    [119]Cen P, Xia L.. Production of cellulase by solid-state fermentation. Adv. Biochem. Eng. Biotechnol.,1999,65:69-92.
    [120]Jha, K., Khare, SK., Gandhi, A.P.. Solid-state fermentation of soyhull for the production of cellulase. Bioresour. Technol.,1995,54:321-322.
    [121]Tengerdy, R.P.. Cellulase production by solid substrate fermentation. J. Sci.Ind. Res.,1996,55:313-316.
    [122]Chahal, S.D.. Solid-state fermentation with Trichoderma reesei for cellulase production. Appl. Environ. Microbiol,1985,49:205-210.
    [123]Nigam, P., Singh, D.. Processing of agricultural wastes in solid state fermentation for cellulolytic enzyme production. J. Sci. Ind. Res.,1996,55:457-467.
    [124]Pandey, A., Selvakumar, P., Soccol,C.R., Nigam, P.. Solid state fermentation for the production of industrial enzymes. Curr. Sci.1999,77:149-162.
    [125]Durta, T., Sahoo, R., Sengupta, R., Ray, S.S., Bhattacharjee, A., Ghosh, S.. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J. Ind. Microbiol. Biotechnol.,2008,35:275-282.
    [126]Vintila, T., Dragomirescu, M., Jurcoane, S., Vintila, D., Caprita, R., Maniu, M.. Production of cellulase by submerged and solid-state cultures and yeasts selection for conversion of lignocellulose to ethanol. Romanian. Biotechnol. Lett.,2009,14: 4275-4281.
    [127]Abdel-Fattah, A.F., Osman, M.Y., Abdel-Naby, M.A.. Production an immobilization of cellobiase from Aspergillus niger A20. Chem. Eng. J.,1997,68: 189-196.
    [128]Kotchoni, OS., Shonukan, O.O., Gachomo, W.E.. Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression. Agr. J. Biotechnol.2003,2:140-46.
    [129]Romero, M.D., Aguado, J., Gonzalez, L., Ladero, M.. Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb. Technol.,1999,25:244-250.
    [130]Jang, H., Chang, K.. Thermostable cellulases from Streptomyces sp. scale-up production in a 50-L fermenter. Biotechnol. Lett.,2005,27:239-242.
    [131]Grigorevski, A.L., Do-Nascimento, R.P., Da-Silva Bon, E.P., Coelho, R.R.. Streptomyces drozdowiczii cellulase production using agro-industrial byproducts and its potential use in the detergent and textile industries. Enzyme Microb. Technol., 2005,37:272-277.
    [132]Schafner, D.W., Toledo, R.T. Cellulase production in continuous culture by Trichoderma reesei on xylose-based media. Biotechnol. Bioeng.,1992,39:865-869.
    [133]Ryu, D., Andereotti, R., Mandels, M., Gallo, B., Reese, E.T.. Studies on quantitative physiology of Trichoderma reesei with two-stage continuous culture for cellulose production. Biotechnol. Bioeng.,1979,21:1887-1903.
    [134]Bailey, M.J., Tahtiharju, J.. Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl. Microbiol. Biotechnol.,2003,62:156-162.
    [135]Rojas-Rejon, C.U., O.A., Poggi-Varaldo, E., H.M., Ramos-Valdivia, A.C., Martinez-Jimenez, A., Ponce-Noyola, T.. Production of cellulase and xylanase by Cellulomonas flavigena immobilized in sodium alginate in bubble column reactors. J. Biotechnol.,2010,150S:S571-S576.
    [136]Lu, Z.X., Minoru, K.. New immobilization method of filamentous cells with thin paper carrier surfaces modified by radiation. J. Microbiol. Meth.,1994, 19: 29-38.
    [137]Bhikhabai, R., Johansson, G., Petterson, G.. Isolation of celluloytic enzymes from Trichoderma reesei QM9414. Appl. Biochem.,1984,26:336-345.
    [138]吴石金,汪洁.内切β-聚糖苷酶的分离纯化以及酶学性质.科技通讯,2006,22:52-55.
    [139]Cheorl, K., Kim, D.. Purification and specificity of a specific endo-β-1,4-D-glucanase (Avicelase II) resembling exo-cellobiohydrolase from Bacillus circulans. Enzyme Microbial. Technol.,1995,17:248-254.
    [140]Wong, A.. Purification and characterization of a major secretory cellobiase, Cba2, from Cellulomonas biazotea. Protein Expres. Purif.,2001,23:159-166.
    [141]Tomaz, C.T., Duarte, D.. Comparative study on the fractionation of cellulases on some hydrophobic interaction chromatography adsorbents. J. Chromatogr. A,2002, 944:211-216.
    [142]Jamil, S., Akhtar, M.. Purification and characterization of two low-molecular weight endoglucanases of Cellulmonas flavigen. Enzyme Microb. Technol.,1993,15: 52-58.
    [143]Decker, C.H., Visser, J., Schreier, P.. β-glucosidase multiplicity from Aspergillus tubingensis CBS 643.92:purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity,glucose inhibition and acid tolerance. Biotechnology,2001,55:157-163.
    [144]Hammda, N., Ishikawa, K., Fuse, N.. Purification, characterization and gene analysis of exo-cellulase Ⅱ (Ex-2) from the white rot Basidiomycete Irpex lacteus. J. Biosci. Bioeng.,1999,87:442-451.
    [145]Limam, F., Semia, E.C., Rachid, G.. Two cellobiohydrolase of Penicillium occitanis mutant Pol 6:purification and properties. Enzyme Microbial. Technology., 1995,17:340-346.
    [146]Chen, H.. Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochimica. Acta,1992,1121:54-60.
    [147]Cai, Y.J., Buswell, J.A., Chang, S.T..β-glucosidase components of the celluloytic system of the edible straw mushroom, Volvariella volvacea. Enzyme Microbial. Technol.,1998,22:122-129.
    [148]Sue, M., Ishihara, A., Iwamura, H.. Purification and characterization of β-glucosidase from rye (Secale cereale L.) seedlings. Plant Sci.,2000,155:67-74.
    [149]Smriti, G., Sanwal, G.. Purification and characterization of a cellulose from Catharanthus roseus stems. Phytochemistry,1999,52:7-13.
    [150]Hayashi, S., Sako, S., Yokoi, H.. Purification and characterization of the intracellular β-glucosidase from Aureobasidium sp ATCC 20524. J. Ind. Microbiol. Biotechnol.,1999,22:160-163.
    [151]Kyriacou, A., Mackenzie, C.R., Neufeld, R.J.. Detection and characterization of specific and nonspecific endoglucanases of Trichoderma reesei:evidence demonstrating endoglucanase activity by cellobiohydrolase Ⅱ. Enzyme Microbial. Technol.,1987,9:25-32.
    [152]Gama, F.M, Vilaova, M., Mota, M.. Exo-and endo-glucanolytic activity of cellulases purified from Trichoderma reesei. Biotechnol. Tech.,1998,12:677-681.
    [153]Candida, T., Joao, A.Q.. Fractionation of Trichoderma reesei cellulases by hydrophobic interaction chromatography on phenyl-Sepharose. Biotechnol. Lett., 2004,26:223-227.
    [154]Agarwal, R., Gupta, M.N.. Sequential precipitation with reversibly soluble insoluble polymer as a bioseparation strategy:purification of P-glucosidase from Trichoderma longibrachiatum. Protein Expres. Purif.,1999,7:294-298.
    [155]Medve, J., Lee, D., Tjernel, F.. Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase Ⅰ, Ⅱ and endoglucanase Ⅱ by fast protein liquid chromatography. J. Chromatogr. A,1998,808: 153-165.
    [156]Homma, T., Fujii, M., Titus, U.. Fractionation of the β-glucosidase component from cellulose by cellulose column and production of cellobiose by the residual enzymes. J. chem. Eng. Jap.,1992,25:288-292.
    [157]王吉村,药立波,赵忠良.筛选差异表达基因和蛋白质的方法进展.生物化学与生物物理进展,2001,28:33-36.
    [158]Medina, M.L., Kiernan, U.A, Francisco, W.A. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet. Biol.,2004, 41:327-335.
    [159]萨姆布鲁克,J.,弗里奇,E.F.,曼尼阿蒂斯,T..分子克隆实验指南.金冬雁,黎孟枫.北京,科学出版社,1993.
    [160]许跃强,段承杰,周权能,唐纪良,冯家勋.造纸废水纸浆沉淀物中未培养微生物纤维素酶基因的克隆和鉴定.微生物学报,2006,46:783-788.
    [161]Tsuei, D.J., Chan, P.J., Lai, M.Y., Chan, D.S, Yang, C.S., Chen, J.Y., Hsu, T.Y. Inverse polymerase chain reaction for cloning cellular sequences adjacent to integrated hepatitis B virus DNA in hepatocellular carcinomas. Biotechnol. Bioeng., 1994,49:269-284.
    [162]Takemoto, S., Matsuoka, M., Yamaguchi, K., Takatsuki, K.. A novel diagnostic method of adult T-cell leukemia:monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction. Blood,1994,84:3080-3085.
    [163]Liu, W., Ding, Z.Q., Wang, H.Y.. Molecular modeling methodology in protein structure and function research. Biomed. Eng.,2006,26:20-24.
    [164]Jose, M.E.K., David, W., Diana, I.. Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca. Appl. Biochem. Biotechnol.,2004,113:287-297.
    [165]Gideon, J.D., Marek B, Miroslawa, D., Annabelle, V., Martin, S.. Structure and function of humicola insolens family 6 cellulases:structure of the endoglucanase, Ce16B at 1.6 A resolution. Biochem. J.,2000,348:201-207.
    [166]Zhang, S., Irwin, D.C., Wilson, D.B.. Site-directed mutation of non catalytic residues of Thermobifida fusca exocellulase Ce16B. Eur. J. Biochem.,2000, 267:3101-3115.
    [167]Shigematsu, T., Hayashi, M., Kikuchi, I., Ueno, S., Masaki H., Fujiil., T.. A culture-dependent bacterial community structure analysis based on liquid cultivation and its application to a marine environment. J. Biosci. Bioeng.,2009,108:S75-S95.
    [168]Romanenko, L.A., Natalial, M.U., Mikhailov, K.. V.V.. Isolation, phylogenetic analysis and screening. of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol. Res.,2008,163:633-644.
    [169]Selvina, J., Shanmugha, P.S., Seghal, K.G., Thangavelu, S.B.T.N.. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol. Research.,2009,164:352-363.
    [170]Naveena, B., Sakthiselvan, P., Elaiyaraju, P., Partha, N.. Ultrasound induced production of thrombinase by marine actinomycetes:Kinetic and optimization studies. Biochem. Eng. J.,2012,61:34-42.
    [171]Ravel, J., Amorso, M.J., Clowell, R.R., Hill, R.T.. Mercury-resistant actinomycetes from the Chesapeake Bay. FEMS Microbiol. Lett.,1998, 162:177-184.
    [172]Kitouni, B.M., Oulmi, A.L., Reghioua, S., Boughachiche, F., Zerizer, H., Hamdiken, H., Couble, A., Mouniee, Boulahrouf, D.A., Boiron, P.. Isolation of actinomycetes producing bioactive substances from water, soil and tree bark samples of the north-east of Algeria. J. Mycol. Med.,2005,15:45-51.
    [173]Subramani, R., Mani, J., Narayanasamy, M.. Diversity and antifungal activity of marine actinomycetes. J.Biotechnol.,2008,136S:S527-S540.
    [174]Xiong, H.R., Qi, S.H., Xu, Y., Miao, L., Qian, P.Y.. Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. J. Hydro Environ. Res.,2009,2:264-270.
    [175]Michel, R.Z., Passarini, M.V.N., Rodrigues, M.D.S., Lara, D.S.. Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar. Pollut. Bull.,2011,62:364-370.
    [176]Matallah-Boutiba, A., Nicolas, R., Sallenave-Namont, C., Grovel, O., Amiard J.Cl., Pouchus, Y. F., Boutiba, Z.. Screening for toxigenic marine-derived fungi in Algerian mussels and their immediate environment. Aquaculture,2012,343:75-79.
    [177]Ulrich, H., Anthony, D., Wright, G.F., Matthee, G.M.K., Siegfried, D., Hans, J.A., Barbara, S.. Fungi from marine sponges:diversity, biological activity and secondary metabolites. Mycol. Res.,2000,104:1354-1365.
    [178]Boelen, R.E., Willians, N.E.. Bergey's Manual of Systematic Bacteriology, Berlin, Springer Verlag,1984.
    [179]魏景超.真菌鉴定手册.上海科学技术出版社,上海,1979.
    [180]Lusta, K.A., Chung, I.K., Sul, I.W., Park, H.S., Shin, D.I.. Characterization of extracellular cellulose-hydrolyzing enzyme complex from a thermotolerant strain of Aspergillus sp. J. Microbiol. Biotechnol.,1999,9:873-876.
    [181]Li, Z.Y., He, L.M., Wu, J., Jiang, Q.. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol., 2006,329:75-85.
    [182]Mani, J., Subramani, R., Kandhasamy, S., Narayanasamy, M.. Marine bacterial population in seawater of Bay of Bengal:Their adoptive characteristics and enzyme production. J. Biotechnol.,2008,136S:S527-S540.
    [183]Selvina, J., Priya, S.S., Kiran, G.S., Thangavelu, T., Bai, N.S.. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol. Res.,2009,164:352-363.
    [184]Valli, S., Suvathi Sugasini, S., Aysha, O.S, Nirmala, P., Vinoth Kumar, P., Reena, A.. Antimicrobial potential of actinomycetes species isolated from marine environment. Asian Pac. J. Trop. Med.,2012:469-473.
    [185]Kitouni, M.. Isolation of actinomycetes producing bioactive substances from water, soil and tree bark samples of the north-east of Algeria. J. Mycol.Med.,2005, 15:45-51.
    [186]Subramani, R., Mani, J., Narayanasamy, M.. Diversity and antifungal activity of marine actinomycetes. J. Biotechnol.,2008,136S:S527-S540.
    [187]Michel, R.Z., Passarini, M.V.N., Rodrigues, M. S., Lara D. S.. Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar. Pollut. Bull.,2011,62:364-370.
    [188]Hoeller, U., Wright, A. D., Matthee, G.F., Konig, G.M., Hans-jusrgen, S.D.. Fungi from marine sponges:diversity, biological activity and secondary metabolites. Mycol. Res.2000,104:1354-1365.
    [189]Simankova, V.M., Chernych, N.A., Osipov, G.A., Zavarzin, G.A.. Hallocella cellulolytica gen. Nov., sp. Nov., a new obligately anaerobic, halophilic, cellulolyticus bacterium. Syst. Appl. Microbiol.,1993,16:385-389.
    [190]Chung, Y.W., Hsieh Y.R., Ng, C.C., Chan, H.L., Lin, H.T., Tzeng, W.S., Shyu, Y.T.. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb. Technol.,2009,44:373-379.
    [191]Oren, A.. Change of the names Haloanaerobiales, Haloanaerobiaceae Haloanaerobium to Haloanaerobiales, Halanaerobiaceae and Haloanaerobium, respectively, and further nomenclatural changes within the order Halanaerobiales. Int. J. Syst. Evol. Microbiol.,2000,50:2229-2230.
    [192]Vreeland, R. H.. Mechanisms of halotolerance a microorganisms. Crit. Rev. Microbiol.,1987,4:351-356.
    [193]Larsen, P.L., Sydne, L.K., Landfald, B., Strom, A.R. Osmoregulation in Escherichia coli by accumulation of organic osmolytes, betaines, glutamic acid and trehalose. Arch. Microbiol.,1987,147:1-7.
    [194]Ramos-Cormenzana, A.. Ecological distribution and biotechnological potential of halaphilic microorganisms. Costa, M.S., Duarte, J.C., Williams, R.A.D., Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London, United Kingdom.1989.
    [195]Kushner, D. J.. Life in high salt and solute concentrations:halaphilic bacteria. Kushner, D., Microbial life in extreme environments. Academic Press, Ltd., London, United Kingdom.1978.317-368.
    [196]Truper, H. G., Severin, J., Wohlfarth, A., Muller, E., Galinski, E. A.. Halophily, taxonomy, phylogeny and nomenclature. Rodriguez-Valera, F., General and applied aspects of halophilic microorganisms. Plenum Press, New York, N.Y.,1991.
    [197]Vreeland, R. H.. The family Halomonadaceae. Balows, A., Truper, H. G., Dworkin, M., Harder, W., Schleifer, K. H.. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Sornger-Verlag, New York, N. Y,1992.
    [198]Singh, R., Kumar, R., Bishnoi, K., Bishnoi, N.R.. Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochem. Eng.J.,2009,48:28-35
    [199]Khoshnevisan, K., Bordbar, A., Zare D., Davoodi D., Noruzi, M., Barkhi, M., Tabatabaei, M.. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chemical. Eng. J.,2011, 171:669-673.
    [200]田新玉,王欣. 碱性纤维素酶的产生条件.微生物学通报,1997,24:195-198.
    [201]Giridhar, P.V., Chandra, T.S.. Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem.,2010,45:1730-1737.
    [202]Okamoto, D.N., Kondo, M.Y., Santos, J.A.N., Nakajima, S., Hiraga, K., Oda, K., Juliano, M.A., Juliano, L., Gouvea, I.E.. Kinetic analysis of salting activation of a subtilisin-like halophilic protease. BBA-Proteins and Proteomics,2009,1794: 367-373.
    [203]Adsul, M.G., Bastawde, K.B., Varma, A.J., Gokhale, D.V.. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour. Technol.,2007,98:1467-1473.
    [204]Herculano, N.P., Porto, S.T., Moreira, K.A., Pinto, G.A.S., Souza-Motta, C.M., Porto, L.F.. Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Appl. Biochem. Biotechnol.,2011,165:1057-1067.
    [205]Hsu, T.A.. Pretreatment of biomass, In:Wyman, C.E. (Ed.), Handbook on Bioethanol:Production and Utilization, Taylor and Francis, Washington,1996.
    [206]Alam, Z., Qudsieh, M.A.A., Muyibi, I.Y., Salleh, S.A., Omar, H.M.N.M.. Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J.,2009,46:61-64.
    [207]Singh, R., Kumar, R., Bishnoi, K., Bishnoi, N.R.. Optimization of synergistic parameters for thermostable cellulase activity of Apergillus heteromorphus using response surface methodology. Biochem. Eng. J.,2009,48:28-35.
    [208]Chu, J.J., Ding, Y., Zhang, Q.. Invasion and control of water hyacinth (Eichhornia crassipes) in China. J. Zhejiang Univ. Sci. B,2006,7:623-626.
    [209]Bo, M.J., Kong, X.F., Yin, Y.L.. Comparative study on nutritional ingredients and in vitro fermentation characteristics in various parts of water hyacinth, natural production research and development. Nat. Prod. Res. Develop.,2009,21:40-45.
    [210]Goering, H.K., Van Soest, P.J.. Forage Fiber Analyses (Apparatus, Reagents, Procedures and Some Applications). U.S. Agricultural Research Service, Washington. 1970.
    [211]Wutzke, K.D., Heine, W.A.. A century of Kjeldahl nitrogen determination. Zeitschrift Fur medizinische Laboratoriumsdiagnostik,1985,26:383-388.
    [212]Adney, B., Baker, J.. Measurement of cellulase activities. LAP-006 NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, 1996.
    [213]Zheng, Z., Shetty, K.. Solid state production of beneficial fungi on apple processing wastes using glucosamine as the indicator of growth. J. Agr. Food Chem., 1998,46:83-87.
    [214]Aalbaek, T., Reeslev, M., Jensen, B., Susanne, H., Eriksen, S.H.. Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger. Enzyme Microb. Technol.,2002,30:410-415.
    [215]oDonnell, D., Wang, L., Xu, J., Ridgway, D., Tingyue, G., Moo-Young, M.. Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochem. Eng. J.,2001,8:187-193.
    [216]Hanif, A., Yasmeen, A., Rajoka, M.I.. Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour. Technol., 2004,94:311-319.
    [217]Suto, M., Tomita, F.. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng.,2001,92:305-311.
    [218]Kang, S.W., Park, Y.S., Lee, J.S., Hong, S.I., Kim, S.W.. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol.,2004,91:153-156.
    [219]Trivedi, N., Gupta V., Kumar M., Kumari, P., Reddy, C.R.K., Bhavanath, J.B.. Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere,2011,83:706-712.
    [220]Zhang, L., Chi, Z.M.. Screening and identification of a cellulase producing marine yeast and optimization of medium and cultivation conditions for cellulase production. Journal of Ocean University of China,2007,37:101-108.
    [221]Gohel, V., Chaudhary, T., Vyas, P., Chhatpar, H.S.. Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa. Biochem. Eng. J.,2006,28:50-56.
    [222]Lo, C.M., Zhang, Q., Callow, N.V., Ju, L.W.. Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction. Bioresour. Technol.,2010,101:717-723.
    [223]Latifian, M., Hamidi-Esfahani, Z., Mohsen Barzegar, M.. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol.,2007,98:3634-3637.
    [224]Singhania, R.R., Sukumaran R.K., Pandey, A.. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process. Appl. Microbiol. Biotechnol.,2007,42:60-70.
    [225]Liu, Y.T., Luo, Z.Y., Long, C.N., Wang, H.D., Long, M.N., Hu, Z.. Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnol.,2011,98:74-81.
    [226]Alama, M.Z., Mamuna, A.A., Qudsieha, I.Y., Muyibi, S.A.. Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J.,2009,46:61-64.
    [227]Xia, L.M., Shen, X.L.. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol.,2004,91:259-262.
    [228]Terri, T.T.. Crystalline cellulose degradation:new insight into the function of cellobiohydrolases. Trends Biotechnol.,1997,15:160-167.
    [229]Hoshino, E., Shiroishi, M., Amano, Y., Nomura, M., Kanda, T.. Synergistic action of exo-type cellulases in the hydrolysis of cellulose with different crystallites. J. Ferment. Bioeng.,1997,484:300-306.
    [230]Beguin, P.. Molecular biology of cellulose degradation. Ann. Rev. Microbiol., 1990,44:219-248.
    [231]Petrakova, E., Biely, P.. Induction of cellulase enzyme systems in Aspergillus terreus by heterodisaccharides composed of glucose and xylose. J. Gen. Microbiol, 1991,137:541-547.
    [232]Magnelli, P., Forchiassin, F.. Regulation of the cellulase complex production by Saccobolus saccoboloides:induction and repression by carbohydrates. Mycologia, 1999,91:359-364.
    [233]Suto, M., Tomita, F.. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng.,2001,92:305-311.
    [234]Sun, W.C., Cheng, C.H., Lee, W.C.. Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochem.,2008,43:1083-1087.
    [235]Medina, M.L., Haynes, P.A., Breci, L., Francisco, W.A.. Analysis of secreted proteins from Aspergillus flavus. Proteomics,2005,5:3153-3161.
    [236]Hrmova, M., Petrakova, E., Biely, P.. Induction of cellulose-and xylan-degrading enzyme systems in Aspergillus terreus by homoand hetero-disaccharides composed of glucose and xylose. J. Gen. Microbiol.,1991,137: 541-547.
    [237]Zhou, J., Wang, Y.H., Chu, J.. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour. Technol.,2008,99:6826-6833.
    [238]王冰冰,夏黎明,杜风光.黑曲霉纤维二糖酶基因的克隆及其在里氏木霉中的表达.化工学报,2011,16:452-457.
    [239]Ogawa, K., Ijima, Y., Guo, W.. Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves. J. Agr. Food Chem.,1997,45:877-882.
    [240]Pyo, Y.H., Lee, T.C., Lee, Y.C.. Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Res. Int.,2005,38: 551-559.
    [241]Quirasco, M., Remaud-Simeon, M., Monsan, P., Lopez-Munguia, A.. Experimental behavior of a whole cell immobilized dextransucrase biocatalyst in batch and packed bed reactors. Bioprocess Eng.,1999,20:289-295.
    [242]Virkajarvi, I., Linko, M.. Immobilization:a revolution in traditional brewing. Naturwissenschaften,1996,86:112-122.
    [243]Roisin, C., Bienaime, C., Saucedo, J.E.N.. Influence of the microenvironment on immobilised Gibberella fujikuroi,1996,11:189-195.
    [244]Quirasco, M., Remaud-Simeon, M., Monsan, P., Lopez-Munguia, A.. Experimental behavior of a whole cell immobilized dextransucrase biocatalyst in batch and packed bed reactors. Bioprocess Eng.,1999,20:289-295.
    [245]Lapadatescu, C., Feron, G., Vergoignan,C., Djian, A., Durand, A., Bonnarme, P.. Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomitus squalens. Appl. Microbiol. Biotechnol.,1997,47:708-714.
    [246]Sankpal, N.V., Joshi, A.P., Kulkarni, B.D.. Citric acid production by Aspergillus niger immobilized on cellulose microfibrils:influence of morphology and fermenter conditions on productivity. Process Biochem.,2001,36:1129-1139.
    [247]Sankpal, N.V., Kulkarni, B.D.. Optimization of fermentation conditions for gluconic acid production using Aspergillus niger immobilized on cellulose microfibrils. Process Biochem.,2002,37:1343-1350.
    [248]Joo, A.R., Jeya, M., Lee, K.M., Moon, H.J., Kim, Y.S., Lee, J.K.. Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochem.,2010,45:851-858.
    [249]Kang, S.W., Park, Y.S., Lee, J.S., Hong, S.I., Kim, S.W.. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol.,2004,91:1153-1156.
    [250]Wen, Z.Y., Liao, W., Chen, S.L.. Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem.,2005,4:3087-3094.
    [251]Latif, F., Rajoka, M.I., Malik, K.A.. Short communication:production of cellulases by thermophilic fungi grown on Leptochloa fusca straw. World J. Microbiol. Biotechnol.,1995,11:347-348.
    [252]Khan, M.H., Ali, S., Fakhrul-Razi, A., Alam, Z.. Use of fungi for the bioconversion of rice straw into cellulase enzyme. J. Environ. Sci. Health B,2007,42: 381-386.
    [253]Saqib, A.A.N., Whitney, P.J.. Role of fragmentation activity in cellulose hydrolysis. Int. Biodeter. Biodeg.,2006,58:180-185.
    [254]Vieille, C., Zeikus, G.J.. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev.,2001,65: 1-43.
    [255]Becker, P.. Determination of the kinetic parameters during continuous cultivation of the lipase producing thermophile Bacillus sp. IHI-91 on olive oil. Appl. Microb. Biotechnol.,1997,48:184-190.
    [256]Kumar, S., Nussinov, R.. How do thermophilicproteins deal with heat? a review. Cell. Mol. Life Sci.,2001,58:1216-1233.
    [257]Leite, R.S.R., Alves-Prado, H.F., Cabral, H., Pagnocca, F.C., Gomes, E., Da-Silva, R.. Production and characterization of crude β-glucosidases produced by microorganisms Thermoascus aurantiacuse Aureobasidium pullulans in agricultural wastes. Enzyme Microb. Technol.,2008,43:391-395.
    [258]Wilson, D.B.. Cellulases and biofules. Curr. Opin. Biotechnol.,2009,20:1-5.
    [259]Mohamed, A.I., Babiker, E., Mori, N.. pH stability and influence of salts on activity of a milk-clotting enzyme from Solanum dubium seeds and its enzymatic action on bovine caseins. LWT-Food Sci. Technol.,2010,43:759-764.
    [260]Tari, C., Dogan, N., Gogus, N.. Biochemical and thermal characterization of crude exo-polygalacturonase produced by Aspergillus sojae. Food Chem.,2008,111: 824-829.
    [261]Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M., Viikari, L. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem.,2005,40:3519-3525.
    [262]Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y.. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol.,2008,99:7623-7629.
    [263]Srivastava, S.K., Gopalkrishnan, K.S., Ramachandran, K.B.. Kinetic characterization of a crude β-D-glucosidase from Aspergillus wentii Pt 2804. Enzyme Microb. Technol.1984,6:508-512.
    [264]Van Gunsteren, W.F., Bakowies, D., Baron, R.. Biomolecular modelling:goals, problems, perspectives. Angew. Chem. In.t Ed. Eng.,2006,45:4064-4092.
    [265]Ding, H.S., Yang, YD, Zhang, J.H.. Structural basis for SUM 0-E2 interaction revealed by a complex model using docking approach in combination with NMR data. Proteins,2005,61:1050-1058.
    [266]Liu, H.Y., Duan, Z.H., Luo, Q.M.. Structure-based ligand design by dynamically assembling molecularuilding blocks at binding site. Proteins,1999,36: 462-470.
    [267]Siddiqui, K.S., Saqi, A.A.N., Rashid, M.H., Rajoka, M.I.. Thermostabilization of carboxymethyl-cellulase from Aspergillus niger by carboxyl group modification. Biotechnol. Lett.,1997,19:325-329.
    [268]Karnchanatat, A., Petsom, A., Sangvanich, P., Piapukiew, J., Whalley, A.J.S., Reynolds, CD., Gad, G.M., Sihanonth, P.. A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme Microbial. Technol.,2008,42:404-413.
    [269]Bok, J., Dienesh, A., Yernool, D., Eveleigh, D.. Purification, characterization and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl. Environ. Microbiol.,1998,64:4774-4781.
    [270]Rangarajan, M., Asboth, B., Hartley, B.. Stability of arthrobacter D-xylose isomerase to denaturants and heat. Biochem. J.,1992,285:889-898.
    [271]Tull, D., Withers, S.G., Gilkes, N.R.. Glutamic acid 274 is the nucleophile in the active site of a "retaining" exoglucanase from Cellulomonas fimi. J. Biol. Chem., 1991,266:15621-15625.
    [272]Arakawa, T., Timasheff, S.N.. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry,1982,21:6545-6552.
    [273]Rashid, M.H., Siddiqui, K.S.. Thermodynamic and kinetic study of stability of the native and chemically modified β-glucosidases from Aspergillus niger. Proc. Biochem.,1998,33:109-115.
    [274]Kimura, I., Yoshioka, N., Tajima, S.. Purification and characterization of a β-glucosidase with β-xylosidase activity from aspergillus sojae. J. Biosci. Bioeng., 1999,87:538-541.
    [275]Ge, S.G., Song, Y., Yang, S.J.. Purification and some properties of (3-glucosidase from Aspergillus niger. Chin. Biochem. J.,1985,1:67-72.
    [276]Marangoni, A.G.. Enzyme kinetics a modern approach.Wiley, N.J., Sons, M.I., Inc.,2003:146-150.
    [277]Damodaran, S.. Protein:denaturation. Hi, Y.H.. Handbook of Food science, Technology and Engineering. CRC Press,2006:545-572.
    [278]Harnicharnchai, P., Champreda, V., Sornlake, W., Eurwilaichitr, L.A. Thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr. Purif.,2009,67: 61-69.
    [279]Karnchanatat, A., Petsom, A., Sangvanich, P., Piaphukiew, J., Whalley, A.J., Reynolds, C.D., Sihanonth, P.. Purification and biochemical characterization of an extracellular beta-glucosidase from the wood-decaying fungus. Daldinia. Micro. Lett.,2011,270:162-170.
    [280]Chakrabortya, S., Khopadea, A., Mahadika, C.K.K., Chopadeb, B.. Isolation and characterization of novel-amylase from marine Streptomyces sp. D1. J. Mol. Cat. B:Enzym.,2009,58:17-23.
    [281]Grabnitz, F., Seiss, M., Rucknagel, K.P.. Structure of the beta glucosidase gene bglA of Clostridium thermocellum. Sequence analysis reveals a superfamily of cellulases and beta-glycosidases including human lactase/phlorizin hydrolase. Eur. J. Biochem.,1991,200:321-327.
    [282]Pozzo, T., Linares Pasten, J., Karlsson, E.N., Logan, D.T.. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana:a thermostable three-domain representative of glycoside hydrolase 3. J. Mol.Biol.,2010, 397:724-739.
    [283]Case, A., Stein, R.L.. Mechanistic origins of the substrate selectivity of serine Proteases. Biochemistry,2003,42:3335-3348.
    [284]Madern, D., Ebel, C.. Influence of an anion-binding site in the stabilization of halophilic malate dehydrogenase from Haloarcula marismortui. Biochimie,2007, 89:981-987.
    [285]Britton,.K.L., Baker, P.J., Fisher, M., Ruzheinikov, S., Gilmour, D.J, Bonete, M.J.. Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc. Natl. Aca. Sci. USA.,2006,103: 4846-4851.
    [286]Kastritis, P.L., Papandreou, N.C., Hamodrakas, S.J.. Haloadaptation:Insights from comparative modeling studies of halophilic archaeal DHFRs. Int. J. Biol. Macromol.,2007,41:447-453.
    [287]Richard, S.B., Madern, D., Garcin, E., Zaccai, G.. Halophilic adaptation:novel solvent protein interactions observed in the 2.9 and 2.6 A resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry,2000,39:992-1000.
    [288]Mevarech, M., Frolow, F., Gloss, L.M.. Halophilic enzymes:proteins with a grain of salt. Biophys. Chem.,2000,86:155-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700