用户名: 密码: 验证码:
Acidithiobacillus ferrooxidans与Acidiphilium acidophilum共培养体系的协同作用及其生物浸出研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化能自养微生物嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)与嗜酸异养菌Acidiphilium acidophilum之间在生物浸出及酸性矿坑水(AMD)之类极端酸性环境中存在的协同作用已引起广泛关注,但仍缺乏从生理和基因水平对其进行的全面而深入的研究。为深入了解此两种微生物之间的协同作用及其在生物浸出体系和AMD等极端酸性环境中的生态功能,并为AMD环境的修复提供一定参考,本文对这两种微生物组成的共培养进行了一系列的实验研究。
     本文研究内容主要包括:(1)评估RT-qPCR定量At. ferrooxidans和Aph. acidophilum细胞的相对数量的准确度;(2)用此两种微生物进行长期驯化形成共培养体系,然后对此两物种微生物群落的生长和生理活性进行检测;(3)从转录水平研究了At. ferrooxidans与碳代谢和铁代谢相关基因在不同培养体系中的表达差异;(4)检验此共培养体系分别在Cd2+, Cu2+, Ni2+和Mg2+胁迫下的稳定性;(5)共培养体系受到葡萄糖抑制时的生长和生理活性;(6)将此共培养体系应用于黄铁矿和低品位黄铜矿的生物浸出实验。
     上述研究所得结果如下:
     (1)利用RT-qPCR定量At. ferrooxidans以及Aph. acidophilum这两种微生物的相对数量时,用于DNA提取的培养物中微生物细胞总量应在6.52×109cells至2.61×1010cells之间,能得到准确的定量结果,并且在两种微生物混合的条件下其各自的特异性引物能确保实验结果互不产生干扰;
     (2)成功的构建由At. ferrooxidans和Aph. acidophilum这两种微生物组成的共培养物,并基于其RT-qPCR定量的生长动态变化可知,共培养体系的At. ferrooxidans能更快的进入对数生长期并且对数生长期延长2天以上,数量较其在纯培养中高出5倍以上。
     (3)亚铁氧化及其与铁代谢相关的基因表达研究结果表明,共培养中的At. ferrooxidans对能源的获取能力明显高于其纯培养。另外,对At. ferrooxidans中与CO2固定相关基因表达的结果分析说明编码RuBisCO的第二套结构基因cbbLS-2和正向调控基因cbbR在共培养体系中的表达均上调。
     (4)在Cd2+, Cu2+, Ni2+和Mg2+这4种金属离子分别存在的条件下异养菌Aph. acidophilum均能促进At. ferrooxidans对亚铁的氧化,提高其对能源利用的效率。共培养体系中的异养菌Aph. acidophilum使At.ferrooxidans对Cu2+的最大耐受浓度(MTC)由2.0g/L提高到5.0g/L而且共培养在5.0g/L Cu2+条件下的细胞数量与2.0g/L Cu2+条件下生长的At. ferrooxidans纯培养相似。另外,共培养中的At. ferrooxidans对Mg2+的MTC也由12.0g/L提高到17.0g/L。
     (5)无论是否加入葡萄糖,共培养对Fe2+氧化的效率均较At.ferrooxidans纯培养高。当葡萄糖浓度为5g/L时,At. ferrooxidans纯培养失去对Fe2+的氧化能力,而共培养仍能在100h内将所有的Fe2+氧化完,且加入葡萄糖越多的培养体系氧化终点的pH值也越高。在不加入葡萄糖的条件下At. ferrooxidans与Aph. acidophilum数量比在100:1的数量级,表明以这两种菌为代表的自养菌和异养菌在自然条件下生物量的比例。无论纯培养还是共培养的At. ferrooxidans数量均随葡萄糖浓度的提高而减少,且延滞期则变长;而异养生长的Aph. acidophilum则相反。
     (6)生物浸出实验中嗜酸异养菌Aph. acidophilum促进了At. ferrooxidans对黄铁矿样品的浸出,浸出率较其纯培养提高了22.7%;但在含铁量较低的低品位黄铜矿浸出体系中共培养和At. ferrooxidans纯培养的浸出率均低于33%。在加入2.0g/L Fe2+的低品位黄铜矿浸出体系中,共培养和At. ferrooxidans纯培养的浸出率均得到提高,分别达到52.22%和41.27%。
     综合上述所有结果表明,经长期驯化成功构建了由At. ferrooxidans和Aph. acidophilum组成的共培养体系,且利用RT-qPCR能准确定量此共培养中两种微生物的相对数量变化。异养菌Aph. acidophilum能与At. ferrooxidans一起在共培养中进行异养生长并对At. ferrooxidans的生长有促进作用;At. ferrooxidans通过上调表达与亚铁氧化相关的基因和第二套cbbLS结构基因来提高对亚铁的氧化和CO2的固定。由于Aph. acidophilum能促进At. ferrooxidans对亚铁的氧化,并能缓解或消除葡萄糖对At. ferrooxidans的抑制,所以不能以加入类似于葡萄糖的有机物作为AMD环境生物修复的手段,且适合进行Fe2+氧化的At. ferrooxidans与Aph. acidophilum的数量比例范围应在100:1的数量级。Aph. acidophilum与At. ferrooxidans共培养在一定的环境胁迫下仍能保持其稳定性并完成各自的生态功能,并且嗜酸异养菌Aph. acidophilum适合在含铁量较高的浸出体系中与铁氧化细菌共同作用来提高生物浸出的效率。
Although, the synergetic interactions between chemolithoautotroph At. ferrooxidans and heterotroph Aph. acidophilum in bioleaching and acid mine drainage (AMD) environment have drawn a share of attention, in-depth research regarding synergetic interactions are still unknown on physiological and transcriptional level. To gain a better understanding of the synergic interactions and ecological functions between these two species that commonly occurred in bioleaching system and AMD environment, a series of research regarding the co-culture of these two species have been conducted.
     The content of researches included:(1) evaluation of the accuracy of RT-qPCR quantified growth dynamics of At. ferrooxidans and Aph. acidophilum;(2) a co-culture composed of At. ferrooxidans and Aph. acidophilum were successfully acclimated in this study, the growth dynamics and physiological activity were monitored;(3) the expression difference of carbon and iron metabolism related genes between At. ferrooxidans pure culture and its co-culture with Aph. Acidophilum was studied;(4) the stability of co-culture which consists of Aph. acidophilum and At. ferrooxidans separately exposed to four metal ions (Cd2+, Cu2-, Ni2+and Mg2+) was tested;(5) the growth dynamics and physiological activity of At. ferrooxidans and its natural co-culture with Aph. acidophilum in media with or without glucose were measured respectively;(6) this co-culture was also applied to bioleaching of pyrite and low grade chalcopyrite.
     The results of these researches are listed as follow:
     (1) for accurate relative cell number quantification of the At. ferrooxidans and Aph. acidophilum, the total cell number in culture sample should be between6.52×109cells and2.61×1010cells; and the specific primers of these two species ensured the specificity of the results respectively;
     (2) A co-culture composed of At. ferrooxidans and Aph. acidophilum has been successfully acclimated in this study, and depending on the RT-qPCR quantified growth dynamics, the At. ferrooxidans in co-culture entered earlier and had2days longer exponential phase, obtained5times more cell number than that in pure culture.
     (3) the ferrous iron concentration in culture medium and the expression of iron oxidation related genes revealed that the energy acquisition of At. ferrooxidans in co-culture was more efficient than that in pure culture. Furthermore, the analysis of CO2fixation related genes in At. ferrooxidans indicated that the second copy of RuBisCO encoding genes cbbLS-2and the positive regulator encoding gene cbbR were up-regulated in co-culture system;
     (4) In the Cd2+, Cu2+, Ni2+and Mg2+metal resistance experiment, heterotrophic bacteria Aph. acidophilum facilitated the ferrous iron oxidation by At. ferrooxidans and improved its efficiency of energy utilization. The maximum tolerant concentration (MTC) of At. ferrooxidans to Cu2+was improved from2.0g/L to5.0g/L by Aph. acidophilum, and the cell density of co-culture in5.0g/L Cu2+was almost the same as purely cultured At. ferrooxidans in2.0g/L Cu2+. In addition, the MTC of co-cultured At. ferrooxidans to Mg2+was also improved from12.0g/L to17.0g/L by Aph. acidophilum.
     (5) whether glucose was added in culture media or not, the Fe2+oxidation efficiency of At. ferrooxidans is higher in co-culture than that in pure culture. When the concentration of glucose is5g/L, pure culture of At. ferrooxidans couldn't oxidize Fe2+while the co-culture could finish the Fe2+oxidation in100h, and the pH is higher when more glucose was added in both cultures. Without glucose, the cell number ratio of At. ferrooxidans to Aph. acidophilum in co-culture was about100:1, which suggested the usual cell number ratio between autotrophic bacteria and heterotrophic bacteria in AMD environment. In both pure and co-culture condition, the cell number of At. ferrooxidans decreased and the lag phase prolonged with the increase of glucose concentration; while in the case of Aph. acidophilum in co-culture, the cell number and lag phase showed a reverse trend;
     (6) In bioleaching experiment, the pyrite bioleaching efficiency of co-culture increased by22.70%as compared with that of purely cultured At. ferrooxidans. While in the low grade chalcopyrite bioleaching system with few iron, the bioleaching efficiency of both At. ferrooxidans and its co-culture with Aph. acidophilum were lower than33%. In the low grade chalcopyrite bioleaching system with pre-added2g/L Fe2+, the bioleaching efficiency of At. ferrooxidans and its co-culture with Aph. acidophilum were raised to41.27%and52.22%, respectively.
     In conclusion, a co-culture composed of At. ferrooxidans and Aph. acidophilum were successfully acclimated in this study and the relative cell number can be quantified accurately. Aph. acidophilum could heterotrophically grow with At. ferrooxidans and promote the growth of it. By means of activating iron oxidation related genes and the2nd set of cbbLS genes in At. ferrooxidans, the Aph. acidophilum facilitated the iron oxidation and CO2fixation by At. ferrooxidans. Since Aph. acidophilum facilitated the Fe2+oxidation by At. ferrooxidans and reduced the inhibition by glucose, the addition of organic compounds such as glucose may not be a good AMD bio-remediation strategy. For efficient Fe2+oxidiation, the proper cell number of At. ferrooxidans should be100times higher than that of Aph. acidophilum. At. ferrooxidans and Aph. acidophilum in co-culture could maintain their physiological stability and sustain their ecological function under environmental stress. The bioleaching results suggested that acidophilic heterotrophic bacteria Aph. acidophilum should be applied to the bioleaching system with high iron concentration, in which it could collaborate with iron oxidation bacteria to improve the bioleaching efficiency.
引文
[1]李学亚,叶茜.微生物冶金技术及其应用[J].矿业工程,2006,4(2):49-51
    [2]Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Applied Microbiology and Biotechnology,2003,63 (3):239-248
    [3]Olson G J, Brierley J A, Brierley C L. Bioleaching review part B:Progress in bioleaching:Applications of microbial processes by the minerals industries [J]. Applied Microbiology and Biotechnology,2003,63 (3):249-257
    [4]龚文琪,魏鹏,雷绍民[J].微生物技术及21世纪矿产资源开发.中国非金属矿工业导刊,2000,5:25-28
    [5]Zimmerley SR W D, Prater JD. Cyclic leaching process employing iron oxidizing bacteria[J]. US Patent 2,829,964,1958:
    [6]刘汉钊张.微生物在矿物工程上应用的新进展[J]国外金属矿选矿,1999,12:9-12
    [7]马玉聪.细菌浸出法在矿物工程中的应用[J].金属矿山,1994,8(08):42-44
    [8]Zhen S, Yan Z, Zhang Y, et al. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite[J]. Hydrometallurgy,2009,96 (4):337-341
    [9]Harrison VF G W, Ivarson KC. Leaching of uranium from Elliot Lake ore in the presence of bacteria[J]. Canadian journal of microbiology,1966,87:64-67
    [10]McCready RGL G W, p. Bioleaching of uranium[J]. Microbial mineral recovery,1990 (107-125):
    [11]Aswegen PC van G M, Miller DM, Haines AK. Developments and innovations in bacterial oxidation of refractory ores[J]. Miner Metall Process,1991,11: 188-191
    [12]Brierley J. Expanding role of microbiology in metallurgical processes [J]. Minerals Engineering,2000,52:49-53
    [13]Johnson D B. Biodiversity and ecology of acidophilic microorganisms[J]. FEMS Microbiology Ecology,1998,27:307-317
    [14]Norris PR, Burton NP, NAM F. Acidophiles in bioreactor mineral processing [J]. Extremophiles,2000,4:71-76
    [15]Schippers A, Rohwerder T, W S. Intermediary sulfur compounds in pyrite oxidation:implications for bioleaching and biodepyritization of coal[J]. Appl Microbiol Biotechnol,1999,52:104-110
    [16]Schippers A, Jozsa PG, W S. Sulfur chemistry in bacterial leaching of pyrite[J]. Applied and Environmental Microbiology,1996,62:3424-3431
    [17]Rawlings D E, Heavy metal mining using microbes, in Annual Review of Microbiology[M]. Volume 56, L.N. Ornston, A. Balows, and S. Gottesman, Editors.2002, Annual Reviews,4139 E1 Camino Way, P. O. Box 10139, Palo Alto, CA,94303-0139, USA.65-91.
    [18]Rawlings D E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories,2005,4:13
    [19]Bailey A D, Hansford, G.S. Factors affecting the biooxidation of sulphide minerals at high concentrations of solids:a review[J]. Biotechnology and Bioengineering,1993,12:1164-1174.
    [20]Boon M, Heijnen, J.J.. Gas-liquid mass transfer phenomena in biooxidation experiments of sulphide minerals:a review of literature data[J]. Hydrometallurgy 1998,48:187-204
    [21]Deveci H. The Effect of salinity on the oxidative activity of acidophilic bacteria during bioleaching of a complex Zn/Pb sulphide ore[J]. European Journal of Mineral Processing and Environmental Protection.2002,2:141-150
    [22]Deveci H. Effect of solids on viability of acidophilic bacteria[J]. Minerals Engineering 2002,15,:1181-1189
    [23]Rohwerder T, Gehrke, T., Kinzler, Sand, W. Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Applied Microbiology and Biotechnology,2003,63:239-248
    [24]Sand W, Gehrke, T., Jozsa, P.G, Shippers, A. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching[J]. Hydrometallurgy 2001.,59: 159-175
    [25]Steudel R. Mechanism for the formation of elemental sulphur from aqueous sulphide in chemical and microbiological desulfurization processes[J]. Industrial & Engineering Chemistry Research,1996,35 1417-1423
    [26]Tributsch H. Direct versus indirect bioleaching[J]. Hydrometallurgy,2001,59: 177-185.
    [27]Akcil A, Ciftci H. Bacterial leaching of Kure copper ore[J]. The Journal of The Chamber of Mining Engineers of Turkey,2003,42 15-25
    [28]Akcil A, Ciftci H. Effect of sulphur and iron-oxidizing bacteria on metal recovery in leaching of Kure pyritic copper ore. The Bulletin of Earth Sciences Application and Research Centre of Hacettepe University,2003 29:181-192
    [29]Bevilaqua D, Leite A, Garcia O, et al. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochemistry,2002,38:587-592
    [30]Harvey T J, Holder N, Stanek T. Thermophilic bioheap leaching of chalcopyrite concentrates[J]. European Journal of Mineral Processing and Environmental Protection,2002,2253-263
    [31]Konishi Y, Tokushige M, Asai S, et al. Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors[J]. Hydrometallurgy,2001,59271-282
    [32]Petersen J, Dixon D G. Thermophilic heap leaching of a chalcopyrite concentrate[J]. Minerals Engineering,2002,15 777-785
    [33]Petersen J, Dixon D G. Competitive bioleaching of pyrite and chalcopyrite [J]. Hydrometallurgy,2006,83:40-49
    [34]Third K A, Cord-Ruwisch R, Watling H R. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite[J]. Biotechnology and Bioengineering,2002 (78):433-441
    [35]Rodriguez A, Ballester M L, Blazquez F, et al. New information on the chalcopyrite bioleaching mechanism at low and high temperature[J]. Hydrometallurgy,2003,71:47-56
    [36]M Stott B D, Sutton C, Watling H R, et al. Comparative leaching of chalcopyrite by selected acidophilic Bacteria and Arachaea[J]. Geomicrobiology Journal, 2003,20:215-230
    [37]Hackl R P, Dreisinger D B, Peters E, et al. Passivation of chalcopyrite during oxidative leaching in sulfate media[J]. Hydrometallurgy,1995,39:25-48
    [38]Akcil A. Correspondence [J]. Minerals Engineering,2005,18:127
    [39]Battaglia-Brunett F, Hugues P, Cabral T, et al. The mutual effect of mixed Thiobacilli and Leptosprilli populations on pyrite bioleaching[J]. Minerals Engineering,1998,11195-205
    [40]Pizarro J, Jedlicki E, Orellana O, et al. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation[J]. Applied Microbiology and Biotechnology,1996,62: 1323-1328
    [41]Rawlings D E, Tributsch H, Hansford G S. Reasons why 'Leptospirillum' -like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology,1999,145:5-13
    [42]Akcil A. Golden Turkey. Mining Magazine,2003,189128-129
    [43]Akcil A, Koldas S. Acid Mine Drainage (AMD):causes, treatment and case studies[J]. Journal of Cleaner Production,2006,14 (12-13):1139-1145
    [44]Baker B J, Banfield J F. Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology,2003,44 (2):139-152
    [45]Johnson D B. Biodiversity and ecology of acidophilic microorganisms[J]. FEMS Microbiology Ecology,1998,27:307-317
    [46]Hallberg K B, New perspectives in mine water microbiology [C], Biohydrometallurgy:A Meeting Point between Microbial Ecology, Metal Recovery Processes and Environmental Remediation, E.R. Donati, et al., Editors.2009, Trans Tech Publications Ltd:Stafa-Zurich.29-36.
    [47]Kelly D P, Wood A P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov and Thermithiobacillus gen. nov[J]. International Journal of Systematic and Evolutionary Microbiology,2000,50:511-516
    [48]Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al.1992) [J]. nternational Journal of Systematic and Evolutionary Microbiology 2000,50: 501-503
    [49]Coram NJ, DE R. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees[J]. Applied and Environmental Microbiology,2002,68 (7):838-845
    [50]Falco L, Pogliani C, Curutchet G, et al. A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy,2003,71 (1-2):31-36
    [51]Donati E, Curutchet G, Pogliani C, et al. Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans [J]. Process Biochemistry,1996,31 (2):129-134
    [52]Okabe S, Odagiri M, Ito T, et al. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Applied and Environmental Microbiology,2007,73 (3):971-980
    [53]张在海,王淀佐,等.硫化矿细菌浸出的菌种选育研究进展[J].有色金属,2001,5:35-40
    [54]Battaglia-Brunet F, d'Hugues P, Cabral T, et al. The mutual effect of mixed thiobacilli and leptospirilli populations on pyrite bioleaching[J]. Minerals Engineering,1998,11 (2):195-205
    [55]Mark Dopson E B L. Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching[J]. Applied and Environmental Microbiology 1999,65 (1):36-40
    [56]Hector M L, Isamu Suzuki. Bacterial Leaching of a Sulfide Ore By Thiobacillus Ferrooxidans and Thiobacillus thiooxidans. Part Ⅱ:Column leaching studies [J]. Hydrometallurgy,1989,22:301-310
    [57]D. Fournier R L e a. Essential Interaction between Thiobacillus ferrooxidans and heterotrophic microorganisms during a waste water sludge bioleaching process[J]. Environment Pollution,1998,101 (303-309):
    [58]Paula Bacelar-Nicolau D B J. Leaching of pyrite by acidophilic heterotrophic Iron-oxidizing bacteria in pure and mixed cultures[J]. Applied and Environmental Microbiology 1999,65 (2):585-590
    [59]夏金兰,何环,彭安安.混合细菌生物浸出研究与实践[J].中国科技论文在线,2006(3):1-8
    [60]Eccleston M, Kelly D P. Oxidation kinetics and chemostat growth of Thiobacillus ferrooxidans on trathionate and thiosulfate[J]. Journal of Bacteriology,1978, 134:718-725
    [61]Kelly D P, Tuovinen O H. Metabolism of inorganic sulphur compounds by Thiobacillus ferrooxidans and some comparative studies on Thiobacillus A2 and T. neapolitanus[J]. Plant and Soil,1975,43:77-81
    [62]Lewis A J, Miller J D A. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidan[J]s. Canadian Journal of Microbiology,1977,23:319-323
    [63]Tuovinen O H, Kelly D P. Studies on the growth of Thiobacillus ferrooxidans Ⅲ Influence of uranium, other metal ions and 2,4-dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions[J]. Archives of Microbiology,1974,95:165-172
    [64]McCready R G. Progress in the bacterial leaching of metals in Canada Biohydrometallurgy. Science and Technology Letters,1988,11:177-181
    [65]Norris P R, Kelly D P. he use of mixed microbial cultures in metal recover[J]. Journal of Bacteriology,1982,26:443-449
    [66]Appia-Ayme C, Guiliani N, Ratouchniak J, et al. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020[J]. Applied and Environmental Microbiology,1999,65 (11):4781-4787
    [67]Blake R C,2nd, Shute E A. Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase[J]. Biochemistry,1994,33 (31):9220-8
    [68]Bruscella P, Appia-Ayme C, Levican G, et al. Differential expression of two bcl complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation[J]. Microbiology,2007,153 (1):102-110
    [69]Giudici-Orticoni M T, Leroy G, Nitschke W, et al. Characterization of a new dihemic c(4)-type cytochrome isolated from Thiobacillus ferrooxidans[J]. Biochemistry,2000,39 (24):7205-7211
    [70]Lu S, Gischkat S, Reiche M, et al. Ecophysiology of Fe-Cycling Bacteria in Acidic Sediments[J]. Applied and Environmental Microbiology,2010,76 (24): 8174-8183
    [71]Meruane G, Vargas T. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5-7.0[J]. Hydrometallurgy,2003,71 (1-2): 149-158
    [72]Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans[J]. Bmc Genomics,2009,10 (1):394
    [73]Quatrini R, Appia-Ayme C, Denis Y, et al. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling[J]. Hydrometallurgy,2006,83 (1-4):263-272
    [74]Yarzabal A, Appia-Ayme C, Ratouchniak J, et al. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin[J]. Microbiology-Sgm,2004,150: 2113-2123
    [75]Yarzabal A, Brasseur G, Bonnefoy V. Cytochromes c of Acidithiobacillus ferrooxidans. Ferns Microbiology Letters[J],2002,209 (2):189-195
    [76]Johnson D B, Hallberg K B, Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-Organisms[M]. Advances in Microbial Physiology, Vol 54.2009, Academic Press Ltd:London.201-255.
    [77]Valdes J, Pedroso I, Quatrini R, et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications [J]. Bmc Genomics,2008,9 (1):597
    [78]Appia-Ayme C, Quatrini R, Denis Y, et al. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans[J]. Hydrometallurgy,2006,83 (1-4):273-280
    [79]Esparza M, Cardenas J P, Bowien B, et al. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans[J]. Bmc Microbiology,2010, 10:
    [80]E. M. Spiridonova I A B, et al.. An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups[J]. Microbiology,2004,73:316-325
    [81]Sabine Heinhorst S H B, Diana R. Johnson, et al.. Two copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270[J]. Current Microbiology,2002,45::115-117
    [82]Kusano T, Takeshima T, Inoue C, et al. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans[J]. Journal of Bacteriology,1991,173 (22):7313-23
    [83]Kusian B, Bowien B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria[J]. FEMS Microbiology Reviews,1997,21 (2):135-55
    [84]Levican G, Ugalde J A, Ehrenfeld N, et al. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria:predictions and validations[J]. Bmc Genomics,2008,9:
    [85]Price G D, Woodger F J, Badger M R, et al. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (52): 18228-18233
    [86]So A K C, Espie G S, Williams E B, et al. A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. Journal of Bacteriology,2004,186 (3):623-630
    [87]Hiraishi A, Nagashima K V, Matsuura K, et al. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria:its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov[J]. Int J Syst Bacteriol,1998,48 Pt 4:1389-98
    [88]Guay R, Silver M. Thiobacillus acidophilus sp.nov, isolation and some physiological characteristics [J]. Canadian journal of microbiology,1975,21: 281-288
    [89]Harrison A P. Genomic and Physiological Comparisons Between Heterotrophic Thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov, and Thiobacillus acidophilus nom. rev[J]. International Journal of Systematic Bacteriology,1983,33 (2):211-217
    [90]Harrison A P. The Acidophilic Thiobacilli and other Acidophilic Bacteria that Share their Habitat[J]. Annual Review of Microbiology,1984,38 (1):265-292
    [91]刘艳阳,陈志伟,姜成英,et al.一株嗜酸化能异养菌Acidiphilium sp.的分离鉴定及其对Fe(Ⅲ)代谢的研究[J].微生物学报,2007,47(2):350-354
    [92]Gurung A C, R. The role of Acidithiobacillus ferrooxidans in alleviating the inhibitory effect of thiosulfate on the growth of acidophilic Acidiphilium species isolated from acid mine drainage samples from Garubathan, India[J]. Canadian Journal of Microbiology,2009,55 (9):1040-1048
    [93]Hao J M, Riley; Lim, Eelin; Schoonen, Martin A. A; Strongin, Daniel R. Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria[J]. Geochimica et Cosmochimica Acta,2009,73 (14): 4111-4123
    [94]Johnson D B, Bridge T A M. Reduction of ferric iron by acidophilic heterotrophic bacteria:evidence for constitutive and inducible enzyme systems in Acidiphilium spp[J]. Journal of Applied Microbiology,2002,92 (2):315-321
    [95]Marchand E A, Silverstein J. The role of enhanced heterotrophic bacterial growth on iron oxidation by Acidithiobacillus ferrooxidans[J]. Geomicrobiology Journal,2003,20 (3):231-244
    [96]Cabrera G, Gomez J M, Cantero D. Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions[J]. Enzyme and Microbial Technology,2005,36 (2-3):301-306
    [97]Cabrera G, Gomez J M, Cantero D. Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures[J]. Process Biochemistry,2005,40 (8):2683-2687
    [98]Orell A, Navarro C A, Arancibia R, et al. Life in blue:Copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals[J]. Biotechnology Advances,2010,28 (6):839-848
    [99]Marchand E A, Silverstein J. Influence of heterotrophic microbial growth on biological oxidation of pyrite[J]. Environmental Science & Technology,2002, 36 (24):5483-5490
    [100]Johnson D B, Hallberg K B. Acid mine drainage remediation options:a review[J]. Science of The Total Environment,2005,338 (1-2):3-14
    [101]Abea, Inouek, Tanaket. Katoj. Quantitation of hepatitis B virus genomic DNA by real-time detection PCR[J]. JCL in Microbilo,1999,37 (9):2899-2903
    [102]朱建楚,胡银岗,奚亚军,于新智,王新中,布都会.实时荧光定量PCR技术在检测外源基因拷贝数中的应用[J].河北农业学报,2005,14(6):78-82
    [103]Heid CA, Stevens J, Livak KJ. Real-time quantitative PCR[J]. Genome Res, 1996,6 (10):986-994
    [104]蔡霞.定量PCR技术及其应用现状[J].现代诊断与治疗,2005,16(2):112-115
    [105]Ian MM, Katherine EA, Andreas N. Survey and summary real-time PCR in virology[J]. Nucleic Acids Res,2002,30 (6):1292-1305
    [106]Magnus L, Charles H. Dynamic range and rep roducibility of hepatitisB virus(HBV)DNA detection and quantification by cobas Taqman HBV, a real-time semiautomated assay[J]. JCL in Microbilo,2005,43 (2):251-254
    [107]Giulietti A, Overbergh I, Valckx D. An overview of real-time quantitative PCR: a pplication to quantify cytokine Geneexpression[J]. Methods,2001,25 (4): 386-240
    [108]Bas S, Petneger TV, Seitz M. Diagnostic tests for Rheumatoid arthritis comparison of anti-cyclic citrullinated peptide antibodies anti-keratin antibodies and IgM rheumatoid factors[J]. Rheumatology,2002,41 (7): 809-814
    [109]丁超.实时荧光定量应用及实验条件优化[J].大连医科大学学报,2007,29 (4):404-407
    [110]Mediwake R, Isenberg DA, Schellekens GA. Use of anti-citrullinated peptide and anti RA33 antibodies in distinguishing erosive arthritis in patients with systemic lupus erythmatosus and rheumatoid arthritis [J]. Ann Rheum Dis, 2001,60 (1):67-68
    [111]Schippers A, Microorganisms Involved in Bioleaching and Nucleic Acid-Based Molecular Methods for Their Identification and Quantification, in Microbial Processing of Metal Sulfides, E.R. Donati and W. Sand, Editors[M].2007, Springer Netherlands.3-33.
    [112]Bach H J T, J.; Schloter, M.; Munch, J. C. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PGR mediated amplification[J]. Journal of Microbiological Methods,2002,49 (3):235-245
    [113]Smith C J N, David B.Dong, Liang F.Osborn, A. Mark. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples [J]. Environmental Microbiology,2006,8 (5):804-815
    [114]Peng H, Yang Y, Li X, et al. Structure Analysis of 16S rDNA Sequences from Strains of Acidithiobacillus ferrooxidans[J]. Journal of Biochemistry and Molecular Biology,2006,39 (2):178-182
    [115]Harrison A P. Acidiphilium cryptum gen. nov., sp. nov., Heterotrophic Bacterium From Acidic Mineral Environments [J]. International Journal of Systematic Bacteriology,1981,31 (3):327-332
    [116]Pronk J T, Meulenberg R, Hazeu W, et al. Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli[J]. FEMS Microbiology Letters, 1990,75 (2-3):293-306
    [117]Tourova T P, Spiridonova E M. Phylogeny and Evolution of the Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Genes in Prokaryotes[J]. Molecular Biology,2009,43 (5):713-728
    [118]戴艳霞,刘宏伟,廖立琴,et al.硫酸铁对嗜酸氧化亚铁硫杆菌铁代谢基因表达的影响[J].现代生物医学进展,2009,21:4010-4014
    [119]Silver M. Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans)[J]. Canadian journal of microbiology,1970,16::845-849
    [120]刘宏伟,戴艳霞,黄伟,尹华群,梁伊丽,申丽,刘学端.嗜酸异养菌对自养菌Acidithiobacillus ferrooxidans金属离子抗性和生物浸出的影响[J].微生物学通报,2012,39(8):1069-1078
    [121]Bilgin A A, Silverstein J, Jenkins J D. Iron respiration by Acidiphilium cryptum at pH 5[J]. FEMS Microbiology Ecology,2004,49 (1):137-143
    [122]张成桂张,王晶,张瑞永,何环,夏金兰,邱冠周.阴离子对嗜酸氧化亚铁硫杆菌生长和硫氧化活性的影响[J].中国有色金属学报,2009,19(12):2237-2242
    [123]李洪枚,柯家骏.Mg2+对氧化亚铁硫杆菌生长活性的影响[J].中国有色金属学报,2000,10(4):576-578
    [124]Baillet F, Magnin J P, Cheruy A, et al. Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass[J]. Environmental Technology,1997,18 (6):631-637
    [125]Mahapatra N R, Banerjee P C. Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains[J]. Letters in Applied Microbiology,1996,23 (6):393-397
    [126]Leduc L G, Ferroni G D, Trevors J T. Resistance to heavy metals in different strains of Thiobacillus ferrooxidans[J]. World Journal of Microbiology and Biotechnology,1997,13 (4):453-455
    [127]Boyer A, Magnin J-P, Ozil P. Copper ion removal by Thiobacillus ferrooxidans biomass[J]. Biotechnology Letters,1998,20 (2):187-190
    [128]Garcia O, da Silva L L. Differences in growth and iron oxidation among Thiobacillus ferrooxidans cultures in the presence of some toxic metals [J]. Biotechnology Letters,1991,13 (8):567-570
    [129]Dopson M, Baker-Austin C, Koppineedi P R, et al. Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic micro-organisms [J]. Microbiology,2003,149 (8):1959-1970
    [130]Brunner B Y, Jae-Young; Mielke, Randall E.; MacAskill, John A.; Madzunkov, Stojan, McGenity T J, Coleman M. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy [J]. Earth and Planetary Science Letters,2008,270 (1-2):63-72
    [131]Schnaitman C, Lundgren D G. Organic compounds in the spent medium of Ferrobacillus ferrooxidans [J]. Canadian journal of microbiology,1965,11: 23-27
    [132]Das, A., J. M. Modak, et al. "Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,1998:73(3): 215-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700