用户名: 密码: 验证码:
海南丘陵区橡胶园土壤养分精准管理取样方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然橡胶是一种典型的资源约束型产业,在我国国防建设和国民经济中都具有重要地位。实施合理的养分综合管理是提高橡胶树生产力的重要手段。养分精准管理的前提是必须详细了解橡胶园土壤属性空间分布特征。目前野外调查取样是获取土壤基本属性和空间变化的基本手段,正确科学的土壤取样方法是橡胶园养分精准管理是否成功的关键。因此,在进行橡胶树养分精准管理之前,有必要明确橡胶园土壤养分的取样方法,这是进一步开展橡胶树养分精准管理基础。现行采样过程中橡胶园土壤样品采集区域主要位于萌生带位置,但其是否合理仍是个未知数。本文针对橡胶树生产管理上的特点,结合生产实际,首先研究植株尺度下土壤属性的取样位置,在此基础上利用地质统计学和空间模拟退火算法探讨田块尺度下橡胶园土壤样本取样数目和布局,主要研究结果如下:
     (1)基于植株尺度围绕着9株橡胶树,通过在84m2范围内按1mx0.5m规则网格采集168个橡胶园表层土壤样品,利用普通克里格对全氮、有机质、速效磷、速效钾和pH五种土壤属性按照0.5m网格进行插值,而后描述各自空间分布特征,结果表明:全氮、速效磷、有机质呈现出明显的“肥岛”效应。其中全氮“肥岛”面积最大,影响距离最远;速效磷的“肥岛”面积最小,与周围浓度成倍数递减,成环状同心圆分布;有机质的空间分布介于两者之间。速效钾的变程最大,斑块面积大且过渡均匀。橡胶园中管理措施(例如挖施肥穴以及修筑环山行等)导致植株尺度范围内土壤表层空间变异大,同时这些土壤属性的高变异系数特征也揭示了橡胶园土壤表层适合于取样分区管理。
     (2)通过主成分分析将植株尺度下全氮、有机质、速效磷、速效钾和pH五种土壤属性转化为具有高度代表性的协同变量主成分,而后利用模糊聚类方法将前几主成分进行划分管理分区,研究结果表明:植株尺度下橡胶园表层土壤可划分为萌生带、树头以及施肥穴位置三个分区。萌生带区域土壤全氮和有机质与整个研究区域的均值相近,而速效磷和速效钾略低于均值。由于萌生带区域保持植被自然生产且少受外界干扰,具有较高的稳定性,因此,从该处获取的土壤样本分析结果可代表氮肥和有机质的养分水平。
     (3)根据描述性统计结果,将植株尺度下橡胶园表层土壤属性划分为正态和偏态两组数据。针对土壤全氮和速效钾这两个正态或对数正态分布的土壤属性,本文应用普通克里格方法描述其合理取样位置,结果表明橡胶园土壤全氮和速效钾综合养分取样位置主要受土壤速效钾含量分布决定。在空间分布上,综合养分的合理取样位置主要位于远离施肥穴的橡胶树行间萌生带和中间树头附近区域。综合外界因素,其最优取样位置位于远离施肥穴的橡胶树行间萌生带位置。
     (4)针对土壤有机质具有偏态分布的数据特点,应用指示克立格法描述了土壤全氮和有机质的合理取样位置分布概率。研究结果表明橡胶园植株间土壤全氮和有机质含量均值±10%相对标准偏差范围的概率分布具有相似性。土壤全氮和有机质含量同时处于均值±10%相对标准偏差范围的高概率区域主要分布在东边地势较高的橡胶树行间萌生带和树头株间位置,其最佳取样位置即综合指标最大概率集中于地势高的橡胶树行间正中央。研究结果表明,应用指示克立格法可为南方丘陵地区多年生经济作物复杂表层土壤样品的采集提供一种可行的解决途径。
     (5)在田块尺度围绕231株橡胶树,总面积为4200m2(60m×70m)范围,按照6m×7m网格采集100个土壤样本。结果表明田块尺度橡胶园土壤养分属性均属于中等变异程度,但速效磷和速效钾的变异程度明显大于全氮和有机质,前者的变异系数约为后者的两倍。从土壤属性的空间分布特征来看,全氮、有机质和速效磷整体上表现出明显西高东低分布,而速效钾呈现出四周高中间低的“岛屿”分布。应用克立格方法计算田块尺度橡胶园土壤属性合理取样数目,其中全氮、有机质、速效磷和速效钾合理取样数目分别为9、9、29和32,利用克里格指导的采样效率比传统统计学方法提高约2-5倍。
     (6)将空间模拟退火算法引入到橡胶土壤取样布局中并探讨了不同约束条件下田块尺度橡胶园土壤取样方案,研究结果表明:在橡胶园土壤取样过程中,如果研究区域既无先验方差也无早期观测样点情况下,在给定一定取样数量情况下可以基于最小均值距离(MMSD)准则进行优化布局;如果具有早期观测样点或者具有类似区域的先验方差,则可通过MMSD和最小克里格方差(MMKEV)准则相结合或者先验方差知识和MMKEV准则相结合进行指导取样布局。空间模拟退火算法在处理橡胶园土壤取样区域障碍以及充分利用前期先验知识方面具有现实指导意义。
Production of natural rubber is a typical resource-constrained industry. Natural rubber is of strategic importance in national economy and defense in China. The best management practice (BMP) for natural rubber's nutrient management is a major pathway to improve its yield and quality. Prior to BMP in nutrient management, the spatial distribution of key soil physical and chemical properties in rubber plantation have to be identified and mapped out. In-field soil sampling is a widely-accepted method to acquire key soil chemical properties and their spatial variations. Hence, a sampling method based on a sound-developed spatial sampling theory is crucial for precision nutrient management. Therefore, we must study the sampling design in the rubber plantation to obtain essential, prior knowledge on BMP for rubber tree management. At present, the conventional soil sampling sites in rubber plantation are in the shrub and ruderal zones, which are usually located in a specific free land between the adjacent rubber planting strips with vegetative growth of controlling nature. Whether it could reliable represent the nutrient level in the rubber plantation is unknown. In this dissertation, we first studied the sampling locations of soil properties in an individual rubber scale. Second, we investigated the optimal soil sampling numbers in the rubber field scale based on the geostatistics methods. Third, we introduced the spatial simulation annealing to optimize the soil sampling design in the rubber field scale. The main results were as follows:
     (1) The study was conducted around nine selected rubber trees in a typical hilling area of84m2at Yangjiang State-owned Farm, Hainan Province, China. The experimental plot was divided into168equivalent rectangles. The dimension of each rectangle grid for sampling was1m x0.5m. Ordinary Kriging (OK) was employed to interpolate five soil variables (i.e. Total Nitrogen or TN, Organic Matter or OM, Available Phosphorous of AP, Available Potassium or AK and pH) into a0.5m grid cell in the non-sampling locations and delineated spatial distribution for the five soil chemical properties. Results showed that the distributions of soil chemical properties were obviously different. Contour maps of TN, AP and OM variables showed as an island of fertility. Area of the island of TN variable was the biggest, OM was second, and AP came the last and revealed a sharp decrease in the nearby locations. The range for the AK variable was3.36m and its contour map was relatively uniform. Management practices, such as digging fertilization caves and building contour ledges, resulted in high spatial variability of soil chemical properties in rubber tree plantation. The coefficients of variation for the soil chemical properties revealed considerable spatial variability and soil nutrients could be classified into several zones for management purposes.
     (2) Principal Component Analysis (PCA) was applied to transform original five soil variables into new, uncorrelated variables (axes) called the principal components (PCs), which retain as much as possible information present in the original data. The PCs with eigenvalues larger than1.0were selected for the development of management zone classes. Results showed that fuzzy cluster algorithms could classify the chemical properties in the soil into three zones such as rubber rhizome neck areas, shrub and ruderal zone and the areas around fertilization caves. The conventional soil-sampling sites were in the shrub and ruderal zones, where the soil TN and OM variables were approximate equal to the mean values and AP and AK concentrations were slightly lower than the mean values of interpolation estimations. Soil samples in the shrub and ruderal zones were not disturbed by human activity, therefore the contents of TN and OM variables in this zone could be more reliable for corresponding levels.
     (3) Based on descriptive statistics, we divided the five soil properties in the rubber plantation into two groups:normality group and abnormality group. We used the OK method to analyze the spatial distribution of TN and AK variables and the sampling sites of the combined nutrients was determined. Results indicated that the optimum sampling site of combined soil TN and AK was determined by distribution of the AK variable. The sampling site of combined soil TN and AK variables were located between the rubber rhizome neck and in the shrub and ruderal zone which was far away the fertilization cave. As the location between the rubber rhizome neck is often affected by some uncertain factors, so the best sampling sites are in the shrub and ruderal zone which was far away the fertilization cave.
     (4) As soil organic matter content in the rubber plantation was showed as abnormality,we employed nonparametric indicator kriging to analyze the spatial probability distribution of soil TN and OM between the mean±10%relative standard deviation (RSD) respectively and the probability maps of the combined index was presented. The results indicated that the high probability location of the soils,where total nitrogen concentration and organic matter content were between the individual mean±10%RSD, were between the rubber rhizome neck and in the shrub and ruderal zone in the high terrain. As the location between the rubber rhizome neck is often influenced by some uncertain factors, so the best sampling sites should be in the shrub and ruderal zone with the high terrain. The highest probability of combined index of TN and OM variables are located in the middle of the line spacing of rubber tree. The results present a new method to evaluate the reasonable soil sampling site of Latosol for multi-years of growth period of crops planted in hilly region of South China.
     (5) In the field scale, the study was conducted around231rubber trees covering an area of4200m2. The plot was divided into100equivalent rectangles. The dimension of each rectangle grid for sampling was16m×7m. Results indicated that all the soil properties were with medium spatial variability in the field scale. The coefficient of variability of AP and AK concentrations were double that of TN and OM. Spatial distribution of the soil properties revealed that concentrations of TN, OM and AP were higher in the west than in the eastern areas. Concentrations of AK were displayed as a fertilizer island, which was low in the center and high in the periphery. The optimal sampling numbers of TN, OM, AP and AK variables were9,9,29and32, respectively. Sampling efficiency based on geostatistics was2to5times than the estimated by classical statistics in this study.
     (6) In this study, we also introduced spatial stimulation annealing to optimize soil sampling design with different constrained conditions in the field scale. If there were no priori variance, no priori sampling points and sample numbers was available, soil sampling design should be optimized based on minimizations of the mean of shortest distrances (MMSD) criterion in the study area. If there had priori variance or priori sampling points in the study area, soil sampling design should be optimized based on minimizations of the mean of kriging estimation variance (MMKEV) criterion or MMSD plus MMKEV criterion. Spatial stimulated annealing could be well applied to optimize soil sampling strategy in those study area, where had constrained area or priori knowledge.
引文
安峰,林位夫,谢贵水,等.2012.国内外巴西橡胶树替代作物及技术研发现状[J].热带作物学报,33(6):1134-1141.
    陈柏松.2011.区域化变量制图采样布局的优化研究.[博士学位论文].北京:北京师范大学.
    陈飞香,戴慧,胡月明,等.2012.区域十壤空间抽样方法研究[J].地理与地理信息科学,28(6):53-56.
    郭澎涛.2012.紫色土丘陵区农田土壤不同坡位取样单元确定研究.[博十学位论文].重庆:西南大学.
    何康,黄宗道.1987.热带北缘橡胶树栽培[M].广州:广东出版社.
    何向东,吴小平.2002.海南垦区胶园肥力演变探讨[J].热带农业科学,22(1):16-22
    侯景儒.1990.指示克立格的方法及原理[J].地质与勘探,26(3):28-36.
    侯景儒,尹镇南,李维明,等.1998.实用地质统计学[M].北京:地质出版社.
    胡山鹰,陈丙珍,何小荣.1995.连续变量问题全局优化的模拟退火法[J].系统工程理论与实践,(9):73-80.
    华元刚,林钊沐,茶正早,等.2012.胶园土壤化学肥力演变及与橡胶树营养关系的研究[J].热带作物学报,33(3):397-401.
    姜城,杨俐苹,金继运,等.2001.土壤养分变异与合理取样数量[J].植物营养与肥料学报,7(3):262-270.
    姜成晟,王劲峰,曹志冬.2009.地理空间抽样理论研究综述[J].地理学报,64(3):368-380.
    雷志栋,杨诗秀,许志荣,等.1985.土壤特性空间变异性初步研究[J].水利学报,(9):10-21
    李保国,胡克林,黄元仿,等.2001.区域浅层地下水硝酸盐含量评价的指示克立格法[J].水利学报,(3):1-5.
    李艳,史舟,王人潮,等.2004.海涂土壤剖面电导率的协同克立格法估值及不同取样数目的比较研究[J].土壤学报,41(3):434-443.
    李艳,史舟,吴次芳,等.2007.基于模糊聚类分析的田间精确管理分区研究[J].中国农业科学,40(1):114-122.
    李子忠,龚元石.2000.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报,5(5):59-66.
    林清火,郭澎涛,罗微,等.2013.橡胶园土壤全氮和速效钾养分合理取样位置研究[J].热带作物学报,34(2):239-243.
    林清火,李世池,罗微,等.2012a.PR107品种不同割龄与单株产量关系初步研究[J].热带作物学报,33(10):1738-1742.
    林清火,林钊沐,贝美容,等.2012b.橡胶园土壤肥力指标的小尺度空间变异Ⅰ:0-20cm土层[J].热带作物学报,33(8):1348-1353.
    林清火,林钊沐,茶正早,等.2012c.海南农垦橡胶树叶片氮磷钾含量年际变化分析[J].热带作物学报,33(4):595-601.
    刘全明,陈亚新,魏占民,等.2009.土壤水盐空间变异性指示克立格阈值及其与有关函数的关系[J].水利学报,40(9):1127-1134.
    路鹏,黄道友,宋变兰,等.2005.亚热带红壤丘陵区典型景观单元土壤养分的空间变异[J].植物营养与肥料学报,11(6):717-723.
    鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社.
    陆行正.1983.橡胶树的施肥问题[J].热带作物研究,(2):11-16.
    罗微,林钊沐,茶正早.2007.我国橡胶树测土营养诊断配方施肥的发展历程与趋势.见:江荣风,杜森主编.首届全国测土配方施肥技术研讨会论文集[C].北京:中国农业大学出版社,174-178.
    罗微,刘俊良,茶正早,等.2005.橡胶园施肥穴肥料残留养分空间分布规律研究初报[J].热带作物学报,26(1):6-10.
    吕贻忠,李保国,崔燕.2006.不同植被群落下土壤有机质和速效磷的小尺度空间变异[J].中国农业科学,39(8):1581-1588.
    庞夙,李廷轩,王永东,等.2009.县域农田土壤铜含量的协同克里格插值及采样数量优化[J].中国农业科学,42(8):2828-2836.
    谢高地,陈沈斌,等.2005.环境的空间连续变异与精准农业[M].北京:气象出版社.
    祁栋灵,王秀全,张志扬,等.2013.中国天然橡胶产业现状及其发展建议[J].热带农业科学,33(2):79-87.
    史舟,李艳.2006.地统计学在土壤学中的应用[M].中国农业出版社.
    史舟,李艳,金辉明.2007.基于方差四义树法的滨海盐土电导率采样布局研究[J].土壤学报,44(2):294-299.
    孙波,赵其国,闾国年.2002.低丘土壤肥力的时空变异[J].土壤学报,39(2):190-198.
    王宏斌,杨青,刘志杰,等.2006.利用计算机模拟采样确定合理的土壤采样密度[J].农业工程学报,22(8):145-148.
    王劲峰.2006.空间分析[M].科学出版社.
    王劲峰,姜成晟,李连发,等.2009.空间抽样与统计推断[M].科学出版社.
    王珂,沈掌泉,Bailey J.S.,等.2001.精确农业田间土壤空间变异与采样方式研究[J].农业工程学报,17(2):33-36.
    汪懋华.1999.“精细农业”发展与工程技术创新[J].农业工程学报,15(1):1-7.
    王淑英,于同泉,王建立,等.2008.北京市平谷区土壤有效微量元素含量的空间变异特性初步研究[J].中国农业科学,41(1):129-137.
    王秀,赵春江,孟志军,等.2005.精准农业土壤采样栅格划分方法的研究[J].土壤学报,42(2):199-205.
    王政权.1999.地统计学及在生态学中的应用[M].科学出版.
    薛正平,杨星卫,段项锁,等.2002.土壤养分空间变异及合理取样数研究[J].农业工程学报,18(4):6-9.
    阎波杰,潘瑜春,赵春江.2008.区域土壤重金属空间变异及合理采样数确定[J].农业工程学报,28(增刊2):260-264.
    杨劲松,姚荣江,刘广明.2008.电磁感应仪用于土壤盐分空间变异性的指示克立格分析评价[J].土壤学报,45(4):585-593.
    杨奇勇,杨劲松,余世鹏.2011.禹城市耕地土壤盐分与有机质的指示克里格分析[J].生态学报,31(8):2196-2202.
    杨诗秀,雷志栋.1993.田间土壤含水率的空间结构及取样数目确定[J].地理学报,48(5)447-456.
    姚荣江,杨劲松,刘广明,等.2006.黄河三角洲地区典型地块土壤盐分空间变异特征研究[J].农业工程学报,22(6):61-66.
    许红卫,高克异,王珂,等.2006.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报,12(1):37-43.
    苑小勇,黄元仿,高如泰,等.2008.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报,24(2):70-76.
    张仁铎.2005.空间变异理论及应用[M].北京:科学出版社.
    赵春江.2010.对中国未来精准农业发展的思考[J].农业网络信息,(4):5-8.
    赵林,姜远茂,彭福田.2009.苹果园土壤营养诊断采样方法研究[J].落叶果树,(4):1-3.
    赵伟,谢德体,刘洪斌,等.2008.精准农业中土壤养分分析的适宜取样数量的确定[J].中国生态农业学报,16(2):318-322.
    张淑娟,方慧,何勇.2004.精细农业田间信息采样策略[J].农业机械学报,35(4):88-92.
    Barca, E., Passarella, G., Uricchio, V.2008. Optimal extension of the rain gauge monitoring network of the Apulian Regional Consortium for Crop Protection. Environmental Monitoring and Assessment,145(1-3):375-386.
    Bezdek, J.C.1981. Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York.
    Brus, D.J., de Gruijter, J.J.1997. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma,80(1-2):1-44.
    Brus, D.J., de Gruijter, J.J., van Groenigen, J.W.2006. Designing spatial coverage samples using the k-means clustering algorithm. In:P. Lagacherie, A.B.M., Voltz, M. (Eds.), Developments in Soil Science. Elsevier, pp.183-192.
    Brus, D.J., Heuvelink, GB.M.2007. Optimization of sample patterns for universal kriging of environmental variables. Geoderma,138(1-2):86-95.
    Burgess, T., Webster, R., McBratney, A.1981. Optimal interpolation and isarithmic mapping of soil properties.IV sampling strategy. Journal of Soil Science,32(4):643-659.
    Cambardella, C., Moorman, T., Novak, J., Parkin, T., Karlen, D., Turco, R., Konopka, A.1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal,58(5):1501-1511.
    Chen, B., Cao, J., Wang, J., Wu, Z., Xie, G.2011. Development and implementation of site-specific fertilizer recommendation model based on nutrient balance for rubber plantation. Agronomy Journal,103(2):464-471.
    Chen, B., Pan, Y., Wang, J., Fu, Z., Zeng, Z., Zhou, Y., Zhang, Y.2013. Even sampling designs generation by efficient spatial simulated annealing. Mathematical and Computer Modelling,58(3-4):670-676.
    Chen, B., Pan, Y, Wang, J., Fu, Z., Zhang, Y, Zhou, Y.2012. Even sampling designs generation by charges repulsion simulation. Environmental Monitoring and Assessment, 184(6):3545-3556.
    Cheng, C., Wang, R., Jiang, J.2007. Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China. Journal of Environmental Sciences, 19(3):348-352.
    Christakos, G, Olea, R.A.1992. Sampling design for spatially distributed hydrogeologic and environmental processes. Advances in water resources,15(4):219-237.
    Chung, C.K., Chong, S.K., Varsa, E.C.1995. Sampling strategies for fertility on a stoy silt loam soil. Communications in Soil Science and Plant Analysis,26(5-6):741-763.
    Cochran, W.G.1977. Sampling Techniques,3rd ed. John Wiley and Sons, New York.
    Cressie, N.1993. Statistics for spatial data. John Wiley and Sons, New York.
    Dane, J.H., Reed, R.B., Hopmans, J.W.1986. Estimating soil parameters and sample size by bootstrapping. Soil Science Society of America Journal,50(2):283-287.
    Davatgar, N., Neishabouri, M., Sepaskhah, A.2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma,173:111-118.
    Deutsch, C.V., Journel, A.G.1992. Geostatistical software library and user's guide. Oxford University Press New York.
    Deutsch, C.V., Journel, A.G.1998. GSLIB:Geostatistical Software Library and User's Guide, 2nd ed. Oxford University Press, New York.
    Di, H.J., Trangmar, B., Kemp, R.1989. Use of geostatistics in designing sampling strategies for soil survey. Soil Science Society of America Journal,53(4):1163-1167.
    Diodato, N., Ceccarelli, M.2004. Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecological Indicators,4(3): 177-187.
    Dong, J., Xiao, X., Sheldon, S., Biradar, C, Xie, G.2012. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing,74(0):20-33.
    Felix-Medina, M.n.H.2000. Analytical expressions for Rao-Blackwell estimators in adaptive cluster sampling. Journal of Statistical Planning and Inference,84(1-2):221-236.
    Ferguson, R., Hergert, G, Schepers, J., Gotway, C., Cahoon, J., Peterson, T.2002. Site-specific nitrogen management of irrigated maize. Soil Science Society of America Journal,66(2):544-553.
    Ferreyra, R.A., Apezteguia, H.P., Sereno, R., Jones, J.W.2002. Reduction of soil water spatial sampling density using scaled semivariograms and simulated annealing. Geoderma, 110(3-4):265-289.
    Fridgen, J.J., Kitchen, N.R., Sudduth, K.A., Drummond, S.T., Wiebold, W.J., Fraisse, C.W. 2004. Management zone analyst (MZA). Agronomy Journal,96(1):100-108.
    Fu, Q., Wang, Z., Jiang, Q.2010. Delineating soil nutrient management zones based on fuzzy clustering optimized by PSO. Mathematical and Computer Modelling,51(11): 1299-1305.
    Gamma Design Software.2004. GS+:Geostatistics for the environmental sciences. Gamma design software, Plainwell, Michigan, USA.
    Gao, L., Shao, M.2012. The interpolation accuracy for seven soil properties at various sampling scales on the Loess Plateau, China. Journal of Soils and Sediments,12(2): 128-142.
    Goktepe, A.B., Altun, S., Sezer, A.2005. Soil clustering by fuzzy c-means algorithm. Advances in Engineering Software,36(10):691-698.
    Goovaerts, P.1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.
    Goovaerts, P.1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27(4):315-334.
    Goovaerts, P.1999. Geostatistics in soil science:state-of-the-art and perspectives. Geoderma, 89(1):1-45.
    Goovaerts, P.2001. Geostatistical modelling of uncertainty in soil science. Geoderma, 103(1-2):3-26.
    Goovaerts, P., Webster, R., Dubois, J.P.1997. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environmental and Ecological Statistics,4(1): 49-64.
    Gotway, C.A., Ferguson, R.B., Hergert, G.W., Peterson, T.A.1996. Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal,60(4):1237-1247.
    Gruijter, J., Brus, D.J., Bierkens, M.F.P., Knotters, M.2006. Sampling for Natural Resource Monitoring Springer-Verlag, New York.
    Gupta, R., Mostaghimi, S., McClellan, P., Alley, M., Brann, D.1997. Spatial variability and sampling strategies for NO3-N, P, and K determinations for site-specific farming. Transactions of the ASAE,40(2):337-343.
    Haining, R.P.2003. Spatial Data Analysis:Theory and Practice. Cambridge University Press, London.
    Hengl, T., Rossiter, D.G., Stein, A.2003. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Soil Research,41(8):1403-1422.
    Hupet, F., Vanclooster, M.2004. Sampling strategies to estimate field areal evapotranspiration fluxes with a soil water balance approach. Journal of Hydrology,292(1):262-280.
    Ikenaga, S., Inamura, T.2008. Evaluation of site-specific management zones on a farm with 124 contiguous small paddy fields in a multiple-cropping system. Precision Agriculture, 9(3):147-159.
    Isaaks, E.H., Srivastava, R.M.1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.
    Kadilar, C, Cingi, H.2006. Ratio estimators for the population variance in simple and stratified random sampling. Applied Mathematics and Computation,173(2):1047-1059.
    Kerry, R., Oliver, M.2003. Variograms of ancillary data to aid sampling for soil surveys. Precision Agriculture,4(3):261-278.
    Kerry, R., Oliver, M.A.2004. Average variograms to guide soil sampling. International Journal of Applied Earth Observation and Geoinformation,5(4):307-325.
    Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.1983. Optimization by simulated annealing. Science,220(4598):671-680.
    Kitchen, N., Sudduth, K., Myers, D., Drummond, S., Hong, S.2005. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Computers and Electronics in Agriculture,46(1):285-308.
    Lafi, S.Q., Kaneene, J.B.1992. An explanation of the use of principal-components analysis to detect and correct for multicollinearity. Preventive Veterinary Medicine,13(4):261-275.
    Lark, R.M.2002. Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood. Geoderma,105(1-2):49-80.
    Lark, R.M., Papritz, A.2003. Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma,115(3-4):245-260.
    Lark, R.M., Stafford, J.V.1997. Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Annals of Applied Biology,130(1):111-121.
    Li, Y., Shi, Z., Li, F., Li, H.Y.2007. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture,56(2):174-186.
    Lin, Q., Li, H., Luo, W., Lin, Z., Li, B.2013. Optimal soil-sampling design for rubber tree management based on fuzzy clustering. Forest Ecology and Management,308:214-222.
    Lin, Y., Chu, H., Huang, Y., Tang, C., Rouhani, S.2011. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation. Environmental Monitoring and Assessment,177(1-4):353-373.
    Lin, Y.P., Chang, T.K., Shih, C.W., Tseng, C.H.2002. Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology,42(8):900-909.
    Marchant, B.P., Lark, R.M.2007. Optimized sample schemes for geostatistical surveys. Mathematical Geology,39(1):113-134.
    McBratney, A.B., Pringle, M.J.1999. Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture,1(2): 125-152.
    McBratney, A.B., Webster, R.1983. How many observations are needed for regional estimation of soil properties? Soil Science,135(3):177-183.
    McBratney, A.B., Webster, R., Burgess, T.M.1981. The design of optimal sampling schemes for local estimation and mapping of of regionalized variables—Ⅰ:Theory and method. Computers & Geosciences,7(4):331-334.
    Miao, Y, Mulla, D.J., Batchelor, W.D., Paz, J.O., Robert, P.C., Wiebers, M.2006. Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 98(3):545-553.
    Minasny, B., McBratney, A.B.2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences,32(9):1378-1388.
    Mingoti, S.A., Lima, J.O.2006. Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research,174(3):1742-1759.
    Moral, F., Terr6n, J., Silva, J.2010. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research,106(2):335-343.
    Odeh, I., Chittleborough, D., McBratney, A.1992. Soil pattern recognition with fuzzy-c-means:application to classification and soil-landform interrelationships. Soil Science Society of America Journal,56(2):505-516.
    Oliver, M.A.2010. An overview of geostatistics and precision agriculture. In:Oliver, M.A. (Ed.), Geostatistical Applications for Precision Agriculture. Springer Netherlands, pp. 1-34.
    Ortega, R.A., Santibanez, O.A.2007. Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in Agriculture,58(1):49-59.
    Pardo-Iguzquiza, E.1998. Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology,210(1-4):206-220.
    Remy, N., Boucher, A., Wu, J.2008. Applied Geostatistics with SGeMS:a User's Guide. Cambridge University Press, London.
    Sarndal, C.E., Swensson, B., Wretman, J.1992. Model Assisted Survey Sampling. Springer, New York.
    Sachs, L.1982. Appalied Statistics. Springer-Verlag, New York.
    Sacks, J., Schiller, S.1988. Spatial designs. In:Gupta, S.S., Berger, J.O. (Eds.), Statistical Decision Theory and Related Topics IV. Springer-Verlag, New York, pp.385-399.
    Scudiero, E., Deiana, R., Teatini, P., Cassiani, G, Morari, F.2011. Constrained optimization of spatial sampling in salt contaminated coastal farmland using EMI and continuous simulated annealing. Procedia Environmental Sciences,7(0):234-239.
    Shi, Z., Wang, K., Bailey, J.S., Jordan, C, Higgins, A.J.2000. Sampling Strategies for mapping soil phosphorus and soil potassium distributions in cool temperate grassland. Precision Agriculture,2(4):347-357.
    Simbahan, G.C., Dobermann, A.2006. Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma,133(3-4):345-362.
    Sun, B., Zhou, S., Zhao, Q.2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma,115(1): 85-99.
    Taylor, J., Wood, G, Earl, R., Godwin, R.2003. Soil factors and their influence on within-field crop variability, part Ⅱ:spatial analysis and determination of management zones. Biosystems Engineering,84(4):441-453.
    van Groenigen, J.W.2000. The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma,97(3-4):223-236.
    van Groenigen, J.W., Gandah, M., Bouma, J.2000. Soil sampling strategies for precision agriculture research under sahelian conditions. Soil Science Society of America Journal, 64(5):1674-1680.
    van Groenigen, J.W., Pieters, G, Stein, A.2000. Optimizing spatial sampling for multivariate contamination in urban areas. Environmetrics,11(2):227-244.
    van Groenigen, J.W., Siderius, W., Stein, A.1999. Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma,87(3-4):239-259.
    van Groenigen, J.W., Stein, A.1998. Constrained optimization of spatial sampling using continuous simulated annealing. Journal of Environmental Quality,27(5):1078-1086.
    van Groenigen, J.W., Stein, A.2000. Constrained optimization of spatial sampling in a model-based setting using SANOS software. In:Heuvelink, G.B.M., Lemmens, M.J.P. (Eds.), Accuracy 2000, Proceedings, pp.679-685.
    Vasat, R., Heuvelink, G, Boruvka, L.2010. Sampling design optimization for multivariate soil mapping. Geoderma,155(3):147-153.
    Wang, C., Zuo, Q., Zhang, R.2008. Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method. Journal of Hydrology, 352(3-4):309-321.
    Wang, J., Haining, R., Cao, Z.2010. Sample surveying to estimate the mean of a heterogeneous surface:reducing the error variance through zoning. International Journal of Geographical Information Science,24(4):523-543.
    Wang, J., Jiang, C., Hu, M., Cao, Z., Guo, Y., Li, L., Liu, T., Meng, B.2013. Design-based spatial sampling:Theory and implementation. Environmental Modelling & Software, 40(0):280-288.
    Wang, J., Liu, J., Zhuan, D., Li, L., Ge, Y.2002. Spatial sampling design for monitoring the area of cultivated land. International Journal of Remote Sensing,23(2):263-284.
    Wang, J., Stein, A., Gao, B., Ge, Y.2012. A review of spatial sampling. Spatial Statistics,2: 1-14.
    Warrick, A., Myers, D.1987. Optimization of sampling locations for variogram calculations. Water Resources Research,23(3):496-500.
    Webster, R., Burgess, T.M.1983. Spatial variation in soil and the role of kriging. Agricultural Water Management,6(2-3):111-122.
    Webster, R., Oliver, M.A.2007. Geostatistics for Environmental Scientists,2nd ed. Wiley.
    White, J.G, Welch, R.M., Norvell, W.A.1997. Soil zinc map of the USA using geostatistics and geographic information systems. Soil Science Society of America Journal,61(1): 185-194.
    Wold, S., Esbensen, K., Geladi, P.1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems,2(1):37-52.
    Xu, C, He, H.S., Hu, Y, Chang, Y, Li, X., Bu, R.2005. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation. Ecological Modelling,185(2-4):255-269.
    Yfantis, E., Flatman, G., Behar, J.1987. Efficiency of kriging estimation for square, triangular, and hexagonal grids. Mathematical Geology,19(3):183-205.
    Zhang, N., Wang, M., Wang, N.2002. Precision agriculture-a worldwide overview. Computers and Electronics in Agriculture,36(2-3):113-132.
    Zhu, W., Jiang, J., Song, C., Bao, L.2012. Clustering algorithm based on fuzzy c-means and artificial fish swarm. Procedia Engineering,29:3307-3311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700