用户名: 密码: 验证码:
水下系泊监测平台动力学特性及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下系泊监测平台是一种新型的近海港口及河道工程结构,是水下监测系统图像采集仪器与设备的支撑平台。水下系泊监测平台浮体及系泊缆自身长度长,长细比大,在非线性波流作用下其动态性能产生很大的变化,呈现出非线性的大位移和旋转,从而对系泊监测平台的安全性和稳定性将产生大的影响,因此研究其在波流载荷作用下的非线性动态响应和稳定性具有十分重要的意义。
     论文以水下系泊监测平台为研究对象,在分析其所处环境载荷及动态特性的基础上,结合系泊监测平台的功能特点和性能要求,建立了系统的非线性流固耦合动力学方程及有限元模型,并利用混沌理论、Hopkinson冲击载荷理论,研究了系统稳定性判据及影响因素、系统的非线性动态响应以及浮体和系泊缆的冲击响应。论文所做的主要工作如下:
     (1)水下系泊监测平台所受波流载荷
     在研究水下系泊监测平台所处水域的来流速度分布规律基础之上,利用水文环境的实测数据,确定布放位置,根据Morison理论计算了作用于系泊监测平台上的流体荷载;利用计算流体力学理论和CFD软件进行了正方形截面、圆形截面和椭圆形截面浮体的扰流场数值模拟,分析得出在系泊浮体迎流面面积相等的条件下,钝体截面绕流场复杂,绕流阻力系数较大,随着截面曲率变化平缓,其绕流流场环境可显著改善,监测平台浮体表面压力分布减小,对系泊浮体整体受力有利,有利于提高系泊浮体稳定性。
     (2)水下系泊监测平台非线性振动模型
     为了克服和避免发生共振,研究了水下系泊监测平台自振频率,使漩涡释放的频率远离水下系泊监测平台浮体自振频率,在考虑其安装特点的基础上,选取两个系泊缆之间的浮体进行分析,以系泊缆为约束条件,研究了系泊缆间的距离、单位长度浮体质量、浮体直径对自振频率的影响。结果表明,系泊缆间的距离和浮体直径对自振频率影响较大,单位长度浮体质量影响较小。因此在进行水下系泊监测平台浮体设计时,应以浮体直径及系泊缆间的距离为主控因素,当己知水流流速范围时,可以选择合适的浮体直径使得水流涡旋释放频率远离浮体的自振频率,从而有效减小由于共振给监测平台带来的危害。
     (3)水下系泊监测平台涡激作用下稳定性研究
     针对水下系泊监测平台在水流涡激作用下的稳定性问题,考虑了浮体在振动过程中的变形,建立了其流固耦合的非线性动力学方程,利用谐波平衡法进行了非线性特性定性分析以及Melnikov方法进行稳定性判据研究和影响因素分析,以系统出现混沌状态为稳定性控制条件,重点研究了系泊缆支撑间距、水流流速、浮体直径对稳定性的影响,并计算出了各影响因素的临界值,结果表明,系统稳定性随着浮体直径增加呈先缓慢降低后急剧增大的趋势;系统稳定性随支撑间距和河道流速的增加而降低,当超过临界值后,稍微增加都可能导致系泊监测平台振动偏离振动轨道而造成局部失稳甚至结构破坏。
     (4)水下系泊监测平台非线性动态响应及系泊缆冲击张力的研究
     基于Hopkinson冲击载荷理论,针对水下系泊监测平台在水流作用下的动态响应,考虑系泊缆的垂度效应,采用等效弹性模量法修正拉力和弦向作用力之间的差异,建立了水下系泊监测平台的计算模型和数值分析模型。利用水力学理论、海洋工程结构力学理论以及流固耦合的方法分别对其进行求解,研究了浮体在水流作用下的动态响应特性以及系泊缆在松弛——张紧转换过程中和系泊浮体之间的冲击响应。计算结果表明,在水流的作用下,浮体会产生较大的垂荡和横荡位移,横荡位移很快趋于稳定,垂荡位移由于水流涡激升力的影响会产生振动;由于浮体和系泊缆间冲击的存在,以及水流涡激升力的影响,系泊缆在松弛——张紧转变过程中,其张力产生较大的变化。
The submerged mooring monitoring platform is a new type engineering structure ofriverway and harbor, and it is a support platform of equipment and image collect instrument forsubmerged monitoring system. The buoy and mooring cable of the submerged mooringmonitoring platform are very long and the ratio of diameter and length are very large. Theirdynamical property will change greatly by nonlinearity wave force and fluid force; they willpresent nonlinearity large displacement and rotation, these will influence the security andstability of the platform. So study the nonlinearity dynamical response and stability by waveforce and fluid force were very important.
     The dissertation chose the submerged mooring monitoring platform as study object,analyzed the dynamical property and environment load in detail, combined with mooringmonitoring platform function characteristics and performance requirements, then established thenonlinearity fluid-solid coupling dynamical equation and finite element model, studied thestability criterion and influencing factor、the nonlinearity dynamical response and the impactresponse of buoy and mooring cable by chaos theory and Hopkinson impact loading theory. Themain works of the dissertation are below:
     (1) The wave and fluid load of submerged mooring monitoring platform
     First I studied the velocity distribution rule of the water area where the platform fixed, thendetermined the fixed area according to the measure data of hydrology environment, calculatedthe fluid load of mooring platform by Morison theory; simulated the vortex field of square crosssection、circular cross section and ellipse cross section buoy by CFD software, through theanalysis the conclusion could be got that in the same stream surface area of buoy situation, thestreaming field of bluff section was complex and the drag coefficient was large, with the sectioncurvature change mild, the streaming field changed observably, the distributed pressure of buoysurface decreased, it’s beneficial to the whole stress situation of buoy and it could enhance itsstability.
     (2) The nonlinearity vibration model of submerged mooring monitoring platform
     In order to overcome and avoid resonance, studied the natural frequency of vibration forsubmerged mooring monitoring platform, let the vortex frequency far from to the naturalfrequency, the buoy between the two mooring cable was chose to be analyzed, studied theresponse by distance of two mooring cable、the mass of per unit length of buoy and the diameterof buoy, the conclusion indicated that the distance influence the natural frequency of buoy wasmost and the mass of per unit length was least. So, when designed the mooring monitoringplatform, the diameter of buoy and the distance of mooring cable were chosen as the maincontrol factors, if the velocity of fluid was known, we can chose the suitable diameter of buoy tomake the vortex frequency far from to the natural frequency, it could decrease the damage byresonance.
     (3) The stability of submerged mooring monitoring platform
     Aimed at the problem of stability by flow vertex-induced action for submerged mooring monitoring platform, the fluid-solid coupling nonlinear dynamic equation was set up by takinginto account the deformation of floating body on vibration. Done the nonlinear characteristicqualitative analysis by harmonic wave equilibrium method and researched the stability criteriaand influencing factors by Melnikov method. Studied the influence for stability of mooring cablesupport distance、fluid velocity and the diameter of buoy on the stipulation that the systememerged chaotic state, and calculated the critical value of support distance, the results shown thatthe stability first decreased slow and then increase rapid with the diameter of buoy, the stabilityof system would decrease along with the increase of support distance, after the support distanceexceed the critical value, a little increase would make the mooring platform’s vibration deviatethe vibration track、cause local instability and even damaged the structure.
     (4) The dynamical response and impact tension of mooring cable for submerged mooringmonitoring platform
     The dynamical model of submerged mooring monitoring platform on impacting and afterimpacting was formulated aimed at impact tension of mooring cable and the dynamical responseby the action of flow force, based on Hopkinson impact load theory, taken into account thecatenoid effect of mooring cable and revised the difference of tension and chordwise directionaction force by equivalent modulus of elasticity. And solved the equation by hydraulics theoryand structural mechanics theory of oceaneering, studied the action force characteristic ofmooring cable and motion characteristic of buoy. Calculated the equation according to a specificexample and hydrological environment, through the result the conclusion could be got that thebuoy would engender biggish heave and swaying displacement, but the swaying displacementgot stable quickly and the heaven displacement got vibration for the vortex-induced action by theflow, because the vortex-induced action and the impact action between buoy and the mooringcable, the tension changed greatly when the mooring cable was relaxation-tension.
引文
[1]人民出版社.中华人民共和国国民经济和社会发展第十二个五年规划纲要[M].北京:人民出版社,2011
    [2] Davis RE, Webb DC, Regier LA. The Autonomous Lagrangian Circulation Explorer[J].Journal of Atmospheric Oceanic Technology,1992(9):264-285
    [3] Griffiths G. Technology and Applications of Autonomous Underwater Vehicles [M].London: London Taylor&Francis Book Company,2003
    [4] Rudnick DL, Davis RE, Eriksen CC. Underwater Gliders for Ocean Research [J]. MarineTechnology Society Journal,2004,38(1):48-59
    [5] Webb DC, Simonetti PJ, Jones CP. An Underwater Glider Propelled by EnvironmentalEnergy[J].IEEE Journal of Oceanic Engineering,2001,26(4):447-452
    [6]王树新,王延辉,张大涛.温差能驱动的水下滑翔器设计与实验研究[J].海洋技术,2006,25(1):1-5
    [7]汪品先.关于建设海底观测平台的建议[J].学会,2005(10):52-53
    [8]许惠平,张艳伟,徐昌伟等.东海海底观测小衢山试验站[J].科学通报,2011(22):1839-1845
    [9]惠绍棠.水下自航式海洋观测平台技术发展研究[J].海洋技术,2001(20):11-17
    [10] Curtin T B, BelcherE O. Innovation in oceanographic instrumentation [J].Oceanography,2008,21(3):44-53
    [11] Fischer A S, Hall J, Harrison D E. Ocean Information for society: Sustaining the Benefits,Realizing the Potential[R]. Proceedings, OceanObs’09, Venice, Italy,21-25September2009,2010
    [12] Dickey T D, Itsweire E C, MolineM A. Introduction to the Limnology and OceanographySpecial Issue on Autonomous and Lagrangian Platforms and Sensors (ALPS)[J]. Limnolyand Oceanogrophy,2008,53(5, part2):2057-2061
    [13] Roemmich D, the Argo Steering Team. Argo-The challenge of continuing10yearsofprogress[J].Oceanography,2009,22(3):46-55
    [14] Roemmich D, Gilson J. The2004-2008mean and annual cycle of temperature, salinity, andsteric height in the global ocean from theArgo Program[J].Progress in Oceanography,2009,82:81-100
    [15] McFarlane JR. Tethered and Unthethered Vehicles: The Future is in the Past [R]. OCEANS15-18Sept.2008, Quebec City,2008.4
    [16] Liu F, CuiW C, LiX Y. China’s first deep manned submersible, JIAOLONG [J].ScienceChina (SeriesD),2010,53(10):1407-1410
    [17] McCave IN, ChandlerR C, SwiftSA. Contourites of the Nova Scotia continental rise andthe HEBBLE area[C]//StowD A V. Deep-Water Contourite Systems: Modern Drifts andAncient Series, Seismic and Sedimentary Characteristics. Geological Society, London,Memoirs,2002,22:21-38
    [18]侯圣智.温差能驱动自治式水下机器人动力装置工作机理的研究[D].天津:天津大学,2004
    [19]孔巧玲,马捷.温差能驱动的水下滑翔机工作过程数值模拟[J].武汉理工大学学报(交通科学与工程版),2011(4):223-227
    [20]张少永,商红梅,李文彬.北斗定位通信系统在自持式剖面循环探测漂流浮标的应用初探[J].海洋技术,2009(12):23-29
    [21] Luca Martinellia, Gianluca Barbella. A numerical procedure for simulating themulti-support seismic response of submerged floating tunnels anchored bycables[J],Engineering Structures2011,33:2850-2860
    [22] V.Sundar, R.Sundaravadivelu, M.Kalyani. Forces due to oblique waves on a submergedopen moored cylinder in deep waters [J]. Ocean Engineering,2005,32:651-666
    [23] GARZA-RIOS L O, BERNITSAS M M, NISHIMO-TO K, et al. Dynamics of spreadmooring systems with hybrid mooring lines [J]. Journal of Offshore Mechanics and ArcticEngineering,ASME Transactions,2000,122(4):274-281
    [24]Hiroshi Kunisu. Evaluation of wave force acting on Submerged Floating Tunnels [J].Procedia Engineering2010,4:99-105
    [25] Rolf Baarho lm, Fabio Gondim Palazzo. Hybrid Verification of a DICAS Moored FPSO
    [C]. Proc. of14the ISOPE Con. f,1, Toulon, France.2004,307-314
    [26] Christian A C, Shankar S B. Fiber Mooring for Ultra-Deepwater Applications[C].Proceedings of the Twelfth(2002) International Offshore and Polar Engineering Conference,Kitatyusgu, Japan,2002,26-31
    [27] T. H. J. Bunnik, G. d. Boer, J. L. Cozijn, J. v. d. Cammen, E. v. Haaften, E. t. Brake.Coupled mooring analysis in large scale model tests on a deep water calm buoy in mildwave conditions[C].Proceedings of the21st international Conference on Offshore Mechanicsand Arctic Engineering, Oslo, Norway,2002
    [28] Devlin P, Flory J, Homer S. Deep Star Taut Leg Mooring Polyester Test Program[C].OCEANS’99MTS/IEEE,1999,2:690-697
    [29]韩凌,杜勤.深水半潜式钻井平台锚泊系统技术概述[J].船海工程,2007,36,(3):82-86
    [30]于洋.链-索-链型悬链锚泊线静力问题的若干算式[J].中国海洋平台,2010,(02):6-10
    [31]彭程,孙春梅,祁丰雷,索双武.SPAR平台响应与系泊索关系研究[J].中国海洋平台,2009,(08):9-12.
    [32]徐万海,曾晓辉,吴应湘,刘家悦.深水张力腿平台与系泊系统的耦合动力响应[J].振动与冲击,2009,(02):145-149
    [33]袁梦,范菊,缪国平,朱仁传.系泊系统动力分析[J].水动力学研究与进展A辑,2010,(03):285-291
    [34]张威,杨建民,胡志强,肖龙飞.深水半潜式平台模型试验与数值分析[J].上海交通大学学报,2007,(09):1429-1434
    [35] J I Gobat, M A Grosenbaugh. Time domain numerical simulation of ocean cable structures[J]. Ocean Engineering,2006,(3):373-1400
    [36] D.L.GarreR. Coupled analysis of floating production systems [J].Ocean Engineering,2005,32:802-816
    [37] S.Tariverdilo, J.Mirzapour, M.Shahmardani, R.Shabani, C. Gheyretmand. Vibration ofsubmerged floating tunnels due to moving loads[J], Applied Mathematical Modeling2011,35:5413-5425
    [38] Mariagrazia DP, Anna F, Federico P. Numerical Models for the Dynamic Response ofSubmerged Floating Tunnels under Seismic Loading[J]. Earthquake Engineering andStructural Dynamics,2008,37(9):1203-1222
    [39] Martin Soreide. Experimental Investigation of Inline and Cross-flow VIV[C]. Proceedingsof The Thirteenth International Offshore and Polar Engineering Conference, Honolulu,awaii,USA,2005,05:25-30
    [40] M. Di Pilato, F. Perotti, P. Fogazzi.3D dynamic response of submerged floating tunnelsunder seismic and hydrodynamic excitation[J], Engineering Structures2008,30:268-281
    [41]刘海笑,黄泽伟.新型深海系泊系统及数值分析技术[J].海洋技术,2007,26,(2):6-10
    [42]由际昆,王言英.深水半潜平台绷紧索系泊系统设计研究[J].中国海洋平台,2009,(02):24-30
    [43]元志明,嵇春艳,陈明璐.半潜式平台完全时域耦合运动分析[J].海洋技术,2010,(04):81-87
    [44]童波,杨建民,李欣.深水半潜平台悬链线式系泊系统耦合动力分析[J].中国海洋平台,2008,(06):2-7
    [45]高喜峰,张则青,阴宾宾.深海SPAR平台系泊系统耦合动力分析[J].海洋技术,2010,(01):70-73
    [46] Xiang Yiqiang, Gan Gong, Xu Xing. Spatial Analysis of the Submerged Floating Tunnel inthe Jintang Strait [J]. Seventh International Symposium on Structural Engineering for YoungExperts,2002
    [47]干湧.水下悬浮隧道的空间分析与节段模型试验研究[D].浙江:浙江大学,博士学位论文,2003
    [48]麦继婷.波流作用下悬浮隧道的响应研究[D].成都:西南交通大学,博士学位论文,2005
    [49]陈健云,孙胜男,王变革.水下悬浮隧道锚索的动力分析[J].计算力学学报,2008,25(4):488-493
    [50]董满生,葛斐,惠磊.水中悬浮隧道研究进展[J].中国公路学报,2007,20(4):101-107
    [51]王超,李红云,刘正兴.流固耦合系统动力响应分析的精细时程积分法[J].上海交通大学学报,2002,36(3):399-402
    [52]人民出版社.国家“十二五”科学和技术发展规划[M].北京:人民出版社,2011
    [53]张少春.中国战略性新兴产业发展与财政政策[M].北京:经济科学出版社,2010.12
    [54]中国科学院先进制造领域战略研究组.中国至2050年先进制造技术发展路线图-创新2050:科学技术与中国的未来作[M].北京:科学出版社,2009.9.1
    [55]李玉成.波浪对海上建筑物的作用[M].北京:海洋出版社,1990
    [56]邱大洪.工程水文学(第四版)[M].北京:人民交通出版社,2011
    [57]詹义正等.以流速为参数的悬沙沿垂线分布公式及其应用[J],泥沙研究,1985(1):45-51
    [58]沈勇健.长江上游宽谷与峡谷河段的流速分布[J],长江科学院院报,1990(1):12-15
    [59]张维佳.水力学[M].北京:中国建筑工业出版社,2008.8
    [60]王兴奎.邵学军,李丹勋.河流动力学基础[M].北京:中国水利水电出版社,2002
    [61]姚仕明,卢金友,徐海涛.黄陵庙水文断面垂线流速分布特性研究,长江科学院院报,2005(8):8-11
    [62]唐友刚.海洋工程结构力学[M].天津:天津大学出版社,2008
    [63]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002
    [64]师汉民.机械振动系统:分析、测试、建模、对策(第二版)[M].武汉:华中科技大学出版社,2002
    [65]贾启芬,刘习军.机械与结构振动[M].天津:天津大学出版社,2007
    [66]萧允徽,张来仪.结构力学[M].北京:机械工业出版社,2011
    [67](英)福尔特森著,杨建民,肖龙飞,葛春花译.船舶与海洋工程环境载荷[M].上海:上海交通大学出版社,2008
    [68]麦继婷.波流作用下悬浮隧道的响应研究[D].成都:西南交通大学,博士学位论文,2005
    [69] B.E.Launder, D.B.Spalding, Lectures in Mathematical Models of Turbulence [J]. AcademicPress, London,1972
    [70]臧国才,李时常.箭弹空气动力学[M].北京:兵器工业出版社,1989:1-47
    [71]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998
    [72] H.K.Versteeg, W.Malalasekera. An Introduction to Computational Fluid Dynamics: TheFinite Volume Method [M]. Wiley, New York,1995
    [73] Choi K, Orchard D. Turbulence Management Using Rib lets for Heat and Momentumtransfer[J].Thermal Fluid Sci,1997,15:109-124
    [74] Benhalilou M, Kasagi N. Numerical Prediction of Heat and Momentum Transfer overMicro-grooved Surface with a nonlinear k-e Model [J]. Heat FluidFlow,1999(42):2525-2541
    [75] Stalio E, Nobile E. Direct Numerical Simulation of Heat Transfer over Riblets [J]. HeatFluid Flow,2003(24):356-371
    [76] Goldstein D, Handler R, Sirovich L. Direct Numerical Simulation of Turbulent flow over aModeled Riblet Covered Surface [J]. Fluid Mech,1995(302):333-376
    [77] Goldstein D, Tuan T. Secondary Flow Induced by Riblets [J]. FluidMech.,1998(363):115-151
    [78]王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析[J].水动力学研究与进展,2005,20(2):146-151
    [79]李寿英,顾明.斜直圆柱绕流CFD模拟[J].空气动力学学报,2005,23(2):222-227
    [80]邓绍云,邱清华.波流共同作用下大直径圆柱三维绕流数值模拟[J].水运工程,2007,(5):5-8
    [81]潘小强,沈庆.嘈渡门桥航行水阻力和绕流场的数值预报[J].解放军理工大学学报,2005,6(4):363-369
    [82]胡影影,朱克勤.二维方柱绕流的人工侧边界数值研究[J].清华大学学报,2000,40(4):43-46
    [83]林小平.潜艇水动力计算及型线生成研究[D].武汉:武汉理工大学,2005
    [84]王先军.浅水域三体船阻力计算[D].哈尔滨:哈尔滨工程大学,2006
    [85]孙立宪.三体船和五体船的阻力与流场计算及比较[D].哈尔滨:哈尔滨工程大学,2006
    [86]傅德薰,马延文.平面混合流拟序结构的直接数值模拟[J].中国科学(A辑),1996,26(7):657-664
    [87]周晓泉.复杂边界条件下的三维紊流数值模拟研究[D].成都:四川大学,博士学位论,2003
    [88]蔡洪滨.圆柱体的涡激升力研究及其动力响应分析[D].青岛:中国海洋大学,硕士学位论文,2006
    [89]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2009
    [90]王东耀,凌国灿.在平台振荡条件下TLP张力腿的涡激非线性响应[J].海洋学报,1998,20(3):119-128
    [91]闻邦椿.工程非线性振动[M].北京:科学出版社,2007
    [92]尹逊民.传动齿轮箱体的振动模态分析及故障诊断[D].哈尔滨:哈尔滨工业大学,1999
    [93]戴光昊,尹逊民.传动装置模态分析及模态修改技术研究报告[R].哈尔滨:中国船舶重工集团第七〇三研究所,2008
    [94]鲁丽,杨翊仁,金建明.反应堆吊篮在空气和静水中的振动特性分析[J].西南交通大学学报,2004,39(5):82~86
    [95]杨晓东,金基铎.输流管道流-固耦合振动的固有频率分析[J].振动与冲击,2008(3):67-73
    [96]吴克启,舒朝晖.高等流体力学[M].北京:中国电力出版社,2009
    [97] Semiu A G,Nicholas A C,Tom P H.Control of three.dimensional expirations axialcompressors by tailored boundary layer suction[J].ASME Journal of Turbo machinery,2008,130(1):011004-011004-8
    [98] Everstine G C, Henderson F M. Coupled finite element boundary element approach forfluid-structure interaction[J].JAcoust.Soc.Am,1990,87(5):1938-1947
    [99]刘晓欧,尹韶平,严光洪.基于MSC Nastran的水下环肋圆柱壳体振动模态计算方法[J].计算机辅助工程,2006(15):124-127
    [100]王惠民.流体力学基础(第二版)[M].北京:清华大学出版社,2005
    [101] He Kongde, Li Yourong, Fang Zifan, Yang Weihua. Numerical simulation of fluid-solidcoupling properties for underwater buoy by taking into account virtual mass [J]. TheInternational Conference on Mechanic Automation and Control Engineering,2011:472-475
    [102]马野,袁志丹,曹金凤.ADINA有限元经典实例分析[M].北京:机械工业出版社,2012
    [103]冯卫民,宋立,肖光宇.基于ADINA的压力管道流固耦合分析.武汉大学学报(工学版),2009(42):264-267
    [104]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007
    [105]高普云.非线性动力学[M].长沙:国防科技大学出版社,2005
    [106]陈关荣,汪小帆.动力系统的混沌化-理论、方法与应用[M].上海:上海交通大学出版社,2006
    [107]刘曾荣.混沌研究中的解析方法[M].上海:上海大学出版社,2000
    [108]何孔德,李友荣,方子帆,杨蔚华.水下系泊监测平台非线性振动稳定性分析[J].海洋工程,2012,30(3):119-124
    [109]徐跃良.数值分析[M].成都:西南交通大学出版社,2005
    [110] Falzarano J, Esparza I. A combined steady-state and transient approach to study largeamplitude ship rolling motion and capsizing [J]. Journal of Ship Research.1995(39):58-67
    [111]余同希,邱信明.冲击动力学[M].清华大学出版社,2011
    [112] Yungang Liu,Lars Bergdahl. Extreme mooring cable tensions due to wave-frequencyexcitations [J]. Applied Ocean Research1998,20(4):237-249
    [113] J.A.P. Aranha,M.O. Pinto. Dynamic tension in risers and mooring lines:an algebraicapproximation for harmonic excitation[J]. Applied Ocean Research,2001,23(2):63-81
    [114] Aranha JAP,Pesce CP,Martins CA,Andrade BLR.Mechanics of submerged cables:asymptotic solution for the dynamic tension[J].Polar Engineering,ISOPE-93,Singapore,1993
    [115] Jason I Gobat, Mark A, Gro Senbaugh.A simple model for heave-induced dynamictension in catenary moorings[J].Applied Ocean Research,2001(23):159-174
    [116]张智.Spar平台系泊系统计算及波浪载荷研究[D].天津:天津大学,硕士学位论文,2005
    [117]范菊,陈小红,黄祥鹿.三阶摄动对锚泊线动力分析的影响[J].船舶力学,2000(4):1-9
    [118] S.Ahmad,N.Oslam,A.Ali.Wind-induced response of a tension leg platform.Journalof Wind Engineering and Industrial Aerodynamics[J].1997(72):225-240
    [119]廖国平.挠性部件力学导论[M].上海:上海交通大学出版社,1996
    [120]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [121] J.M. Niedzwecki, S.K.Thampi. Snap loading of marine cable systems[J].Applied OceanResearch,1991(13):2-11
    [122] A.A. Tjavaras, Q.Zhu, Y. Liu, M.S. Triantafyllou, D.K.P. Yue. The mechanics ofhighly-extensible cables [J]. journal of sound and vibration,1998,(21):709-737
    [123] Goeller J.E, Laura P.A. Analytical and experimental study of the dynamic response ofsegmented cable systems [J]. Journal of sound and vibration,1971(18):311-329
    [124] R.H.Plant, J.C.Archilla, T.W.Mays. Snap load in mooring lines during largethree-dimensional motions of a cylinder[J], Nonlinear Dynamics,2000(23):271-284
    [125] John M. Niedzwecki, Sreekumar K. Thampi. Snap loading of marine cable systems[J],Applied Ocean Research,1991(13):2-11
    [126] Dracos Vassalos, Shan Huang, Experimental investigation of snap loading of marinecables[J], Proceedings of the14th International Offshore and Polar Engineering Conference,Toulon, France,2004
    [127] Juan Carlos Archilla. Three-dimensional nonlinear dynamics of a moored cylinder to beused as a breakwater[J], Master dissertation, Virginia Polytechnic Institute and StateUniversity,1999:58-71
    [128]陈常松.超大跨度斜拉桥施工全过程几何非线性精细分析理论及应用研究[D].长沙:中南大学,博士学位论文,2007
    [129]郭棋武.大跨斜拉桥的非线性及可靠性分析[D].长沙:湖南大学,博士学位论,文2007
    [130]邓静.大跨度混凝土斜拉桥静力稳定性分析[D].成都:西南交通大学,硕士学位论文2007
    [131]张晓壳,陈宁,王应良.斜拉桥的数学建模[J].国外桥梁,1998(2):52-56
    [132]尹超.大跨度斜拉桥几何非线性分析[D].成都:西南交通大学,博士学位论文,2005
    [133]施溪溪,李鸿晶.斜拉桥拉索单元模型及其计算模拟[J].钢结构,2005,20(5):53-56
    [134]凌邦国.碰撞时间的精确测定及其应用[J].南通工学院学报,2002,1(3):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700