用户名: 密码: 验证码:
山西辛庄金矿床地质地球化学特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山西辛庄金矿床位于华北克拉通中间带北部,山西陆台五台隆起西北侧与燕山沉降带西南缘两大构造单元相互嵌接的中生代构造岩浆活动带上,是中生代构造岩浆岩活化地区。本文系统总结了辛庄金矿床的区域成矿背景、矿床地质特征、矿床地球化学特征以及成矿流体特征,在此基础上,以金矿床成因理论为依据,开展了辛庄金矿床成矿期次、成矿地质条件、控矿因素、矿化标志、成矿规律以及矿床成因等方面的研究,取得的成果和创新点主要有以下几点:
     (1)依据野外宏观地质特征和显微镜下矿物微观特征,分析了矿物共生组合规律,划分了辛庄金矿床的成矿期次。
     (2)首次通过系统研究成矿岩体的地质地球化学特征,探讨了本区岩浆来源、成岩环境以及成岩机制,得出岩石属典型S型花岗岩,具明显富硅富钾富碱的特征;岩浆起源于地壳物质的重熔,形成环境为造山带环境,在岩体形成过程中岩浆演化经历了部分熔融和较强的分离结晶作用。
     (3)运用电子探针测试手段,对金属硫化物矿物标型特征进行了研究,认为本区金属硫化物为岩浆热液成因。
     (4)通过同位素以及流体包裹体特征分析,探讨了成矿物质及成矿流体来源,指出成矿物质主要来源于燕山期岩浆:成矿流体主要为岩浆水,后期有大气降水的加入,为中高温、中低盐度、中等密度流体。
     (5)在综合分析矿床地质特征及矿床地球化学特征的基础上,分析其矿床成因属与燕山期岩浆侵入活动有关的中温热液石英脉型金矿床,并建立了成矿模式。
     (6)系统分析了地层、构造和岩浆岩与成矿的关系,总结了关键控矿因素,总结了矿化富集标志和成矿定位规律。
Xinzhuang gold deposit is located in the northern part of the North China Craton intermediate belt, and in a Mesozoic tectonic-magma activation area which is embedded by the two tectonic units-the northwestern Wutai uplifts of Shanxi platform and the southwestern Yanshanian subsidence belt. The regional metallogenic background, geological characteristics of ore deposits, geochemical characteristics and ore-forming fluid features of the Xinzhuang Gold Deposit were systematically summarized. Based on these and according to for the theory of gold deposit genesis, the minerlization stages, ore-forming geological conditions, ore-controlling factors, mineralization mark, metallogenic controls and metallogeny of Xinzhuang Gold Deposit were researched. The main achievements are as follows:
     (1) Mineral assemblage regularity was analyzed based on the microscopic characteristics of the minerals under the microscope and field macro-geological characteristics. And mineralization stages were divided of Xinzhuang gold deposit.
     (2) The geological and geochemical characteristics were studied for the first time, based on the geological characteristics of ore-forming rock body, petrological characteristics and geochemical characteristics. The results are show that the rock is typical S type granite with obvious silica-rich potassium rich alkali-rich characteristics, magma originated from the remelting crustal material and the environment is orogenic environment, magma evolution experienced partial melting and fractional crystallization during the rock formation process.
     (3) The causes of metal sulfides were studied for the first time based on the metal sulfides chemical composition by EPMA. The results are showed that metal sulfides are hydrothermal origin.
     (4) The ore-forming material source and ore-forming fluid source were studied for the first time based on isotope characteristics and fluid inclusion characteristics. The results are showed that ore-forming material originated from Yanshanian magmatic activity, ore-forming fluid is mainly magmatic water and later joined the meteoric water, with medium-high temperature, medium-low salinity and medium density.
     (5) Ore genesis was analyzed on the basis of geological characteristics and geochemical characteristics of the ore deposi. The ore genesis of Xinzhuang Gold Deposit is Mesothermal quartz vein type, related to the Yanshanian mediosilicicacid magma intrusion activities. The metallogenic model was established for the first time of Xinzhuang gold deposit, based on summarizing ore-forming geological elements.
     (6) The relationship with mineralization between Stratigraphy, structure and magmatic rock were analyzed, and the ore-forming geological conditions were summarized. The ore-forming location rule and mineralization enrichment markers were summarized.
引文
[1]An F and Zhu Y F. Significance of native arsenic in the Baogutu gold deposit, Western Junggar, Xinjiang, NW China [J]. Chinese Science Bulletin,2009, 54(10):1744-1749.
    [2]Arehart G B, Eldridge C S, Chryssoulis S L. Lion microprobe determination of sulfur isotope variation in sulfides from Post/Betze sediment-hosted disseminated gold deposit, Nevada, USA [J]. Geochimica et Cosmochimica Acta,1993,57: 1505-1519.
    [3]Bache J J. World gold deposit:A geological classification [M]. London:North Oxford Academic,1987:1-178.
    [4]Bagby W C, Berger B R. Geological characteristics of sediment-hosted, disseminated precious mental deposits in the United States [J].Review Economic Geology,1985,2:169-202.
    [5]Bohlke J K. Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks:intensive variables, mass transfers, and Au mineralization at Alleghany, California [J]. Economic Geology,1989,84: 291-327.
    [6]Boyle R W. The geochemistry of gold and its deposit [M]. Ottawa:Canada Geological Survey Bulletin,1979:1-584.
    [7]Boyle R W.金的地球化学及金矿床[M].北京:地质出版社,1984,1-785.
    [8]Brown P E. Flincor:A microcomputer program for the reduction and investigation of fluid inclusion data[J]. American Mineralogist,1989,74: 1390-1393.
    [9]Chi G, Liu Y and Dube B. Relationship between CO2-dominated fluids, hydrothermal alterations, and gold mineralization in the Red Lake greenstone belt, Canada [J]. Applied Geochemistry,2009,24:504-516.
    [10]Ciobanu C L, Cook N J, Pring A, Brugger J, Danyush evsky L V and Shimizu M. 'Invisible gold'in bismuth chalcogenides [J].Geochimica et Cosmichimica Acta, 2009,73:1970-1999.
    [11]Clayton R N, O'Neil J R. Mayeda T K. Oxygen isotope exchange between quartz and water [J]. Journal of Geophysical Research,1972,77:3057-3067.
    [12]Cline J S, Hofstra A H, Muntean J L. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models [J]. Economic Geology,2005, 100:451-484.
    [13]Collins W J et al. Nature and origin of A type granites with paticular reference to Southeastern Australia [J]. Contrib. Miner. Petro,1982,80,189-200.
    [14]Cook N L and Ciobanu C L. Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts., Romania:Paragenesis and genetic significance [J]. Mineralogical Magazine,2004,68:301-321.
    [15]DU LiLin, YANG ChongHui, GUO JingHui, et al. The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton: SHRIMP zircon U-Pb dating of basaltic andesite [J]. Chinese Science Bulletin, 2010,55(17):1782-1789.
    [16]Eisenlohr B N, Groves D I, Partington G A. Crustal scale shear zone and their significance to archean gold mineralization in Western Australia [J]. Mineralium Deposita,1989,24:1-8.
    [17]Emsbo P, Hofstra A H. Origin and significance of postore dissolution collapse breccias cemented with calcite and barite at the Meikle Gold Deposit, Northern Carlin trend, Nevada [J]. Economic Geology,2003,98:1243-1252.
    [18]Emsbo P, Hutchinson R W, Hofstra A H. Syngenetic Au on the Carlin trend: Implications for Carlin-type deposits [J].Geology,1999,27:59-62.
    [19]Fayyek M and Kyser T K. Characteristic of auriferous and barren fluids associated with the Proterozoic Contact Lake Lode gold deposit, Saskatchewan, Canada [J]. Economic Geology,1995,90:385-406.
    [20]Fournier Robert O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal enviroment [J]. Econ. Geol., 1999,94:1193-1211.
    [21]Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time:a global synthesis [J].Ore Geology Reviews,2001,18:1-75.
    [22]Graham C M and Harmon R S. Stable isotope evidence on the nature of crust-manlte interactions. In:Hawkesworth C J and Norry M J (eds), Continental basalts and mantle xenoliths. Nantwich:Shva,1983,20-45.
    [23]Groves D I, Goldfarb R J, Gebre M, et al. Orogenic gold deposits:proposed classification in the context of their crustal distribution and relationship to the other gold desposit types [J]. Ore Geology Reviews,1998,13:7-27.
    [24]Groves D I. The crustal continuum model for late Archaean lode-gold deposits of the Yilgarn Block, Western Australia [J]. Minerralium Deposita,1993,28: 366-377.
    [25]Groves D I. The crustal continuum model for late-Archean lode gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita,1993,28:366-374.
    [26]Groves D J, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types [J]. Ore Geology Reviews,1998,13:7-27.
    [27]Hall.D.L.et al. Freezing point depression of Nacl-KCl-H2O solution. Econ. Geology,1988,83:197-202.
    [28]Hannington M D, Herzig P M, Scott S D. Auriferous hydro thermal precipitates on the modern seafloor [A]. Foster R F. Gold metallogeny and exploration [C]. London:Blackie and Son Ltd,1991.249-281.
    [29]Hardie B S. Carlin gold mine, Lynn district, Nevada [C]//Anon. AIME Pacific Southwest Mineral Industry Conference, Sparks, Nev.1965. Vol.13. Papers: Nevada Bureau of Mines Report,1966:73-83.
    [30]Hildreth Jr S C and Hannah J L. Fluid inclusion and sulfur isotope studies of the tintic mining district, Utah:Implications for targeting fluid sources [J]. Economic Geology,1996,91:1270-1281.
    [31]Hitzman MW, Oreskes N, Einaudi MT. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits [J]. Precambrian Research,1992,58:241.
    [32]Hoefs J. Stable isotope geochemistry [M].3rd edition, Berlin:Springer-Verlag, 1987,1-256.
    [33]Hrdy F. and Kyser T K. Origin, timing, and fluid characteristics of an auriferous event:the Proterozoic Jasper Lode gold deposit, Saskatchewan, Canada [J]. Economic Geology,1995,90:1918-1933.
    [34]Izawa Eiji, Aoki Masahiro. Geothermal activity and epithermal gold mineralization in Japan [J]. Episodes,1991,14(3):269-273.
    [35]Jiang N, Xu J, Song M. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shanxi and Henan Provinces, People's Republic of China [J]. Mineral Deposits,1999,34:150-162.
    [36]Kerrich R and Fyfe W S. The gold-carbonate association:Source of CO2, and CO2 fixation reactions in Archean lode deposits [J].Chemical Geology,1981,33: 265-294.
    [37]Kerrich Robert, Goldfarb Richard, Groves David, et al. The characteristics, origins and geodynamic settings of supergiant gold metallogenic provinces [J]. Science in China (Series D),2000,43 (Supplement):1-68.
    [38]Kontak D J and Kerrich R. An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrane, Nova Scotia:implication for source reservoirs [J]. Economic Geology,1997,92:161-180.
    [39]Kuehn C A, Rose A W. Carlin gold deposits, Nevada:origin in a deep zone of mixing between normally pressured and over pressured fluids [J]. Economic Geology,1995,90:17-36.
    [40]Laznicka Peter. Quantitative relationships among giant deposits of metals [J]. Econ. Geol.,1999,94:455-473.
    [41]Ledair A D. Crustal-scale auriferous shear zones in the Central Superior Province, Canada [J]. Geology,1993,21:1298-1307.
    [42]Matthai S K, Henley R W and Heinrich C A. Gold precipitation by fluid mixing in bedding-parallel fractures near carbonaceous slates at the Cosmopolitan Howley gold deposit, northern Australia [J]. Economic Geology,1995,90: 2123-2142.
    [43]Mountain B W and Willian-Jones A E. Mass transfer and the path of metasomatic reactions in mesothermal gold deposits:an example from Flambeau Lake, Ontario [J]. Economic Geology,1996,91(2):302-321
    [44]Neall F B and Phillips G N. Fluid-wall rock interaction in an Archean hydrothermal gold deposit:a thermodynamic model for the Hunt mine, Kambalda [J]. Economic Geology,1987,82:1679-1694.
    [45]Nessbitt B E. Gold deposit continuum:A genetic model for lode Au mineralization in the continental crust [J]. Geology,1998,16:1044-1048.
    [46]Oberthur T and Weiser T. Gold-bismuth-telluride-sulphide assemblages at the Viceroy mine, Harare-Bindura-Shamva greenstone belt, Zimbabwe [J]. Mineralogical Magazine,2008,72:953-970.
    [47]Onuma N, Clayton R N and Mayeda T K. Oxygen isotope cosmothermometer [J]. Geochim. Cosmochim. Acta,1972,36,169-188.
    [48]Peters S G, Huang J Z, Li Z P. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area [J]. Ore Geology Reviews,2006,31(1):1-35.
    [49]Phillips G N and E vans K A. Role of CO2 in the formation of gold deposits [J]. Nature,2004,429:860-863.
    [50]Pirajno F. Ore deposits and Mantle plumes [M]. Kluwer Academic Publishers, 2000:1-556.
    [51]Pope J G, Brown K L and McConchie D M. Gold concentrations in springs at Waiotapu, New Zealand:Implications for precious metal deposition in geothermal systems [J]. Econ. Geol.,2005,100:677-687.
    [52]Poutiainen M and Gronholm P. Hydrothermal fluid evolution of the Paleoproterozoic Kutemajarvi gold telluride deposit, southwest Finland [J]. Economic Geology,1996,91:1335-1353.
    [53]Radtke A S, Rye R O, Dickson F W. Geology and stable isotope studies of the Carlin gold deposit, Nevada [J]. Econ. Geol.,1980,75:644-672.
    [54]Radtke A S, Scheiner B J. Studies of hydrothermal gold deposition-Carlin gold deposit, Nevada:The role of carbonaceous materials in gold deposition [J]. Economic Geology,1970,65:87-102.
    [55]Reimer T O. Alternative model for the derivation of gold in the Witwatersrand Supergroup [J]. Journal of the Geological Society,1984,141:263-271.
    [56]Renders P J and Seward T M. The adsorption of thio gold (Ⅰ) complexes by amorphous As2S3 and Sb2S3 at 25 and 90℃[J]. Geochimica et Cosmochimica Acta,1989,53:255-267.
    [57]Richard Edwards, Keith Atkinson. Ore deposits geology. Cambridge:Great Britain at the University Press,1986.1-138.
    [58]Richard HSillitoe. Gold metallogeny of chilean introduction [J]. Econ Geol,1991, 86(6):1187-1 205.
    [59]Ritcey D H, Wilson M R and Dunning G R. Gold mineralization in the Paleozoic Appalachian orogen:Constraints from geologic, U/Pb, and stable isotope studies of the Hammer Down prospect, Newfoundland [J]. Economic Geology,1995,90: 1955-1965.
    [60]Robert O Rye.碳酸盐岩为主岩的浸染型金矿床形成模式[J].张兴余,译.国外铀金地质,1988(2):12-18.
    [61]Roberts R G. Ore deposit model 11:Archean lode gold deposits[J].Geoscience Canada,1987,14:37-52.
    [62]Romberger S B. Ore deposits 9, disseminated gold deposits [J].Geoscience Canada,1986,13(1):27-32.
    [63]RyzhenkoBN and BryzgalinOV. Reference neutrality points for the redox and acid-base properties ofaqueous solutions at the parameters for hydrothermal ore formation. Geokhimiya,1984(7):1056-106.
    [64]S.A.Wilde,赵国春,王凯怡,等.五台山滹沱群SHRIMP锆石U-Pb年龄:华北克拉通早元古代拼合新证据[J].科学通报,2003,48(20):2180-2186.
    [65]Sheppard S M F. The Cornubian Batholith, SW England:D/H and 180/160 studies of kaolinite and other alteration minerals [J]. J. Geol. Soc. Lond.,1977, 133,573-591.
    [66]Sheppard S M F. Characterization and isotopic variations in natural waters[J]. Rev in Mineral[J],1986,165-183.
    [67]Simon G, Huang H, Penner-Hahn J E, Kesler S E and Kao L S. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite [J]. American Mineralogist, 1999b,84:1071-1079.
    [68]Simon G, Kesler S E and Chryssoulis S. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada:Implications for deposition of gold in carlin-type deposits [J]. Econ.Geol,1999a,94:405-422.
    [69]Springer J S. Carbon in Archean rocks of the Abitibi Belt (Ontario-Quebec) and its relation to gold distribution [J]. Canadian Journal of Earth Science,1985,22: 1945-1951.
    [70]Stuwe Kurt. Tectonic constraints on the timing relationships of metamorphism, fluid production and gold-bearing quartz vein emplacement [J]. Ore Geology Reviews,1998,13:219-228.
    [71]Sun M, Armstrong R L, St J Lambert R et al. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of early Precambrian Rocks, Wutaishan and Taihangshan areas[J]. China Precambrian Res,1992,56:1-31.
    [72]Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit [J]. Econ. Geol.,1974,69,843-883.
    [73]Tooth B, Brugger J, Ciobanu C and Liu W H. Modeling of gold scavenging by bismuth melt s coexist ing w ith hydrothermal fluids [J]. Geology,2008,36(10): 815-818.
    [74]Ulrich T, Gunther D, Heinrich C A. Gold concentrations of magmatic brines and themetal budget of porphyry copper deposits [J]. Nature,1999,399:676-679.
    [75]Vityk M O, Krouse H R and Skakun L Z. Fluid evolution and mineral formation in the Beregovo Gold-Base metal deposit, Transcarpathia, Ukraine [J]. Economic Geology,1994,89:547-565.
    [76]Wang yitian, Hu Zheng guo. Relationship between gold mineralization and strike-slip faulting in Wulonggou mining district, eastern Kunlun Mountains [J]. Scientia GeologicaSinica,2000,9:19-28.
    [77]Wilde S A,赵国春,王凯怡,等.五台山滹沱群SHRIMP锆石U-Pb年龄:华北克拉通早元古代拼合新证据[J].科学通报,2003,48:2180-2186.
    [78]Yin A, Nie S A. Phanerozoic palinspastic reconstruction of China and its neighboring regions [C]//Yin A, Harrison T M. The tectonic evolution of Asia. Cambridge:Cambridge University Press,1996:442-485.
    [79]You C-F, BickleM. Evolution of an active sea-floormassive sulfide deposit [J]. Nature,1998,393:668-671.
    [80]Zhang J, Zhao G C, Li S Z, et al. U-Pb Zircon Dating of the Granitic Conglomerates of the Hutuo Group:Affinities to the Wutai Granitoids and Significance to the Tectonic Evolution of the Trans-North China Orogen [J]. Acta Geologica Sinica,2006,80 (6):886-896.
    [81]Zhou T H, Dobos S K and Dong G Y. Origin and fluid chemistry of unconformity-related gold at the Black Ridge gold deposit, Clermont, Queensland [J]. Economic Geology,1994,89:1469-1491.
    [82]白瑾,王汝铮,郭进京.五台山早前寒武纪重大地质事件及其年代[M].北京:地质出版社,1992,1-65.
    [83]白瑾主编.五台山早前寒武纪地质[M].天津:天津科技出版社,1986,361-372.
    [84]白瑾主编.五台山早前寒武纪地质[M].天津:天津科学技术出版社,1986,1-475.
    [85]白瑾,王汝铮,郭进京.五台山早前寒武纪重大地质事件及其年代[M].北京:地质出版社,1992,1-65.
    [86]薄科武,李文辉,赵军,刘夙明.新疆卡拉麦里山变质碎屑岩型金矿地质特征及成矿条件分析[J].新疆地质,2005,23(3):220-224.
    [87]边千韬.地球壳幔结构构造与老王寨超大型金矿形成关系探索[J].中国科学(D辑),1998,28(4):303-309.
    [88]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987:874.
    [89]陈纪明.中国金矿床类型的划分[J].黄金地质科技,1990,(3):1-8
    [90]陈纪明.中国金矿床类型的划分[J].黄金地质科技,1990,第3期:1-8.
    [91]陈景河.紫金山铜-金-矿床成矿模式[J].黄金,1999,20(7):6-11.
    [92]陈平,陈俊明.山西主要成矿区带成矿系列及成矿模式[M].太原:山西科学 技术出版社,1996,1-259.
    [93]陈平,苗培森,李春电.山西五台山太古宙绿岩带中找金矿的新进展[J].中国地质,1996,(12):30-31.
    [94]陈衍景,陈华勇,刘玉琳,等.碰撞造山过程内生矿床成矿作用的研究历史和进展[J].科学通报,1999,44(16):1681-1689.
    [95]陈衍景,富士谷,卢冰,等.金矿成因类型和系列的划分[J].地球科学进展,1992,7(3):73-78.
    [96]陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992:1-234.
    [97]陈衍景.陆内碰撞造山体制的流体作用模式及成矿的关系——理论推导和东秦岭金矿床的研究结果[J].地学前缘,1996,3(3-4):282-289.
    [98]陈衍景.准噶尔造山带碰撞造山过程的成矿作用和金等矿床分布规律[J].地质学报,1996,70(3):253-261.
    [99]陈毓川,李兆鼐,毋瑞身,等.中国金矿床及其成矿规律[M].北京:地质出版社,2001,1-465.
    [100]程斌,张复新,贺国芬.甘肃文县地区阳山超大微细浸染型金矿床的成因与类型[J].地质通报,2006,25(11):1354-1360.
    [101]邓军,孙忠实,杨立强,等.成矿流体运动系统与金质来源和富集机制讨论[J].地质科技情报,2000,19(1):41-45.
    [102]丁枫,唐菊兴,崔小亮.硫、铅同位素及微量元素对西藏雄村铜金矿成矿物质来源的指示[J].矿床地质,2006,25(增):399-402.
    [103]丁振举,姚书振,方金云.地幔流体及其成矿作用[J].地质科技情报,1997,16(1):72-76.
    [104]窦仕臻,温纪如,康霞.关于幔源CO2对金富集成矿作用问题的探讨[J].甘肃科技,2010,26(16):71-72.
    [105]杜利林,杨崇辉,郭敬辉,等.五台地区滹沱群底界时代:玄武安山岩SHRIMP锆石U-Pb定年[J].科学通报,2010,55(3):246-254.
    [106]冯守忠.吉林省五凤-五星山金矿床地质特征与成矿条件[J].贵金属地质,1994,3(4):241-247.
    [107]冯学仕.贵州“红土型”矿成因类型新说[J].黄金地质,2000,6(2):31-36.
    [108]傅晓明,戴塔根,息朝庄,等.青海双朋金铜矿床的成矿流体特征及流体来源[J].地质找矿论丛,2010,25(1):24-29.
    [109]葛良胜,邓军,杨立强,等.中国金矿床:基于成矿时空的分类探讨[J].地质找矿论丛,2009,24(2):91-100.
    [110]郭晓东,金宝义,徐燕夫,陈孝强,李强之.新疆东部马庄山金矿地质特 征及矿床成因[J].黄金地质,2002,8(1):21-25.
    [111]何知礼,杜加锋.流体包裹体研究的某些进展与发展趋势。地学前缘,1996,3(4):306-312.
    [112]赫英,毛景文,王瑞廷,等.幔源岩浆去气形成富二氧化碳含金流体——可能性与现实性[J].地学前缘,2001,8(4):265-270.
    [113]赫英,廖永胜.胜利油田富C02含金流体及有关成因问题[J].地质论评,2001,47(5):500-507.
    [114]侯满柱.五台地体的成矿特征[J].太原理工大学学报,2005,36(增):15-17.
    [115]侯增谦,钟大赉,邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质,2004,31:1-16.
    [116]胡斌,刘娅莎,蒋振华.与韧性剪切带有关的金矿床成矿物质来源探讨[J].西部探矿工程,2011,7:103-106.
    [117]胡伦积,姚风亮.金矿床的成因分类[J].中国地质,1983,(1):13-15.
    [118]胡荣国.青海省果洛龙洼金矿地质地球化学特征及矿床成因研究[D].长沙:中南大学硕士学位论文,2008,1-85.
    [119]胡受奚,林潜龙,陈泽铭.华北与华南古板块拼合带地质与成矿[M].南京:南京大学出版社,1988:1-558.
    [120]胡受奚,林潜龙·华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社,1988,1-558
    [121]胡文宣,孙睿,张文兰,等.金矿成矿流体特点及深-浅部流体相互作用成矿机制[J].地学前缘,2001,8(4):281-288.
    [122]霍亮,李碧乐,黄勇等.内蒙古赤峰陈家杖子金矿床矿物学特征及成因[J].黄金地质,2007,10(28):4-10.
    [123]霍亮,李碧乐,黄勇等.内蒙古赤峰陈家杖子金矿床矿物学特征及成因[J].黄金地质,2007,10(28):4-10.
    [124]贾永山,戈全厚.山西省义兴寨金矿床地质特征及成因探讨[J].黄金,1994,15(10):13-16.
    [125]姜峰贤.五台山绿岩带主要金矿类型及构造控矿规律探讨[J].矿床地质,2010,29(3):529-540.
    [126]姜峰贤.山西五台县东腰庄金矿成矿地质特征及矿床成因[J].地质与勘探,2006,42(3):24-29.
    [127]景淑慧.繁峙义兴寨金矿的成矿条件[J].山西地质,1992,7(1):51-64.
    [128]景淑慧.山西省繁峙县义兴寨金矿成矿条件及成矿物质来源讨论[A].中国地质科学院沈阳地质矿产研究所文集(13),1986,126-134.
    [129]景淑慧.山西省繁峙县义兴寨金矿床成矿地质条件及成矿规律的研究[M].太原:山西省地质矿产局,1985:1-15.
    [130]赖晓英,何明勤.贵州省锦屏县八克金矿流体包裹体地球化学研究[J].贵州大学学报(自然科学版),2010,02:33-36.
    [131]赖晓英,何明勤.贵州省锦屏县八克金矿流体包裹体地球化学研究[J].贵州大学学报(自然科学版),2010,27(2):33-36.
    [132]李成禄.山西省繁峙县义兴寨石英脉型金矿成因矿物学研究与深部预测[D].中国地质大学(北京)硕士学位论文,2009:1-91.
    [133]李成禄,李胜荣,罗军燕,等.山西繁峙义兴寨金矿床金矿物特征研究[J].中国地质,2011,38(1):119-128.
    [134]李成禄,李胜荣,罗军燕,等.山西繁峙义兴寨金矿黄铁矿热电系数与导型特征及其地质意义[J].现代地质,2009,23(6):1056-1063.
    [135]李红阳,侯增谦.初论幔柱构造成矿体系[J].矿床地质,1998,17(3):247-255.
    [136]李红阳,闫升好,王金锁,等.试论冀西北多金属矿产富集区地幔热柱及其成矿制约[J].地球科学,1996,17(4):401-412.
    [137]李江海,侯贵廷,钱祥麟,等.恒山中元古代早期基性岩墙群的单颗粒锆石U-Pb年龄及其克拉通构造演化意义[J].地址评论,2001,47(3):234-238.
    [138]李上森,于华.矿床地质研究的一些进展与问题[J].前寒武纪研究进展,1998,21(2):1-12.
    [139]李舒,李景春,邵军.中国金矿床工业类型及其特征[M].北京:地震出版社,1999,1-243.
    [140]李双宝,李俊健.山西恒山义兴寨脉金矿田成矿地球化学特征[J].前寒武纪研究进展,1997,20(2):1-21.
    [141]李维杰.五台山-恒山一带金银矿床铅同位素地球化学特征[J].太原理工大学学报,2004,35(6):707-709.
    [142]林丽.拉尔玛金矿床中的生物作用[M].成都:成都科技大学出版社,1994:1-3.
    [143]刘斌.简单体系水溶液包裹体pH和Eh的计算[J].岩石学报,2011,27(5):1533-1542.
    [144]刘东升,谭运金,王建业,等.中国卡林型(微细浸染型)金矿[M].南京:南京大学出版社,1994:1-36.
    [145]刘敦一,R.W.佩吉,W.康普斯顿,等.太行山-五台山区前寒武纪变质岩系同位素地质年代学研究[J].中国地质科学院院报,1984,8:57-82.
    [146]刘继顺.韧性剪切带中金成矿研究的若干问题[J].地质论评,1996,42:123-128.
    [147]刘家远.新疆北部陆相火山岩型金矿床的主要特征[J].黄金地质,2001,7(3):1-7
    [148]刘建明,叶杰,刘家军.论我国微细浸染型金矿床与沉积盆地演化的关系——以右江盆地为例[J].矿床地质,2001,20(4):367-377.
    [149]刘连登,陈国华,吴国学,等.我国浅成热液金矿的分类探讨[J].长春科技大学学报,1999,29(3):222-226.
    [150]刘清泉.山西辛庄金矿床地质特征、矿床成因及找矿预测研究[D].长沙:中南大学硕士学位论文,2011,1-98.
    [151]刘先勇,等.SPSS统计分析软件与应用[M].北京:国防工业出版社,2002,1-421.
    [152]刘新会,于岚,张复新,等.甘肃岷县寨上金矿床地质特征及成因初探[J].西北地质,2005,38(4):45-53.
    [153]刘新会,于岚,张复新,等.甘肃岷县寨上金矿床地质特征及成因初探[J].西北地质,2005,38(4):45-53.
    [154]刘学飞,王庆飞,杨立强,等.秦岭与滇黔桂地区卡林型金矿地质与地球化学特征[J].地质科技情报,2008,27(3):51-60.
    [155]刘占福,王元平.繁峙县义兴寨金矿富集规律及远景评价[J].应用技术,2012,(1):89-90.
    [156]龙灵利,季军良,张复新.陕西二台子金矿地球化学特征及其成因[J].黄金地质,2001,7(3):47-52.
    [157]楼亚儿,戴自希.火山岩型金矿的地质特征及勘查准则[J].现代地质,2004,18(1):17-23.
    [158]卢德林,汪建军.硅同位素早金矿成矿物质来源研究中的应用[J].地质与勘探,1992,28(1):28-31.
    [159]卢焕章,李秉伦.包裹体地球化学[M].北京:地质出版社,1990:12-46.
    [160]陆元法.金的表生成矿系统和生物成矿作用[J].黄金,1992,13(4):16-17.
    [161]路彦明,张玉杰,张栋,等.剪切带与金矿成矿研究进展[H].黄金科学技术,2008,16(5):1-6.
    [162]路英川,葛良胜,申维,等.山西省义兴寨金矿流体包裹体特征及其地质意义[J].矿床地质,2012,31(1):83-93.
    [163]路远发. Geokit:一个用于VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    [164]栾世伟.金矿床地质与找矿方法[M].成都,四川科学技术出版社,1987,1-435.
    [165]罗军燕.山西省繁峙县义兴寨金矿床成因矿物学研究与成矿预测[D].北京:中国地质大学(北京),2009,1-91.
    [166]罗镇宽,关康,苗来成.中国绿岩型金矿床——认识、问题与展望[J].黄金科学技术,1994,2(3):1-9.
    [167]罗镇宽,关康,王曼祉,等.中国金矿床概论[M].天津:天津科学出版社,1993:125-129.
    [168]马晓旻,邵文阔,张凯.黔东南变质碎屑岩型金矿找矿前景分析[J].矿物学报,2007,27(3/4):489-492.
    [169]毛景文,李荫清.河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系[J].矿床地质,2001,20(1):23-36.
    [170]梅燕雄,朱裕生,叶锦华.中国超大型矿床的若干统计特征[J].地球学报,1997,18(4):358-366.
    [171]聂桂平,刘良根,徐兆文,等.安徽朝山金矿床矿石含金性和硫同位素研究[J].江苏地质,2007,31(3):200-205.
    [172]宁钧陶,郭喜运,符巩固,等.黄铁矿的标型特征及其对金矿床成因与找矿勘查的启示[J].华东理工大学学报(自然科学版),2012,3(4):352-357.
    [173]牛树银,侯增谦,孙爱群.核幔成矿物质(流体)的反重力迁移:地幔热柱多级演化成矿作用[J].地学前缘2001,,8(3):95-101.
    [174]牛树银,罗殿文,叶东虎,等.幔枝构造及其成矿规律[M].北京:地质出版社,1996,11-37.
    [175]牛树银,孙爱群,谢汝斌,等.地幔热柱及其成矿作用研究[J].前寒武纪研究进展,2002,25(1):11-21.
    [176]牛向龙,李江海.恒山—五台地区同位素年代学与地质事件演化格架的认识[J].北京大学学报(自然科学版)网络版,2006,1(1):1-7.
    [177]欧阳德仁.湘西沃溪金矿床地质特征及其找矿前景探讨[J].湖南冶金,1999,4:34-37.
    [178]欧阳玉飞,刘继顺,周余国,等.卡林型金矿研究的若干问题探讨[J].地质找矿论丛,2011,26(2):151-156.
    [179]潘家永,张乾,邵树勋.桂西北发现一类新的微细浸染型金矿[J].黄金,1998,19(7):3-6.
    [180]裴荣富,吴良士,熊群尧,等.中国特大型矿床成矿偏在性与成矿构造聚敛场[M].北京:地质出版社,1998.1-418.
    [181]裴荣富,叶锦华,梅燕雄,等.特大型矿床研究若干问题探讨[J].中国地质,2001,28(7):9-15.
    [182]彭大明.晋东北地区金矿类型及找矿方向[J].贵金属地质,1995,4(4):263-268.
    [183]彭建堂,胡瑞忠,苏文超.扬子地块南缘锑矿床中矿石铅的组成及其地质意义[J].地质地球化学,2000,28(4):43-47.
    [184]彭守晋.新疆金矿床类型及找矿方向的研究[J].矿产与地质,1994,8(5):311-316.
    [185]陕亮,郑有业,徐荣科,等.硫同位素示踪与热液成矿作用研究[J].地质与资源,2009,18(3):197-203.
    [186]邵军.地幔流体及其金成矿作用——兼论夹皮沟金矿田的地幔流体与成矿[J].贵金属地质,1999,8(2):115-118.
    [187]邵军.中国石英脉型矿床地质特征[J].贵金属地质,1998,7(3):172-179.
    [188]邵拥军,李永峰,张贻舟,等.山西义兴寨金矿床定位规律及找矿方向[J].矿床地质,2005,25(增):479-482.
    [189]沈保丰,李俊建.华北地台绿岩带地质特征类型和演化[J].前寒武纪研究进展,1997,20(1):2-11.
    [190]沈保丰,骆辉,李双保,等.华北地台太古宙绿岩带地质及成矿[M].北京:地质出版社,1994,1-255.
    [191]沈保丰,骆辉,李双保,等.华北陆台太古宙绿岩带地质及成矿[M].北京:地质出版社,1994,142.
    [192]沈保丰,骆辉,毛德宝,等.五台山-恒山绿岩带金矿床地质[M].北京:地质出版社,1998:1-180.
    [193]沈保丰,毛保德.论五台群的地质时代[J].地质调查与研究,2003,26(2):72-79.
    [194]沈保丰,毛德宝.五台山-恒山绿岩带型金矿床的时空分布[J].前寒武纪研究进展,1999,22(1):1-11.
    [195]沈保丰,彭晓亮,骆辉,等.华北陆台太古宙绿岩带的地质-地球化学特征[J].中国地质科学院天津地质矿产研究所所刊,1992,(26-27):151-163.
    [196]沈保丰,孙继源,田永清,等.五台山-恒山绿岩带金矿床地质[M].北京:地质出版社,1998,85-135.
    [197]沈保丰,孙继源,田永清等.五台山-恒山绿岩带金矿床地质[M].北京:地质出版社,1998,1-180.
    [198]沈克富.平江黄金洞金矿田成矿特征及找矿前景[J].湖南地质,2000,19(4): 237-240.
    [199]沈远超,邹为雷,曾庆栋,等.矿床地质学研究的发展趋势——深部构造与成矿作用[J].大地构造与成矿学,1999,23(2):180-185.
    [200]宋继叶.山西省繁峙县孙家庄杂岩体的锆石成因矿物学与岩石地球化学研究[D].北京:中国地质大学(北京)硕士学位论文,2009,1-59.
    [201]孙爱群,牛树银.地幔热柱成矿作用研究进展[J].地质科技情报,1997,16(1):65-71.
    [202]孙忠实,冯本智.吉林夹皮沟金矿稳定同位素地质及找矿方向[J].长春科技大学学报,1998,28(2):142-147.
    [203]谭立平,陶正章.台湾金瓜石金—铜矿床[J].地质地球化学,1994,1:13-17.
    [204]谭文娟,魏俊浩,郭大招,等.石英脉型金矿床的成矿流体研究及思考[J].地质与资源,2005,14(3):227-230.
    [205]谭运金.滇黔桂地区微细粒浸染型金矿床的地球化学类型[J].矿床地质,1994,13(4):308-321.
    [206]陶长贵.黔西南微细浸染型金矿控矿条件及找矿标志[J].地质与勘探,1990,(8):9-15.
    [207]田永清.五台山-恒山绿岩带地质及金的成矿作用[M].太原:山西科学出版社,1991,69.
    [208]田永清.五台山-恒山绿岩带地质及金的成矿作用[M].太原:山西科学技术出版社,1991,186-194.
    [209]田永清.五台山-恒山绿岩带地带及金的成矿作用[M].太原:山西科学技术出版社,1991,1-244.
    [210]涂光炽.超大型矿床的寻找与研究的若干进展[J].地学前缘,1994,1(3-4):45-53.
    [211]涂光炽.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性——兼论非常规超大型矿床[J].中国科学(D辑),1998,28(增刊):1-6.
    [212]涂光炽.我国原发金矿类型的划分和不同类型金矿的远景剖析[J].矿产与地质,1990,4(1):1-10.
    [213]涂光炽.我国原生金矿类型的划分和不同类型金矿的远景剖析[J].矿产与地质,1990,4(1):1-10
    [214]涂光炽.中国火山岩型金矿床[M].见:中国金矿研究新进展(第一卷,上篇).北京:地震出版社,1994,65-82.
    [215]万兵.滇黔桂三角区金(银)矿床地质特征及成矿条件[J].矿产与地质,1991,5(3):169-172.
    [216]王登红,李建康,刘峰,等.地幔柱研究中几个问题的探讨及其找矿意义[J].地球学报,2004,25(5):489-494.
    [217]王登红,林文蔚,杨建民,等.试论地幔柱对我国两大金矿集中区的控制意义[J].地球学报,1999,20(2):157-162.
    [218]王东方,陈从,杨森等.中朝陆台北缘大陆构造地质[M].北京:地震出版社,1992,212-254.
    [219]王虹,霍光辉,王宝君.山东鲁西地区绿岩带型金矿床特征及成因浅析[J].地质力学学报,2005,11(4):352-356.
    [220]王启旺,孙立新,周安朝,等.义兴寨金矿床黄铁矿矿物学特征及其含金性研究[J].太原理工大学学报,2013,44(1):47-50
    [221]王荣湖,刘志远,周乃武,等.含金剪切带型金矿床的成矿作用[J].地质与资源,2007,16(1):16-22.
    [222]王汝铮,颜跃阳,李惠民等.山西五台山地区早前寒武纪年代的构造格架[J].前寒武纪研究进展,1997,20(2):44-50.
    [223]王汝铮.早元古代滹沱群玄武岩Rb-Sr、Sm-Nd同位素体系初讨[J].前寒武纪研究进展,1997,20(1):35-42.
    [224]王雄军.云南老君山矿集区多因复成成矿模式及空间信息成矿预测模型研究[D].长沙,中南大学博士学位论文,2008,1-154.
    [225]王秀璋.关于金的改造成矿作用[J].黄金地质,1995,1(1):8-15.
    [226]王秀璋.对我国金矿床类型划分的讨论[J].地质地球化学,1987,(12):160-165.
    [227]王义天,毛景文,李晓峰,等.与剪切带相关的金成矿作用[J].地学前缘,2004,11(2):393-400.
    [228]王泽鹏,夏勇,宋谢炎,等.太平洞-紫木凼金矿区同位素和稀土元素特征及成矿物质来源探讨[J].矿物学报,2012,32(1):93-100.
    [229]韦龙明,林锦富,吴烈善.凤县八卦庙特大型金矿热水沉积岩的地质地球化学特征[J].地质学报,2004,78(6):829-835.
    [230]韦永福,吕英杰,江雄新,等.中国金矿床[M].北京:地震出版社,1994,1-217
    [231]韦永福.金矿成矿理论研究若干进展[J].黄金地质科技,1989,(3):1-7
    [232]韦永福.中国金矿床[M].北京:地震出版社,1994,1-329.
    [233]毋瑞身.我国金矿床的主要成因类型及找矿方向几个问题的探讨[J].中国地质科学院院报——沈阳地质矿产研究生分刊,1980,1(1):20-40.
    [234]吴春明.五台山区义兴寨岩体、车厂—北台岩体地球化学和变质作用及其 大地构造意义[D].北京:中国科学院地质与地球物理研究所博士学位论文,1999,1-115.
    [235]吴素珍.五台山地区前寒武纪变质岩石的稀土元素地球化学[J].地球化学,1988,(2):118-128.
    [236]伍家善,刘敦一,金国龙.五台山滹沱群变质基性熔岩中锆石U-Pb年龄[J].地质论评,1986,32(2):178-184.
    [237]徐朝雷,徐有华,范嗣昆,等.关于五台群上、下限年龄的讨论[J].地球化学,1991,4:321-330.
    [238]徐九华,谢玉玲,丁汝福,等.CO2-CH4流体与金成矿作用:以阿尔泰山南缘和穆龙套金矿为例[J].岩石学报,2007,23(8):2026-2032.
    [239]严育通,李胜荣,张娜,等.不同成因类型金矿床成矿期黄铁矿成分成因标型特征[J].黄金,2012,33(3):11-16.
    [240]杨红英,王建国,周军.山西义兴寨金矿流体包裹体的特征及意义[J].贵金属地质,1995,4(3):177-183.
    [241]杨红英,王建国,周军.山西义兴寨金矿流体包裹体的特征及意义[J].贵金属地质,2007,34(6):1062-1072.
    [242]姚晓峰,唐菊兴,李志军,等.西藏尕尔穷铜矿床S、Pb同位素地球化学特征——成矿物质来源示踪[J].地球学报,2012,33(4):528-536.
    [243]叶荣,赵伦山,沈镛立.山西义兴寨金矿床地球化学研究[J].现代地质,1999,13(4):415-418.
    [244]应汉龙,刘秉光.超大型金矿床的地球化学特征及成因[J].贵金属地质,1998,7(3):161-171.
    [245]雍永源,沈亦为.五台山区五台群层序及构造的新认识[J].中国区域地质,1983,第5辑:112-122.
    [246]於崇文,岑况,鲍征宇,等.成矿作用动力学[M].北京:地质出版社,1998,1-23.
    [247]於崇文.成矿作用动力学理论体系和方法论[J].地学前缘,1994:1:3-4.
    [248]余学东,李应桂,杨少平,等.山西孙家庄中酸性杂岩体及其邻近地区的找矿前景评价[J].物探与化探,1998,22(5):379-383.
    [249]岳可芬,赫英,张维平.深源C02及其对金的富集成矿作用[J].西北大学学报(自然科学版),2004,34(1):90-92.
    [250]翟裕生,邓军,李晓波.区域成矿学[M].北京:地质出版社,1999,1-287.
    [251]张德会,刘伟.流体包裹体成分与金矿床成矿流体来源——以河南西峡石板沟金矿床为例[J].地质科技情报,1998,17(sup):67-71.
    [252]张德会.成矿流体中金的沉淀机理研究述评[J].矿物岩石,1997,17(4):122-130.
    [253]张复新,侯俊富,张存旺,等.甘肃阳山超大型卡林-类卡林型复合式金矿床特征[J].中国地质,2007,34(6):1062-1072.
    [254]张复新,宗静婷,马建秦.秦岭卡林型金矿床及相关问题探讨[J].矿床地质,1998,17(2):172-184.
    [255]张国伟,孟庆仁,于在平.秦岭造山带的造山过程及其动力学特征[J].中国科学:D辑,1996,26(3):193-200.
    [256]张理刚.稳定同位素在地质科学中的应用——金属活化热液成矿作用及找矿[J],西安,西科学技术出版社,1985,267.
    [257]张连昌,赵伦山.成矿流体研究的若干进展与动态[J].地质与勘探,2001,37(1):7-10.
    [258]张文淮,张志坚,伍刚.成矿流体与成矿机制[J].地学前缘,1996,3(3-4):245-252.
    [259]张贻侠,寸硅,刘连登.中国金矿床:进展与思考[M].北京:地质出版社,1996.10-21
    [260]张贻舟.山西义兴寨金矿床控矿因素、矿床成因及构造地球化学找矿预测研究[D].长沙:中南大学硕士学位论文,2007,1-100.
    [261]张宗清,伍家善,叶笑江.阜平群下部太古代变质岩的REE、Rb-Sr和Sm-Nd年龄及其意义[J].地球化学,1991,(2):118-127.
    [262]赵利青,‘李占芳,李志宏,等.现代金矿成矿理论的若干进展[J].黄金地质,2004.10(2):59-66.
    [263]赵利青.蚀变带元素地球化学成矿预测法——以金龙山微细浸染型金矿为例[J].物探与化探,1998,22(1):55-60.
    [264]赵振华,刘秉光,李朝阳.我国与寻找超大型矿床有关的基础研究进展[J].地球科学进展,2001,16(2):184-188.
    [265]赵志忠,李志纯.地壳内部流体与金成矿关系的研究现状与进展[J].地质地球化学,1999,27(2):76-82.
    [266]真允庆.论金矿床的矿源层问题[J].地质与勘探,1989,(8):1-8.
    [267]真允庆.五台幔枝构造的演化与金、银多金属矿床[J].桂林工学院学报,2003,(2):139-148.
    [268]真允庆.五台山-恒山一带金、银多金属矿床同位素地球化学及其成矿模型[J].桂林工学院院报,2004,24(2):127-137.
    [269]郑波,安芳,朱永峰.包古图金矿中发现的自然铋及其找矿勘探意义[J]. 岩石学报,2009,25:1426-1436.
    [270]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000,1-316.
    [271]钟建华,张国伟.陕西凤县八卦庙特大型金矿的成因研究[J].地质学报,1997,71(2):150-160.
    [272]周丽芹,肖渊甫,刘敦一,等.五台山地区1.76Ga辉石闪长岩的成因及其地质意义[J].岩石矿物学杂志,2011,30(5):819-828
    [273]周乃武,李连山.论C02在金成矿过程中的作用[J].黄金学报,1999,1(3):162-166.
    [274]周绍芝.晋东北地区银(金)矿成矿特征及远景浅析[J].地质与勘探,1999,35(3):6-9.
    [275]朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社,1998,1-330.
    [276]朱奉三.金矿床成因类型划分的讨论[J].黄金,1982,(1):21-26.
    [277]朱奉三.中国金矿床的成因类型划分及基本特征研究[M].国际金矿地质与勘探学术论文集,东北工学院出版社,1989,12-20.
    [278]朱小峰,刘学生.分析金矿床的生物成矿作用[J].基础科学,2012,P94.
    [279]曾庆栋,刘铁兵,沈远超,等.阿尔泰东南缘布尔根地区造山带型金矿床硫铅同位素特征及地质意义[J].岩石学报,2007,23(8):2017-2025.
    [280]邹定喜,杨小斌,芦文泉,等.青海果洛龙洼金矿床同位素特征及成因[J].黄金科学技术,2011,19(2):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700