用户名: 密码: 验证码:
山区河流弯曲干流型汇合口水沙运动试验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在已有研究成果及相关基础资料分析的基础上,采用概化水槽试验结合理论分析的手段,系统分析了山区河流弯曲干流型汇合口交汇河段表面水流流速流向、水面等高线分布、分离区与汇流比及入汇角的关系、水面纵横比降的变化等表面水流运动及水面线特征,深入研究了干支流交汇河段水流流速垂线分布、纵向分布、水流动力轴线、底面附近流速矢量及剪切应力分布、交汇区的环流结构、水流紊动能和紊动强度等水流流速分布及紊动特性,探讨了干支流交汇河段泥沙冲淤机理和推移质泥沙运动规律。通过建立三维水流数学模型,解决了山区河段汇合口段三维水流模拟技术,研究了长江与沱江汇合口段多种流量组合条件下水流的三维特点。
     本文取得的研究成果不仅可以作为对干支流汇合口河段枢纽影响前后水流和泥沙冲淤特性做出模拟分析,同时有利于总结水沙运动变化规律,为山区河流弯曲干流型汇合口水沙运动规律研究提供相应的理论基础和技术支持,对于山区河流弯曲干流型汇合口可持续开发和治理具有重要的理论价值与现实意义。
     本文的主要创新点有:
     (1)通过水槽概化模型试验,首次系统研究了弯曲干流型汇合口附近区域水流特性及水流结构,结合实际河段从理论上初步揭示了弯曲干流型汇合口河段淤积碍航机理。
     (2)对分离区相对长度和相对宽度与汇流比和入汇角的关系进行公式拟合,首次给出了弯曲干流型汇合口河段分离区相对长度和相对宽度与汇流比和入汇角变化的关系式。
     (3)采用基于非静压假定的三维水流数学模型,解决了山区河段汇合口段三维水流模拟问题,模拟了长江与沱江汇合口水流三维运动情况,初步揭示了长江与沱江汇合口段的三维水流特性,对该河段航道维护和建设具有指导意义。
Based on the existing research results and basic data analysis, carrying out flumeexperiment with theory analysis, this study analyzed the surface flow direction, surfacecontour distribution, relationship between separating zone and confluence ratio andinflow angle, water surface gradient change in the longitudinal and lateral direction atbending main stream confluence port of mountain river; studied the vertical velocitydistribution, longitudinal distribution, flow dynamic axis, velocity vector and shearstress distribution, circulation structure at confluence, turbulence kinetic energy andturbulence intensity; investigated the theory of erosion and deposition at confluence port,the bed-load moving regulation. By building the2-D modeling at confluence port, therelationship between confluence ratio and water surface gradient, confluence ratio andsurface flowing velocity, distribution of erosion and deposition and waterway depthchanging were analyzed; the affection by the upstream hydro-power station regulationto the water flowing and sediment transportation at river confluence port wasinvestigated further.
     This study results can not only be used to model the water flowing and sedimenterosion and deposition at upstream and downstream of confluence port by the mainstream and tributary stream, but also be used to summarize the water flowing andsediment transportation law, to provide the technical support on the study of waterflowing and sediment transportation law at confluence port. That has important valueson the development and management of the bending main stream confluence port in themountain river.The innovations in the dissertations are as follows:
     (1) This thesis first systematically studied flow characteristics and flow structuresaround the bend-mainstream confluence by the flume generalized model experiment.And combining with the actual river section, it preliminary revealed navigationmechanism of bend-mainstream confluence river from the theory.
     (2) It progressed formula fitting for relationships among the relative length and therelative width of the separation zone, discharge ratios, and inflow angles. And it gaveformulas for relationships among the relative length and the relative width of theseparation zone, discharge ratios, and inflow angles in the bend-mainstream confluencefor the first time.
     (3) The3D flow mathematical models was built. Models used orthogonalcurvilinear grid and unstructured triangle grid to split calculate area, this method solvedthe difficulty that occurred when3D flow simulation technology problem. It simulatedthe Three dimensional motion in confluences of the Yangtze river and toujiang river.Current character was shown at the junction of Yangtze River and Tuojiang Preliminary,which have a significance for channel maintenance and construction of this riversection.
引文
[1] Rouse,H.,Dlffusion in the lee of a2-D Jet.9th inter Cong.of Applied Mech[C].1957,307-3l5.
    [2] Best J L. Sediment transport and bed morphology at river channel confluences [J].Sedimenttechnology,1988,35(5):481-498.
    [3] Carter,H·H.,A preliminary report on the characteristics of a heated jet dischangedhorizontally into a transverse current Tech Rept.No.61,Johns Hopkins Univ, Baltimore,Maryland,1969.
    [4] Gaudet J M、Roy A G. Effect of bed morphology on flow mixing length at riverconfluence[J].Nature,1995,373(2):138-139.
    [5] McGuirk,J.J.&Rodi,W,A depthaveraged mathematical model for the near field of theside discharge into open channel flow[J]. Journal of Fluid Mechanice,1978,86(4):76l-78l.
    [6] Brion. Effect of bed discordance on flow dynamics at open channel confluence [J].Journal ofhydraulic engineering,1996,122(10):994-1002.
    [7] Modi P N、Dandekar M M、Ariel P D. Conformal mapping for channel junction flow[J]. Hydr.Div.,ASCE,1981,107(12):1713-1733.
    [8] Biron P、Best J L. Effect of bed discordance on flow dynamics at river confluences [J].Journal of Hydraulic Engineering,ASCE,1996,122(12):676-682.
    [9] Mikhall,R.et al,The reattachment of a2-D turbulent jet in a confined Cross-flow6th IAHRCong.Sanpolo[C].1975,(3):414-4l9.10] Taylor E H. Flow characteristics at rectangular open-channel junctions [J]. Trans,ASCE,1944,109(2):893-902.
    [11] Hsu C C、Lee W L. Flow at90°equal-width open-channel junction[J]. Journal of HydraulicEngineering,ASCE,1998,124(2):186-191.
    [12] Webber N B、Greated C A.An investigation of flow behavior at the junction of rectangularchannels[J],Proc. of the Institution of civil Engineers,1966,34(8):321-334.
    [13] Anestis,I.D.eta1.,Entrapment characteristics in a recirculating eddy[J].Mc-GillUniv.Tech.Rep No79-l,Montrea,Canada,1979.
    [14] Bradbook. Role of bed discordance at asymmetrical river confluence[J].Journal of hydraulicengineering,2001,127(5):351-368.
    [15] Mosely M P. An experimental study of channel confluences[J],Journal of Geology,1976,84(7):538-562.
    [16] R.Ettema,Laboratory observations of ice jams at channel confluences[J].Journal of ColdRegions Engineering,2001.15(l):34-58.
    [17] Best,J.L.et al.,Separation zone at open-channel junctions[J].Journal of the HydrDiv.,ASCE,1984,10(11):1588-1594.
    [18] Huang J、Weber L J、Lai Y G. Three-Dimensional Numerical Simulation of Flow in anOpen-Channel junction[J].Journal of hydraulic engineering,2002,(3):25-33.
    [19] Best J L、Reid L. Separation zone at open-channel junctions[J]. Journal of HydraulicEngineering,ASCE,1984,ll0(11):1588-1594.
    [20] Strazsar,A.et a1.,The effects of bottom friction on river entrance flow with crossflows Proc16th Conf. Great Laker Res[C].1973,615-625.
    [21]罗保平.汇流河段干支流分界线的实验研究[J].水运工程,1994,(11):13-16.
    [22]周华君,王绍成.长江嘉陵江交汇口水力特征研究[J].水运工程,1994,(12):24-29.
    [23]刘建新,程吕华.山区河流干支流汇流特性研究[J].重庆交通学院学报,1996,15(4):23-26.
    [24]兰波,汪勇.干支流交汇水面形态特征分析[J].重庆交通学院学报,1997,(12):109-114.
    [25]陈德明,王兆印,何耘.泥石流入汇对河流影响的实验研究[J].泥沙研究,2002,(3):22-28.
    [26]奚斌,黄才安,熊亚南,朱积庆.T型河道交汇口模型试验研究[J].灌溉排水学报,2003,(22):54-58.
    [27]茅泽育,赵升伟,张磊等.明渠交汇口二维水力特性试验研究[J].水利学报,2004,(2):1-7.
    [28]郭志学,余斌,曹叔尤,方铎等.泥石流入汇主河情况下交汇口附近变化规律的试验研究[J].水利学报,2004,(1):33-37.
    [29]敖汝庄,郭志学,曹叔尤.泥石流入汇主河淤积规律的水槽试验研究[J].水土保持学报,2004,18(4):196-199.
    [30]茅泽育,赵升伟,罗焊等.明渠交汇口水流分离区研究[J].水科学进展,2005,16(1):7-12.
    [31]郭维东,王晓刚,曹继文等.“Y”型汇流口水流水力特性试验研究[J].水电能源科学,2005,23(3):53-56.
    [32]王晓刚,郭维东,严忠民,冯亚辉,杨天恩.河床高差对“Y”型汇流口水流水力特性的影响[J].中国农村水利水电,2005,(12):16-19.
    [33]王协康,王宪业,卢伟真,刘同宦.明渠水流交汇区流动特征试验研究[J].四川大学学报,2006,38(2):1-5.
    [34]刘同宦,郭炜,王协康,王宪业.入汇角为30°时交汇区水流结构试验研究[J].长江科学院院报,2007,24(4):75-78.
    [35]冯亚辉,郭维东.明渠交汇水流的螺旋度分析[J].人民长江,2007,38(1):119-121.
    [36]吴迪,郭维东,刘卓也.复式断面河道“Y”型交汇河口水流水力特性[J].水利水电科技进展,2007,27(3):21-23.
    [37]范平,李家春,刘青泉.交汇、分流河道洪水演进模型及其应用[J].应用数学和力学,2004,25(12):1220-1229.
    [38]茅泽育,罗焊,赵升伟等.等宽明渠交汇口水流一维数学模型[J].水利学报,2004,(8):26-32.
    [39]赵升伟,茅泽育.等宽明渠交汇水流数值计算[J].河海大学学报,2005,33(5):494-499.
    [40]张革联,徐剑秋,梅军亚,张潮.二维水沙数学模型及其在汉江入汇河段的应用[J].人民长江,2006,37(12):108-111.
    [41]冯亚辉,郭维东.Y型明渠交汇水流数值计算[J].水利水运工程学报,2006,(4):34-40.
    [42]朱木兰,西本直史.干支流汇合处的二维河床变形数值模拟[J].应用基础与工程科学学报,2007,15(4):450-456.
    [43]茅泽育,赵雪峰,许昕,赵升伟.交汇水流三维数值模型[J].科学技术与工程,2007,7(5):800-805.
    [44]魏炳乾,孙小军,宁利中,早川博,张新庆.缓变弯道河道冲刷试验研究[J].水利发电学报,2007,26(2):99-104.
    [45]唐仁杰.连续两弯明渠水流特性水槽试验研究.长沙理工大学硕士论文,2009.
    [46]刘晋泽,方红卫,府仁寿.应用数学模型研究物理模型试验的变态率[J].水动力学研究与进展A辑,2005,2:131-145.
    [47]胡旭跃,祖小勇,程永舟,李银发,王巧洋.圆端形桥墩侧向紊流宽度的试验研究[J].水利水运工程学报,2009,3:8-13.
    [48]郭维东,郭文卓,张黎.矩形水槽中半圆柱形边墩周围水流紊动强度的研究[J].沈阳农业大学学报,2009,4:471-474.
    [49]罗宪,房春艳,单钰淇,刘超.植物特性对复式河槽流速分布影响的实验研究[J].重庆交通大学学报,2010,3:466-469.
    [50]许栋.明渠沙纹演化及其湍流动力特性实验研究.天津大学硕士论文,2005.
    [51]万俊.明渠弯道水流的水力特性研究[D].成都:四川大学,2006
    [52]刘焕芳.弯道自由水面形状的研究[J].水利学报.1990(4).
    [53]唐仁杰,胡旭跃,戴玉婷.弯曲河道水流的研究现状J].水道港口,2009(2)
    [54]张武红,吕昕著.弯道水力学[M].水利电力出版社,北京:1993
    [55]王平义.弯曲河道动力学[M].成都科技大学出版社,1995.
    [56]张定邦.弯道横向环流的研究现状[J].水利水运专题评述.1964.
    [57]张耀先,丁新求等.弯道水流横向流动与输沙研究[J].水利建设与管理,2003:477-479
    [58]宋志尧.计算弯道环流的通用公式[J].泥沙研究,2003,11(8):19-21
    [59] ИЛ罗索夫斯基,水科院译.弯道上横向环流及其与水面形状的关系,弯道上纵向流速的分布[C].河床演变论文集(苏).科学出版社.1965.
    [60]檀会春,张华庆,弯道横向横向环流实验与分析[J]。水道港口,2010,31(1):30-35.
    [61]童思陈,钟亮,徐光辉.弯道水流环流结构的实验研究[J].水运工程,2009,10:32-35.
    [62]王协康,刘同宦,王宪业,刘兴年.受支流入汇作用主河推移质运动演化特征试验研究[J].四川大学学报(工程科学版),2005,6:.
    [63]陈月华.干支流交汇河段水流特性计算研究.南京水利科学研究院硕士论文,2007.
    [64]惠晓晓.金山江下游干支流推移质输移特性与估算方法研究.长江科学院硕士论文,2010.
    [65]周翠英,邓金运.干支流交汇河段水流泥沙特性研究综述[J].水利科技与经济,2012,8.
    [66]刘同宦,王协康,郭炜,刘兴年,王宪业.支流水沙作用下干流床面冲淤特征试验研究[J].长江科学院院报,2006,2.
    [67]姚仕明,张玉琴.弯道推移质泥沙运动特性及对河道演变的影响[J].长江科学院学报,2010,3.
    [68]刘鹏飞,李一兵,胡旭跃.弯曲河段推移质运动方式研究[J].交通科学与工程,2011,1.
    [69]曾庆华.关于弯道底沙运动的问题[J].泥沙研究,2002,2.
    [70]张斌,郭志学,刘兴年.弯道中障碍物后水沙运动的试验研究[J].四川水利,2006,5.[71]李志威,方春明.弯道推移质横向输沙规律与床面平衡机理[J].水利发电学报,2012,3.
    [72]许光祥,童思陈,钟亮.弯道水面衡比降沿程分布特性研究[J].水利发电学报,2009,4.
    [73]李志威,方春明,邵佳.弯道环流流速公式的验证与比较[J].泥沙研究,2011,5.
    [74]朱三华,刘建业,易灵.贴体正交曲线网格自动生成技术研究[J].人民长江,2005(51)
    [75]陈汉平.用贴体正交曲线网格求解二维复杂几何域对流扩散问题[J].上海交通大学学报,1989(5)
    [76]张杰.河道贴体平面正交曲线网格自动生成技术研究[J].长江科学院院报,2003(12)
    [77]杨国录.河流数学模型[M].武汉水利电力学院,1992年5月
    [78]钱宁.泥沙运动力学[M].科学出版社,2003年
    [79]李义天,谢鉴衡,吴伟明.二维及三维泥沙数学模型的研究进展[C].全国泥沙基本理论研究学术探讨会论文集(第二卷),1992年
    [80]胡海明,李义天.非均匀沙的运动机理及输沙率计算方法的研究[J].水动力学研究与进展,1996(3):284-292
    [81]何少苓,王连祥.窄缝法在二维边界变动水域计算中的应用[J].水利学报,1986(12)
    [82]程冰,周晓阳.二维河道移动边界的流失量处理法[J].数学技术应用科学,2006
    [83]赖锡军,汪德爟.山溪性河流水动力学耦合模型研究[J].河海大学学报,2003(3)
    [84]金沙江水富至宜宾航道整治一维数学模型研究,南京水利科学研究院、长江重庆航运工程勘察设计院,2009.9。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700