用户名: 密码: 验证码:
沉淀反应体系局部平衡模型的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉淀工艺在粉体制备、分离提纯等工业过程中应用广泛。围绕着沉淀工艺中优化操作参数、提升产品质量的要求,本文针对沉淀过程中的反应组分关联,提出了一种局部平衡模型。该模型认为:沉淀反应过程由液相反应和固相生成反应两个步骤组成,其中液相反应是快速步骤,液相反应体系处于局部平衡状态,可用离子平衡热力学描述。选择不同类型的沉淀体系,系统地考察了局部平衡模型的建模方法、预测性能和实际应用。
     对于M+-P-和M+-P--H+(M+指金属离子,P-指沉淀剂,H+指氢离子)两种类型的理想沉淀体系,考察了依据其反应机理所提出的局部平衡模型的预测性能。参照严格的动力学计算结果发现,局部平衡模型对反应组分浓度预测结果的准确性,受到反应速率常数和沉淀率的影响,随着液相反应速率常数的增大,局部平衡模型的准确性提高。对这两类沉淀体系,当液相反应速率常数为固相生成反应的100倍,沉淀率大于0.6%时,预测结果的偏差均小于1%。
     为了进一步考察局部平衡模型预测结果的准确性,选择两个便于检测的实际沉淀体系,进行了实验验证。对于Co(Ⅱ)-H2C204-K2C204体系,将pH和沉淀率引入局部平衡模型,建立了pH和沉淀率的关联。结果表明,模型预测结果与实验结果基本吻合。研究同时发现,将模型转化为半经验公式,或者进行Davies活度校正后,其预测的准确度可以得到提高。对于Ba(Ac)2-H2C204-HAc体系,将pH、Ba总浓度[Ba]T和电导率K同时引入局部平衡模型,模拟了pH-[Ba]T、 K-[Ba]T和pH-κ三种关系。结果表明,模型预测与实验结果吻合良好。
     在此基础上,选择五个实际沉淀体系,考察了局部平衡模型在粉体制备、分离提纯和过程在线监测三个方面的具体应用。
     首先,针对NiCl2-H2C204-K2C2O4单金属沉淀体系和Ni(Ⅱ)-Co(Ⅱ)-C2042--H2O双金属共沉淀体系,考察了局部平衡模型在粉体制备中的具体应用。为了获得粒度均匀、形貌一致的沉淀粉体,同时保证较高的金属回收率,通常要求沉淀过程的pH稳定、过饱和度适中、终点沉淀率高。针对这些工艺参数要求,通过所构建的局部平衡模型,模拟了沉淀过程原料溶液的组成、配比、操作方式和加料方式等工艺条件对pH值、过饱和度和沉淀率的影响,找到了满足粉体性能要求的沉淀工艺条件,并在模拟得到的工艺条件下通过沉淀实验研究,制备出了优质的草酸镍和镍钴草酸盐粉体。
     然后,考察了局部平衡模型在Ni(Ⅱ)-Mn(Ⅱ)-NH3-CO32--H2O选择性沉淀体系中镍锰分离提纯中的应用。为了从镍锰混合溶液中高效分离出锰,同时避免胶体氢氧化锰和细颗粒碳酸锰的生成,通常要求碳酸镍及氢氧化锰的过饱和度尽可能小,碳酸锰的过饱和度适中。以此工艺参数要求为目标,通过局部平衡模型的模拟,获得了合适的原料溶液浓度、配比和加料方式等工艺条件。在该工艺条件下通过实验最终实现了镍和锰的高效分离,镍的损失率可低至1.0%,锰的沉淀率高达99.7%。
     最后,对于CO(NO3)2-H2C2O4-K2C2O4和Ca(OH)2-CO2-H2O沉淀体系,考察了局部平衡模型在沉淀过程在线监测中的应用。对CO(NO3)2-H2C2O4-K2C2O4沉淀体系,依据其局部平衡模型中pH与沉淀率和过饱和度的关联,通过在线分析的pH的变化,就可获得沉淀率和过饱和度的演变。对更为复杂的气液两相Ca(OH)2-CO2-H2O沉淀体系,依据其局部平衡模型,可获得pH和电导率与过饱和度、钙离子浓度和总碳浓度的关联,从而通过pH和电导率的在线检测数据,就可得到过饱和度、钙离子浓度和总碳浓度。因此,局部平衡模型为采用简单实用的pH计和(或)电导率仪,为在线监控沉淀过程的主要组分和关键参数提供了可能。这对于掌握沉淀体系的内在演变规律及优化沉淀工艺,都具有重要的理论意义和实际应用价值。
Precipitation is widely used in the industry of powder production, metal ions separation and purification. In order to optimize the operating parameters and improve the product quality, a partial equilibrium model was proposed in the thesis for describing the relationships among the reaction components in the precipitation reaction process. The new model assumes that the precipitation reactions should consist of two steps including a liquid-phase reaction step followed by a solid-formation step, in which the first step is considered fast enough to make the liquid phase reaction system in a partial equilibrium state which can be described by ionic equilibrium thermodynamics. Various precipitation systems were chosen for systematic research on the model construction, prediction verification, and practical application.
     For the ideal precipitation systems of M+-P-and M+-P--H+(M+metal ion, P-precipitant, H+hydrogen ion), partical equilibrium models based on their reaction mechanisms were investigated. Compared with the calculation results of the rigorous kinetic models, the prediction results of the reactant component concentrations by the partial equilibrium models were found to be affected by the reaction rate constants and yield of precipitation. The prediction was found to be more accurate with higher reaction rate constants. For both of the ideal systems, the prediction deviation from the kinetic model was found to be less than1%under the condition that the liquid-phase reactant constants are100times of the solid-formation reaction constant and the yield of precipitation is more than0.6%at the same time.
     To further study the prediction accuracy of the partial equilibrium models, two convenient-for-detection practical systems were chosen and experiments were performed. For the system of Co(II)-H2C2O4-K2C2O4, pH and the yield of precipitation were both introduced into the partial equilibrium model for simulation of the relationship between them. The simulation results correspond well to the experimental results. Research results also indicate that the accuracy of the partial equilibrium model is improved after the transformation into a semi-empirical equation or the introduction of Davies activity correction. For the system of Ba(Ac)2-H2C2O4-HAc, parameters including pH, Ba total concentration [Ba]1and conductivity k were all introduced into the partial equilibrium model to model the three relationships of pH-[Ba]T, K-[Ba]T, and pH-K. The simulation results are in good agreement with the experimental results.
     Based on the above verifications, five practical precipitation systems were adopted to investigate the application of the partial equilibrium model in powder manufacturing, separation and purification, and online process monitoring.
     Firstly, the monometallic precipitation system of NiCl2-H2C2O4-K2C2O4and the co-precipitation system of Ni(II)-Co(II)-C2O42--H2O were studied to investigate the practical application of partial equilibrium models in the preparation of powders. Normally stable pH, appropriate supersaturation, and high metallic recovery rate are required to obtain narrowly distributed and monoshaped powders economically. To achieve such requirements, corresponding partial equilibrium models were constructed to simulate the effects of process operation conditions such as feed solution composition, proportion, operating mode and feeding mode on process pH, supersaturation and yield of precipitation with the goal of finding proper operating conditions for producing narrowly distributed and monoshaped powders with high yield of precipitation. Under such optimized operating conditions, experiments were carried out to prepare high quality nickel oxalate powders and nickel-cobalt oxalate powders.
     Afterwards, the system of Ni(II)-Mn(II)-NH3-CO32--H2O was employed to investigate the practical application of partial equilibrium model in separation and purification of metal ions. To achieve effective separation of manganese by selective precipitation from the nickel manganese mixture solution in the absence of the formation and colloidal manganese hydroxide and fine-sized manganese carbonate, a low supersturation level of nickel carbonate and manganese hydroxide with a suitable supersaturation level of manganese supersaturation are commonly desirable. To satisfy such a requirement, partial equilibrium models were established and simulations were carried out to determine the optimum process conditions such as feed solution concentration, proportion, and feeding modes for separation. Under such optimized conditions, experiments were performed to achieve the effective separation of nickel and manganese with the loss percentage for nickel as low as1.0%and the yield of precipitation for manganese as high as99.7%.
     Lastly, the precipitation systems of Co(NO3)2-H2C2O4-K2C2O4and Ca(OH)2-CO2-H2O were adopted to investigate the practical application of partial equilibrium model in the online monitoring of the precipitation processes. It was shown that by the input of the online monitored pH data, the evolution of yield of precipitation and supersaturation for the system of Co(N03)2-H2C204-K2C204can be calculated by a partial equilibrium model. And by the input of the both online monitored pH and conductivity data, the evolution of yield of precipitation and supersaturation of the more complicated system of Ca(OH)2-CO2-H2O can also be calculated by a partial equilibrium model. It can be therefore considered that the partial equilibrium models provide possible opportunity for the application of simple and practical devices including the pH meter and (or) conductivity meter for online inspection of the main components and key process parameters in precipitation. Such applications show great theoretical and practical significance in obtaining information on evolution of the precipitation system and in optimization of the precipitation processes.
引文
[1]Sohnel O, Garside J. Precipitation:Basic Principles and Industrial Applications. Oxford:Butterworth-Heinemann Ltd.,1992
    [2]时钧,汪家鼎,余国琮,等编著.化学工程手册.北京:化学工业出版社,1996
    [3]Mullin J. Crystallization. Butterworth-Heinemann Ltd.,2001
    [4]Schuth F. Handbook of Heterogeneous Catalysis. Viley-VCH,2008
    [5]李洪桂编著.湿法冶金.长沙:中南工业大学出版社,2005
    [6]Gupta C. Chemical Metallurgy:Principles and Practice. Wiley-VCH,2003
    [7]Lewis A. Review of metal sulphide precipitation. Hydrometallurgy,2010,104(2): 222-234
    [8]Ring T. Fundamentals of ceramic powder processing and synthesis. Elsevier Inc., 1996
    [9]Jones A. Crystallization process systems. Butterworth-Heinemann Ltd.,2002
    [10]Jones A. Crystallization and precipitation engineering. Computers and Chemical Engineering,2005,29:1159-1166
    [11]Danckwerts P. The effect of incomplete mixing on homogeneous reactions. Chemical Engineering Science,1958,8(1-2):1-200
    [12]Baldyga J. Turbulent micromixing in chemical reactors-a review. The chemical Engineering Journal and the Biochemical Engineering Journal,1995,58(2): 183-195
    [13]David R. General rules for prediction of the intensity of micromixing effects on precipitations. Powder Technology,2001,121(1):2-8
    [14]LaMer V, Dinegar R. Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society,1950, 72(11):4847-4854
    [15]Hartridge H, Roughton F. A method of measuring the velocity of very rapid chemical reactions. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1923,104(726): 376-394
    [16]Chance B. The accelerated-flow method for rapid reactions. Journal of the Franklin Institute,1940,229(6):737-766
    [17]Nielsen A. Nucleation and growth of crystals at high supersaturation. Kristall und Technik,1969,4(1):17-38
    [18]Sohnel O, Mullin J. A method for the determination of precipitation induction periods. Journal of Crystal Growth,1978,44(4):377-382
    [19]Carosso P. A stopped-flow technique in fast precipitation kinetics-The case of barium sulphate. Journal of Crystal Growth,1984,68(2):532-536
    [20]Mohanty R, Bhandarkar S, Zuromski B, et al. Characterizing the product crystals from a mixing Tee process. AIChE J,1988,34 (12):2063-2068
    [21]Eble A. Precipitation of nanoscale crystals with particular reference to interfacial energy:[PhD Thesis]. Germany:Berichte Aus Der Verfahrenstechnik, Shaker Verlag GmbH,2000
    [22]Salvatori F, Muhr H, Plasari E, et al. Determination of nucleation and crystal growth kinetics of barium carbonate. Powder Technology,2002,128(2):114-123
    [23]Stahl M, Bengt L, Aslund, et al. Reaction crystallization kinetics of benzoic acid. AIChE Journal,2001,47(7):1544-1560
    [24]Blandin A F, Mangin D, Nallet V, et al. Kinetics identification of salicylic acid precipitation through experiments in a batch stirred vessel and a T-mixer. Chemical Engineering Journal,2001,81(1-3):91-100
    [25]Roelands C P M, Roestenberg Raoul R W, Ter Horst J H, et al. Development of an experimental method to measure nucleation rates in reactive precipitation. Crystal Growth and Design,2004,4(5):921-928
    [26]Roelands C P, Ter Horst J H, Kramer H J M, et al. Analysis of nucleation rate measurements in precipitation processes. Crystal Growth and Design,2006,6(6): 1380-1392
    [27]Jongen N, Lemaitre J, Bowen P, et al. Aqueous synthesis of mixed yttrium-barium oxalates. Chemistry of Materials,1999,11(3):712-718
    [28]Jongen N, Donnet M, Bowen P, et al. Development of a continuous segmented flow tubular reactor and the "scale-out" concept-in search of perfect powders. Chemical Engineering and Technology,2003,26(3):303-305
    [29]Benet N, Muhr H, Plasari E, et al. New technologies for the precipitation of solid particles with controlled properties. Powder Technology,2002,128(2-3): 93-98
    [30]骆广生,陈桂光,徐建鸿,等.微混合设备及其性能研究进展.现代化工,2003,23(8):10-13
    [31]Guillemet-Fritsch S, Salmi Jaouad, Sarrias Joseph, et al. Mechanical properties of nickel manganites-based ceramics used as negative temperature coefficient thermistors (NTC). Materials Research Bulletin,2004,39(12):1957-1965
    [32]Jachuck R. Methods of manufacturing particles. US Patent,7074353B2 PCT/GB02/03368,2006-07-11
    [33]Midler M. Crystallization method to improve crystal structure and size. US Patent,5314506,1994-05-24
    [34]Jonhson B K, Prud'homme R K. Chemical processing and micromixing in confined impinging jets. AIChE Journal,2003,49(9):2264-2282
    [35]Mahajan A J, Kirwan D J. Micromixing effects in a two-impinging-jets precipitator. AIChE Journal,1996,42(7):1801-1814
    [36]Liu Y, Fox R O. CFD predictions for chemical processing in a confined impinging-jets reactor. AIChE Journal,2006,52(2):731-744
    [37]Machisio D L, Rivautella Liliana, Barresi Antonello A. Design and scale-up of chemical reactors for nanoparticle precipitation. AIChE Journal,2006,52(5): 1877-1887
    [38]Gavi E, Marchisio D L, Barresia A A. CFD modelling and scale-up of Confined Impinging Jet Reactors. Chemical Engineering Science,2007,62(8):2228-2241
    [39]Chiou H, Chan Hak-Kim, Heng D, et al. A novel production method for inhalable cyclosporine A powders by confined liquid impinging jet precipitation. Journal of Aerosol Science,2008,39(6):500-509
    [40]Siddiqui S W, Unwin Peter J, Xu Zhenghe, et al. The effect of stabilizer addition and sonication on nanoparticle agglomeration in a confined impinging jet reactor. Physicochemical and Engineering Aspects,2009,350(1-3):38-50
    [41]Icardi M, Gavi E, Marchisio D L, et al. Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Applied Mathematical Modelling,2010,35(4):1591-1602
    [42]伍沅.浸没循环撞击流反应器.中国专利,CN 2455353Y,2000-07-06
    [43]Takagi M, Maki T, Miyahara M, et al. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chemical Engineering Journal,2004,101(1-3):269-276
    [44]Nagasawa H, Mae K. Development of a new microreactor based on annular microsegments for fine particle production. Industrial and Engineering Chemistry Research,2006,45(7):2179-2186
    [45]Rousseux J M, Falk L, Muhr H, et al. Micromixing efficiency of a novel sliding-surface mixing device. AIChE Journal,1999,45(10):2203-2213
    [46]Rousseux J M, Vial C, Muhr H, et al. CFD simulation of precipitation in the sliding-surface mixing device. Chemical Engineering Science,2001,56(4): 1677-1685
    [47]Oxley P, Brechtelsbauer C, Ricard F, et al. Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals. Industrial and Engineering Chemistry Research,2000,39(7):2175-2182
    [48]Cafiero L M, Baffi G, Chianese A, et al. Process intensification:precipitation of barium sulfate using a spinning disk reactor. Industrial and Engineering Chemistry Research,2002,41(21):5240-5246
    [49]Meeuwse M, Schaaf J van der, Kuster B F M, et al. Gas-liquid mass transfer in a rotor-stator spinning disc reactor. Chemical Engineering Science,2010,65(1): 466-471
    [50]骆广生,孙永.一种膜分散制备超细颗粒的方法.中国专利,CN1318429,2001
    [51]骆广生,陈桂光,徐建鸿,等.微混合技术—颗粒材料制备的关键之一.现代化工,2004,24(7):17-19
    [52]Chen G G, Luo G S, Xu J H, et al. Membrane dispersion precipitation method to prepare nanopartials. Powder Technology,2004,139(2):180-185
    [53]Li Shaowei, Xu Jianhong, Luo Guangsheng. Control of crystal morphology through supersaturation ratio and mixing conditions. Journal of Crystal Growth,2007,304(1):219-224
    [54]李敏,王洁欣,王琦安,等.新型套管式微反应器制备碳酸钙超细颗粒.北京化工大学学报:自然科学版,2008,35(3):14-18
    [55]Wang Y, Xu Dengqing, Sun Haitao, et al. Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaA102 solution. Industrial and Engineering Chemistry Research,2011,50(7):3889-3894
    [56]陈建峰,贾志谦.超重力场中合成立方形纳米CaCO3颗粒与表征.化学物理学报,1997,5:457-460
    [57]陈建峰,刘润静,沈志刚,等.超重力反应沉淀法制备碳酸钙的过程与形态控制.过程工程学报,2002,4:309-313
    [58]Chen J F, Wang Y H, Guo F, et al. Synthesis of nanoparticles with novel technology:high-gravity reactive precipitation. Industrial and Engineering Chemistry Research,2000,39(4):948-954
    [59]Chen Jian-Feng, Zhou Min-Yi, Shao Lei, et al. Feasibility of preparing nanodrugs by high-gravity reactive precipitation. International Journal of Pharmaceutics, 2004,269(1):269-274
    [60]邹海魁,邵磊,陈建峰.超重力技术进展一从实验室到工业化.化工学报,2006,8:1810-1816
    [61]Jung W M, Kang S H, Kim W S, et al. Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor. Chemical Engineering sinence,2000,55(4):733-747
    [62]Scargiali F, Busciglio A, Grisafi F, et al. On the performance of a Taylor-Couette reactor for nano-particle precipitation. Chemical Engineering Transactions,2009, 17:969-974
    [63]初广文,宋云华,陈建铭,等.定-转子反应器制备纳米碳酸钙.化工进展,2005,24(5):545-548
    [64]Meeuwse M, Schaaf J, Kuster B F M, et al. Gas-liquid mass transfer in a rotor-stator spinning disc reactor. Chemical Engineering Science,2010,65(1): 466-471
    [65]Ni Xiongwei, Liao Anting. Effects of cooling rate and solution concentration on solution crystallization of 1-Glutamic acid in an oscillatory baffled crystallizer. Organic Process Research and Development,2008,8(8):2875-2881
    [66]Ni X, Mixing apparatus and process. US Patent,0124145 A1,2010
    [67]Nishida I. Precipitation of calcium carbonate by ultrasonic irradiation. Ultrasonics Sonochemistry,2004,11(6):423-428
    [68]Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry,2004,11(2):47-55
    [69]Kozyuk OV. Hydrodynamic cavitation crystallization process. US Patent, 7041144,2006-05-09
    [70]Shirish H, Sarang P, Kunal H, et al. Hydrodynamic cavitation-assisted synthesis of nanocalcite. International Journal of Chemical Engineering,2010,1:1-7
    [71]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews,2004, 104(9):3893-3946
    [72]黄凯,郭学益,张多默.超细粉末湿法制备工艺的粒子粒度和形貌控制.粉 末冶金材料科学与工程,2005,5:268-276
    [73]Willard H H, Tang Ning Kang. A study of the precipitation of aluminum basic sulfate by urea. Journal of the American Chemical Society,1937,59(7): 1190-1196
    [74]郑用熙.均匀溶液中的沉淀作用—均匀沉淀.北京地质学院学报,1957,1:102-114
    [75]Sugimoto T, Shiba F, Sekiguchi T, et al. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I:silver chloride. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000, 164(2-3):183-203
    [76]Sugimoto T. Monodispersed particles. Elsevier Science BV,2001
    [77]Demopoulos G P. Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy,2009,96(3): 199-214
    [78]Unuma H, Kato S, Ota T, et al. Homogeneous precipitation of alumina precursorsvia enzymatic decomposition of urea. Advanced Powder Technology, 1998,9(2):181-190
    [79]Kara F, Sahin G. Hydrated aluminium sulfate precipitation by enzyme-catalysed urea decomposition. Journal of the European Ceramic Society,2000,20(6): 689-694
    [80]张建英,杨合情,杨瑞丽,等.金属镍基质上直立六边形NiO纳米片的制备与光催化性能.科学通报,2007,17:2015-2020
    [81]焦华,杨合情,宋玉哲,等.Fe304八面体微晶的水热法制备与表征.化学学报,2007,20:2336-2342
    [82]刘志宏.镍钴草酸盐制备中的形貌与粒度控制:[博士学位论文].长沙:中南大学,2007
    [83]许开华,何显达,韩红涛.低氧亚微米钴粉及其草酸钴前驱体和制造方法.CN201010044473.3.2010-01-18
    [84]何显达,许开华.亚微米草酸钴棒状粉体及其制备方法.CN201010179877.3,2010-05-13
    [85]Sugimoto Tadao, Sakata Kazuo. Preparation of monodisperse pseudocubic [alpha]-Fe2O3 particles from condensed ferric hydroxide gel. Journal of Colloid and Interface Science,1992,152(2):587-590
    [86]古宏晨,胡黎明.超细a-FeOOH制备过程研究Ⅰ.制备工艺.华东化工学院 学报,1992,4:467-471
    [87]周根陶,郑永飞,刘双怀.一种新的制备超微粉末的方法—沉淀转化法.科学通报,1996,4:321-323
    [88]周根陶,刘双怀,郑永飞.沉淀转化法制备不同形状的氢氧化镍及氧化镍超微粉末的研究.无机化学学报,1997,1:43-47
    [89]Kim F, Song J, Yang P. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society,2002,124(48):14316-14317
    [90]Lee K, Seo W, Park J. Synthesis and optical properties of colloidal tungsten oxide nanorods. Journal of the American Chemical Society,2003,125(12): 3408-3409
    [91]Randolph A D, Larson Maurice A. Theory of particulate processes:Analysis and techniques of continuous crystallization. Academic Press,1988
    [92]Aoun-Habbache M, Guillemet-Fritsch S, Lemaitre J, et al. Investigation of nucleation and crystal growth kinetics of nickel manganese oxalate. Journal of Crystal Growth,2005,279:531-539
    [93]Aoun M, Plasari E, David R, et al. A simultaneous determination of nucleation and growth rates from batch spontaneous precipitation. Chemical Engineering Science,1999,54(9):1161-1180
    [94]Collier A, Hounslow M. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE Journal,1999,45(11):2298-2305
    [95]Zauner R, Jones A. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data:the calcium oxalate system. Chemical Engineering Science,2000,55:4219-4232
    [96]Wei H, Garside J. Application of CFD modelling to precipitation systems. Chemical Engineering Research and Design,1997,75(2):219-227
    [97]Baldyga J, Orciuch W. Barium sulphate precipitation in a pipe-an experimental study and CFD modelling. Chemical Engineering Science,2001,56(7): 2435-2444
    [98]Ramkrishna D. Population balances:theory and applications to particulate systems in engineering. Academic Press,2000
    [99]Marchisio D L, Fox Rodney O. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science,2005, 36(1):43-73
    [100]Vicum Lars. Investigation of the influence of turbulent mixing on precipitation processes carried out in stirred tank reactors:[PhD thesis]. Zurich:ETH,2005
    [101]Myerson A S. Handbook of industrial crystallization. Butterworth-Heinemann Ltd.,2002
    [102]Garside J, Mersmann A, Nyvlt J. Measurement of crystal growth and nucleation rates. UK, Institution of Chemical Engineers,2002
    [103]Masuda H, Higashitani K, Yoshida H. Powder technology handbook. Taylor and Trancis,2006
    [104]Miller S M, Rawlings James B. Model identification and control strategies for batch cooling crystallizers. AIChE Journal,1994,40(8):1312-1327
    [105]Patience D B. Crystal engineering through particle size and shape monitoring, modeling, and control:[PhD thesis]. US:University of Wisconsin-Madison, 2002
    [106]Braatz R D. Particle size and shape control in crystallization processes. AIChE Symposium Series,2002
    [107]Fujiwara M, Nagy Zoltan K, Chew Jie W, et al. First-principles and direct design approaches for the control of pharmaceutical crystallization. Journal of Process Control,2005,15(5):493-504
    [108]Bakeev K A. Process Analytical Technology. Blackwell Publishing Ltd.,2005
    [109]Mougin P, Wilkinson Derek, Roberts Kevin J, et al. Characterization of particle size and its distribution during the crystallization of organic fine chemical products as measured in situ using ultrasonic attenuation spectroscopy. Acoustical Society of America,2001,109(1):274-282
    [110]Mougin P, Thomas Alistair, Wilkinson Derek, et al. On-line monitoring of a crystallization process. AIChE Journal,2003,49(2):373-378
    [111]Agarwal P, Berglund K. In situ monitoring of calcium carbonate polymorphs during batch crystallization in the presence of polymeric additives using Raman spectroscopy. Crystal Growth and Design,2003,3(6):941-946
    [112]Dunuwila D, Berglund K. ATR FTIR spectroscopy for in situ measurement of supersaturation. Journal of Crystal Growth,1997,179(1-2):185-193
    [113]Togkalidou T, Fujiwara M, Patel S, et al. Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. Journal of Crystal Growth,2001, 231(4):534-543
    [114]Dai Yajun. In-line monitoring of precipitation process using Raman spectroscopy and ATR-FTIR:[MSc thesis]. Lappeenranta University of Technology:2007
    [115]Fevotte G, Calas J, Puel F, et al. Applications of NIR spectroscopy to monitoring and analyzing the solid state during industrial crystallization processes. International Journal of Pharmaceutics,2004,273(1-2):159-169
    [116]陆淑引,许晓文,王新省,等编著.离子平衡及其数学处理.天津:南开大学出版社,1989
    [117]李以圭,陆九芳编著.电解质溶液理论.北京:清华大学出版社,2005
    [118]Zemaitis J, Clark D, Rafal M, et al. Handbook of aqueous electrolyte thermodynamics:Theory & Application. Wiley-Blackwell,1986
    [119]Bundschuh T, Knopp R, Muller R, et al. Application of LIBD to the determination of the solubility product of thorium (Ⅳ)-colloids. Radiochimica Acta,2000,88(9-11):625-629
    [120]Scholl J, Bonalumi D, Vicum L, et al. In situ monitoring and modeling of the solvent-mediated polymorphic transformation of L-glutamic acid. Crystal Growth and Design,2006,6(4):881-891
    [121]周性尧编著.分析化学中的离子平衡.北京:科学出版社,1998
    [122]Cookson R F. The determination of acidity constants. Chemical Reviews,1974, 74(1):5-28
    [123]Bundschuh T, Knopp R, Muller R, et al. Application of LIBD to the determination of the solubility product of thorium (Ⅳ)-colloids. Radiochimica Acta,2000,88(9-11):625-629
    [124]Hefter G T, Tomkins R P T. The experimental determination of solubilities. US: John Wiley and Sons Ltd,2003
    [125]Butler J N. Ionic equilibrium:a mathematical approach. Addison-Wesley Educational Publishers Inc.,1964
    [126]Clark Roy W, Bonicamp Judith M. The Ksp-solubility conundrum. Journal of Chemical Education,1998,75(9):1182
    [127]姚允斌,解涛,高英敏编.物理化学手册.上海:上海科学技术出版社出版,1986
    [128]Dean J A. Lange's handbook of chemistry. The McGraw-Hill Companies,1999
    [129]Patnaik P. Dean's analytical chemistry handbook. The McGraw-Hill Professional,2004
    [130]Lide R D. CRC Handbook of chemistry and physics. CRC Press,2010
    [131]王淀佐,胡岳华编著.浮选溶液化学.长沙:湖南科学技术出版社,1987
    [132]Ringbom A. Complexation in analytical chemistry:a guide for the critical selection of analytical methods based on complexation reactions. John Wiley & Sons Inc,1963
    [133]夏玉宇编著.化验员使用手册.北京:化学工业出版社,1999
    [134]陈家镛,杨守志,柯家骏主编.湿法冶金手册.北京:冶金工业出版社,2005
    [135]闫旭主编.湿法冶金新工艺新技术及设备选型应用手册.北京:冶金工业出版社,2006
    [136]Weiner E R. Applications of environmental aquatic chemistry:a practical guide. CRC Press,2008
    [137]斯塔姆,摩尔根著.汤鸿霄译.水化学:天然水体化学平衡导论.北京:科学出版社,1987
    [138]刘建华,李新海,郭炳昆等.氢氧化亚镍制备中[NH3]-[Ni2+]-pH的相互关系研究.湘潭矿业学院学报,1997,4:61-64
    [139]石西昌,赵瑞荣,蒋汉瀛.Zn-Cl-NH3-CO32--H2O系的热力学分析.中南工业大学学报,1998,2:193-196
    [140]秦毅红,王云燕.Bi3+-Cl--H2O系热力学平衡.中国有色金属学报,2000,2:245-249
    [141]Ju Shaohua, Tang M, Yang S, et al. Thermodynamics of Cu(II)-NH3-NH4Cl-H2O. Transactions of Nonferrous Metals Society of China,2005,6: 1414-1419
    [142]王瑞祥,唐谟堂,巨少华,等.Ni(II)-NH3-Cl-H2O体系中Ni(Ⅱ)配合平衡热力学.中南大学学报(自然科学版),2008,5:891-896
    [143]周敏,闵小波,柴立元,等.Ni-NH3-H2O系热力学平衡研究.有色金属(冶炼部分),2009,1:2-5
    [144]周小兵,代建清,陈辉,等.Me-NaHCO3-NH3-H2O体系和Me-NaOH-NaHCO3-H2O体系的热力学分析.无机化学学报,2009,4:602-608
    [145]王瑞祥,唐谟堂,曾婕.Mg(II)-NH3-NH4Cl-H2O体系中Mg(Ⅱ)配合平衡热力学.中国有色冶金,2010,1:69-73
    [146]李波.金属碳酸盐沉淀过程的热力学分析.稀有金属与硬质合金,2005,2:4-8
    [147]周小兵,代建清,蔡进红.化学共沉淀法制备NiCuZn铁氧体前驱体的热力学分析.硅酸盐学报,2009,1:23-28
    [148]佟志芳,李艳龙,杨光华,等.碳化法制备氧化锌前躯体热力学分析及其产物表征.无机盐工业,2010,5:35-38
    [149]Mostafa M G, Matsumoto A, Wase K, et al. Simulation of chemical phenomena in the Co(NO3)2-Na2CO3-H2O system based on a thermodynamic model. Hydrometallurgy,2000,57(2):97-108
    [150]Marani D, Macchi G, Pagano M. Lead precipitation in the presence of sulphate and carbonate:Testing of thermodynamic predictions. Water Research,1995, 29(4):1085-1092
    [151]Guo Xueyi, Huang K, Zhang D M. Preparation of basic nickel carbonate particles in solution system of Ni(II)-NH3-CO32--H2O. Transactions of Nonferrous Metals Society of China,2004,5:1006-1011
    [152]杨天足,任晋,刘伟锋,等. Zn(II)-Glu2--CO32--H2O体系热力学平衡分析.中国有色金属学报,2009,6:1155-1161
    [153]杨天足,刘珍珍,任晋,等.Cu(II)-Glu2--CO32--H2O体系热力学平衡分析.过程工程学报,2009,4:745-749
    [154]Vereecke. Calculation of the solubility diagrams in the system Ca(OH) 2-H3PO4-KOH-HNO3-CO2-H2O. Journal of Crystal Growth,1990,104(4): 820-832
    [155]Moutin T, Gal J Y, El Halouani H, et al. Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate:Theoretical and experimental results. Water Research,1992,26(11):1445-1450
    [156]王士斌,胡亮.Ca(OH)2和H3P04制备P-Ca3(PO4)2生物陶瓷粉末的研究.昆明理工大学学报,1999,3:92-96
    [157]Song Quansheng, Tang Zhiyuan, Guo Hetong, et al. Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values. Journal of Power Sources,2002,112(2):428-434
    [158]李丽匣,韩跃新,朱一民.碳酸钙晶须合成过程中可溶性磷酸盐的作用机理研究.无机化学学报,2008,5:737-742
    [159]Park Y, Kim S H, Matalon S, et al. Effect of phosphate salts concentrations, supporting electrolytes, and calcium phosphate salt precipitation on the pH of phosphate buffer solutions. Fluid Phase Equilibria,2009,278(1-2):76-84
    [160]姜科,周康根,彭佳乐.NH4+-Mg2+-PO43--H+-H2O体系的固液平衡热力学.中南大学学报(自然科学版),2009,5:1178-1182
    [161]Al-Tarazi M, Heesink A, Versteeg G The precipitation of water dissolved metals using gaseous hydrogen sulfide:mathematical modeling. Chemical Engineering Science,2004,3:567-579
    [162]Mokone T P, van Hille R P, Lewis A E. Effect of solution chemistry on particle characteristics during metal sulfide precipitation. Journal of Colloid and Interface Science,2010,351(1):10-18
    [163]邬建辉,张传福.纤维状纳米级镍粉制备的前驱体热分解.有色金属,2003,4:24-27
    [164]Zhan J, Zhang C F, Li T J, et al. Thermodynamic analysis on preparation of fibrous NiO precursor powders with oxalate precipitation process. Transactions of Nonferrous Metals Society of China,2005,15(4):926-930
    [165]董成勇,张传福,湛菁,等.纤维状复杂钴盐的制备.矿冶工程,2006,4:54-57
    [166]Fan You-qi, Zhang Chuan-fu, Wu Jian-hui, et al. Composition and morphology of complicated copper oxalate powder. Transactions of Nonferrous Metals Society of China,2010,20(1):165-170
    [167]王云燕,柴立元,王庆伟,等.重金属离子(Zn2+, Cu2+, Cd2+, Pb2+)-水系羟合配离子配位平衡研究.中国有色金属学报,2008,E01:183-191
    [168]何良惠,冉均国,李自强.钼酸铵溶液中除铜、铁的热力学讨论.成都科技大学学报,1987,4:23-30
    [169]李正山,金鹏.湿法处理工业废渣热力学分析.四川环境,1995,03:29-34
    [170]刘定富,葛丽颖.选择性沉淀法分离电镀废水中铜和镍的研究.贵州化工,2008,33(3):1-3
    [171]张保平,唐谟堂,杨声海.共沉淀法制备锰锌软磁铁氧体前躯体共沉过程中钙、镁深度脱除的热力学分析.湿法冶金,2003,4:200-203
    [172]张保平,唐朝波,唐谟堂,等.Mg(II)-Ca(II)-NH3-CO32--SO42--H2O体系钙镁溶解热力学分析.湿法冶金,2005,1:26-32
    [173]何显达,郭学益,李平,等.从人造金刚石触媒酸洗废液中回收镍、钴和锰.湿法冶金,2005,3:150-154
    [174]冉均国,郑昌琼,尹光福,等.碳酸盐共沉法制取锰锌铁氧体超细粉末的热力学分析.四川大学学报(工程科学版),1993,69(2):1-6
    [175]Rubattel S, Lemaitre J, Bowen P, et al. Aqueous solubility of Y, Ba and Cu oxalates in the system [Y(OH)3, Ba(OH)2, Cu(OH)2]-H2C2O4-[HNO3/NaOH]-H2O. Journal of Crystal Growth,1994,134 (1-2):135-144
    [176]毛传斌,杜泽华,周廉.共沉淀法制备Bi系超导体原始粉末的热力学分析.稀有金属材料与工程,1996,25(2):10-16
    [177]郑昌琼,冉均国.草酸盐共沉淀法制取优质锰锌铁氧体微细粉末的热力学 分析.稀有金属,1997,2:101-104
    [178]Choy J, Han Y. Citrate route to the piezoelectric Pb(Zr, Ti)O3 oxide. Journal of Materials Chemistry,1997,7(9):1815-1820
    [179]彭忠东,杨建红,邹忠,等.共沉淀法制备掺杂氧化锌压敏陶瓷粉料热力学分析.无机材料学报,1999,5:733-738
    [180]李伯刚,尹光福.制备软磁锰锌铁氧体粉的共沉淀条件的热力学分析.稀有金属,1996,6:421-424
    [181]Marta L, Horovitz O, Zaharescu M. Analytical study of oxalates coprecipitation. Leonardo Journal of Sciences,2003,2(2):72-82
    [182]苏继桃,苏玉长,赖智广,等.共沉淀法制备镍、钴、锰复合碳酸盐的热力学分析.硅酸盐学报,2006,6:695-698
    [183]薛平,郭学益,田庆华,等.共沉淀法制备Sm2Fe17合金前驱体的热力学分析.湿法冶金,2007,3:136-138
    [184]苏继桃,苏玉长,赖智广.制备镍、钴、锰复合氢氧化物的热力学分析.电池工业,2008,1:18-22
    [185]郭学益,徐刚,薛平,等.共沉淀法制备Fe33Ni15Co2合金前驱体的热力学分析.湿法冶金,2008,1:15-18
    [186]刘丹,叶乃清,赵巧丽,等.共沉淀法制备球形镍锰复合草酸盐的最佳pH.材料导报,2008,S3:206-208
    [187]蔡进红,代建清,周小兵.共沉淀法合成Zn掺杂C02-Y平面六角铁氧体粉的热力学分析.无机化学学报,2008,12:1943-1948
    [188]周小兵,代建清,蔡进红.化学共沉淀法制备NiCuZn铁氧体前驱体的热力学分析.硅酸盐学报,2009,1:23-28
    [189]蔡进红,代建清,陈文国,等.Fe3+/Ba2+/Co2+/Zn2+/Cu2+在NH4HCO3-NH3H2O和NaOH-Na2CO3体系中的热力学分析.无机化学学报,2009,5:886-892
    [190]Toprak M, Darab M, Syvertsen G, et al. Synthesis of nanostructure BSCF by oxalate co-precipitation. International Journal of Hydrogen Energy,2010, 35(17):9448-9454
    [191]肖新颜,叶永清.共沉淀法合成Nil/3Col/3Mnl/3(OH)2的热力学分析.华南理工大学学报(自然科学版),2010,4:30-34
    [192]万绍平,张刚,曹二斌,等.化学共沉淀法制备MgMnZn铁氧体前驱体的热力学分析.硅酸盐学报,2010,6:1013-1019
    [193]Soare L C, Lemaitre J, Bowen P, et al. A thermodynamic model for the precipitation of nanostructured copper oxalates. Journal of Crystal Growth, 2006,289(1):278-285
    [194]王云燕,彭小玉,柴立元,等.CaSO4-Ca(OH)2-H2O体系中硫酸根的平衡浓度.过程工程学报,2009,9(1):84-87
    [195]Stella Lacour, Rob P Van Hille, Karen Peterson, et al. Comparison of simulators for process and aqueous chemistry modeling. AIChE Journal,2005,51(8): 2358-2368
    [196]何显达,叶红齐,许开华,等.镍钴草酸盐共沉淀体系的过饱和态演变规律.硅酸盐学报,2010,38(7):1235-1240
    [197]何显达.人造金刚石酸洗触媒废液中镍,钴,锰回收研究:[硕士学位论文].长沙:中南大学,2005
    [198]Donnet M, Bowen P, Lemaitre J, et al. A thermodynamic solution model for calcium carbonate:Towards an understanding of multi-equilibria precipitation pathways. Journal of Colloid and Interface Science,2009,340:218-224
    [199]巨少华,唐谟堂,杨声海.用MATLAB编程求解Zn(II)-NH4Cl-NH3-H2O体系热力学模型.中南大学学报(自然科学版),2005,5:821-827
    [200]王云燕,彭小玉,柴立元,等.CaSO4-Ca(OH)2-H2O体系中硫酸根的平衡浓度.过程工程学报,2009,9(1):84-87
    [201]Gorban A N, Karlin I. Invariant manifolds for physical and chemical kinetics. Springer,2005
    [202]Green D, Perry R. Perry's chemical engineerings' handbook 8th edition. Leib Tiberiu M. Section 7 Reaction kinetics. McGraw-Hill Professional,2007
    [203]Gorban A N, Radulescu O, Zinovyev A Y. Asymptotology of chemical reaction networks. Chemical Engineering Science,2010,65(7):2310-2324
    [204]McNaught A, Wilkinson A. IUPAC compendium of chemical terminology. IUPAC,2007
    [205]Stumm Werner. Aquatic chemical kinetics:reaction rates of processes in natural waters. Wiley,1990
    [206]Bowen J, Acribos A, Oppenheim A. Singular perturbation refinement to quasisteady state approximation in chemical kinetics. Chemical Engineering Science,1963,18(3):177-188
    [207]Segel L, Slemrod M. The quasi-steady-state assumption:a case study in perturbation. SIAM Review,1989,31(3):446-477
    [208]Laidler K. Theories of chemical reaction rates. McGraw-Hill,1969
    [209]Chaudhury S, Igoshin O. Dynamic disorder in quasi-equilibrium enzymatic systems. PLoS ONE,2010,5(8):1-10
    [210]Song Y, Hahn H, Hoffmann E. Effects of solution conditions on the precipitation of phosphate for recovery:A thermodynamic evaluation. Chemosphere,2002,48:1029-1034
    [211]王金锋,高雅春,谢志鹏,孙加林.pH对ZrO2超细粉体料浆性能的影响.人工晶体学报,2007,36(1):70-75
    [212]Deng X, Chen X. Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance. Materials Letters,2004,58: 276-280
    [213]李自强,李春,何良惠,李升章,王祖森.软磁材料锰锌铁氧体共沉粉料的研制.四川联合大学学报(工程科学版),1997,1(5):23-29
    [214]李继光,孙旭东,茹红强,郝士明.湿化学法合成单分散陶瓷超微粉体的基本原理.功能材料,1997,28(4):333-336
    [215]Samaele N, Amornpitoksuk P, Suwanboon. Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method. Powder Technology,2010,203:243-247
    [216]Panias D, Krestou A. Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions. Powder Technology,2007, 175:163-173
    [217]Hove M, Hill R, Lewis A. Mechanisms of formation of iron precipitates from ferrous solutions at high and low pH. Chemical Engineering Science,2008, 63(6):1626-1635
    [218]李春花,娄彦良.pH对ZrO2粉体的收得率、晶体结构和粒度的影响.功能材料,2000,31(2):219-120
    [219]李东升,王文亮,杨文选,巩育军,史振民.pH对沉淀法制备Cu2(OH)3Cl-CuO超细粉体催化活性的影响.无机化学学报,1999,15(6):817-820
    [220]王德平,王璐,黄文里.pH对化学沉淀法制备纳米羟基磷灰石的影响.同济大学学报(自然科学版),2005,33(1):93-98
    [221]王连洲,范福康.pH对化学共沉淀法制备SrTiO3粉料性能的影响.硅酸盐通报,1999,1:3-8
    [222]Carter G, Hart R, Rowles M, Ogden M, Buckley C. Industrial precipitation of yttrium chloride and zirconyl chloride Effect of pH on ceramic properties for yttria partially stabilised zirconia. Journal of Alloys and Compounds,2009,480: 639-644
    [223]全学军,李大成.草酸络合物沉淀法制备钛酸钡超细粉的研究.四川大学学报(工程科学版).2001,33(4):78-81
    [224]王超男,王志芳,张慰萍,尹民.前驱体溶液的pH对Y2O3:Eu3+荧光粉发光性质的影响.原子与分子物理学报,2008,25(4):760-766
    [225]宋云京,李木森,温树林,姜庆辉,宿庆财.温度和pH对羟基磷灰石粉体合成的影响.硅酸盐通报,2003,2:7-10
    [226]Soare L. Precipitation and transformation of nanostructured copper oxalate and copper/cobalt composite precursor synthesis:[PhD thesis]. Switzerland: Lausanne, EPFL,2004
    [227]Mokone T, Hille R, Lewis A. Effect of solution chemistry on particle characteristics during metal sulfide precipitation. Journal of Colloid and Interface Science,2010,351:10-18
    [228]Steyer C, Sundmacher K. Impact of feeding policy and ion excess on particle shape in semi-batch precipitation of barium sulfate. Journal of Crystal Growth, 2009,311:2702-2708
    [229]Wang X, Xu H, Wang H, Yan H. Morphology-controlled BaWO4 powders via a template-free precipitation technique. Journal of Crystal Growth,2005,284: 254-261
    [230]韩业斌,梅燕,聂祚仁.沉淀法制备纳米Ce02粒子的化学原理及影响因素研究.材料导报,2006,20:156-158
    [231]张艾飞,刘吉平.沉淀法制备纳米氧化铝粉体的新工艺研究.无机盐工业,2003,2:27-28
    [232]徐跃萍,郭景坤.共沉淀中反应物浓度、反应过程pH对纳米粉末性能的影响硅酸盐学报,1993,21(3):280-284
    [233]向波,谢志刚,贺跃辉,黄艳华.金刚石制品用Fe-Co-Cu预合金粉末的制备及其粒度控制.粉末冶金材料科学与工程,2007,12(2):123-128
    [234]丁士文,张绍岩,刘淑娟,丁宇,康全影,刘燕朝.直接沉淀法制备纳米ZnO及其光催化性能.无机化学学报,2002,18(10):1015-1019
    [235]Song Y, Hahn H, Hoffmann E. Effects of solution conditions on the precipitation of phosphate for recovery A thermodynamic evaluation. Chemosphere,2002,48:1029-1034
    [236]王金锋,高雅春,谢志鹏,孙加林.pH对Zr02超细粉体料浆性能的影响.人工晶体学报,2007,36(1):70-75
    [237]Panias D, Krestou A. Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions. Powder Technology,2007, 175:163-173
    [238]Sorensen J, Madsen H. The influence of magnetism on precipitation of calcium phosphate. Journal of Crystal Growth,2000,216:399-406
    [239]郭学益,徐刚,薛平,田庆华,刘海涵.共沉淀法制备Fe33Ni15Co2合金前驱体的热力学分析.湿法冶金,2008,27(1):15-17
    [240]智科端,丛艳丽,何润霞,刘全生.铜锰复合氧化物沉淀法合成过程及催化性能研究.第十一届全国青年催化会议论文集,2007
    [241]邓祥义.液相化学法制备纳米NiO的沉淀过程研究.黄石理工学院学报,2007,23(5):15-18
    [242]Rodriguez-Paez J, Caballero A, Villegas M, Moure C, Duran P, Fernandez J. Controlled precipitation methods formation mechanism of ZnO nanoparticles. Journal of the European Ceramic Society,2001,21:925-930
    [243]Feng Q, Cui F, Wang H, Kim T, Kim J. Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth,2000,210:735-740
    [244]Mostafa M, Matsumoto A, Wase K, Kishi Y. Simulation of chemical phenomena in the cobalt nitrate-NaCO3-H2O system based on a thermodynamic model. Hydrometallurgy,2007,57:97-108
    [245]李文选,李改变.草酸镍的制备与研究.中国有色金属冶金,2009,6:63-66
    [246]顾珩,刘志强,李杏英,陈怀杰.超细草酸镍沉淀过程中颗粒大小及形貌控制.广东有色金属学报,2006,16(3):176-179
    [247]童长钿,李启厚,赖复兴,艾侃.超细草酸镍粒子的制备及其形状和粒度控制.湿法冶金,2003,1:22-27
    [248]黄凯,郭学益,张多默.固相诱导沉淀法制备单分散NiO微粒.硬质合金,201 0,27(2):53-87
    [249]李国军,任瑞铭,黄校先,郭景坤.纳米晶氧化镍的制备及表征.无机化学学报,2004,20(3):287-290
    [250]Hounslow M, Bramley A, Paterson W. Aggregation during precipitation from solution. A pore diffusion-reaction model for calcium oxalate monohydrate. Journal of Colloid Interface Science,1998,203:383-391
    [251]Kucher M, Babic D, Kind M. Precipitation of barium sulfate:Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation. Chemical Engineering Process,2006,45:900-907
    [252]蔡进红,代建清,陈文国,等.Me-NaHCO3-NH3-H2O体系和Me-NaOH-NaHCO3-H2O体系的热力学分析.无机化学学报,2009,25(5):602-608
    [253]黄凯.可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度与形貌控制研究.长沙:中南大学,2003
    [254]何显达,许开华.球形草酸钴粉体及其制造方法.中国专利,200910107586.0,2009-06-9
    [255]李天才,党敏灵.湿浸硫酸镍工艺中锰,铁,镍的分离.湿法冶金,1997,3:29-31
    [256]林才顺.从湿法硫酸镍中去除锰、铁的新工艺研究.湿法冶金,2002,21(3):139-142
    [257]罗允义.广西镍钴锰矿的湿法冶金.湿法冶金,2002,21(1):32-35
    [258]王亚雄,黄迎红.从钴土矿中提取有价金属的实验研究.湿法冶金,2008,27(1):28-30
    [259]孙春宝,吕继有,李浩然.大洋多金属锰结核酸浸贵液中铁锰元素的脱除.中国有色金属学报,2006,16(3):542-549
    [260]Zhang W, Cheng C. Manganese metallurgy review. Part I:Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide, Hydrometallurgy,2007,89:137-159
    [261]Zhang W, Cheng C. Manganese metallurgy review. Part II:Manganese separation and recovery from solution. Hydrometallurgy,2007,89:160-177
    [262]张利军,董丙成.三价锰光度法快速测定铬镍锰合金中高含量锰.莱钢科技,2006,1:42-43
    [263]孟海涛,赵肃莹,王忠兵.沉淀剂对制备Ni-Mn-O系热敏陶瓷的影响.硅酸盐通报,2010,29(3):588-591
    [264]何平,杨立红,谢燕婷,等.正极材料镍锰酸锂LiNixMn1-xO2(0    [265]卢华权,吴锋,苏岳锋,等.草酸盐共沉淀法制备锂离子电池正极材料LiNi0.5Mn0.5O2及其电化学性能.物理化学学报,2010,26(1):51-56
    [266]何家成.氨法回收人造金刚石酸洗废液中的镍,钻,锰.中国物资再生,1997,6:10-12
    [267]李天才,党敏灵.湿浸硫酸镍工艺中锰,铁,镍的分离.湿法冶金,1997,3:29-31
    [268]罗允义.广西镍钴锰矿的湿法冶金.湿法冶金,2002,21(1):32-35
    [269]王亚雄,黄迎红.从钻土矿中提取有价金属的实验研究.湿法冶金,2008,27(1):28-30
    [270]孙春宝,吕继有,李浩然.大洋多金属锰结核酸浸贵液中铁锰元素的脱除.中国有色金属学报,2006,1 6(3):542-549
    [271]周勤俭,李先柏,杨静,等.大洋多金属结核盐酸浸出工艺中分离镍锰及回收锰.湖南冶金,1997,4:16-18
    [272]周国英,刘采英.镍锰合金的分离与回收.武汉化工学院学报,1980,2:5-10
    [273]Zhan J, Zhuang C, Li T, Wu J. Thermodynamic analysis on preparation of fibrous NiO precursor powders with oxalate precipitation process. Trans Nonferrous Metals Society China,2005,15(4):926-930
    [274]Fan You-qi, Zang Chuan-fu, Zhan J, Wu Jian-hui. Thermodynamic equilibrium calculation on preparation of copper oxalate precursor powder. Transaction of Nonferrous Metals Society of China,2008,18:454-458
    [275]Bramley A, Hounslow M, Ryall R. Aggregation during precipitation from solution. Kinetics for calcium oxalate monohydrate. Chemical Engineering Science,1996,52(5):747-757
    [276]Kucher M, Babic D, Kind M. Precipitation of barium sulfate:Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation, Chemical Engineering and Processing.2006,45:900-907
    [277]程文婷,李志宝,柯家骏.MgCO3·3H2O晶体生长及晶形的影响因素.中国有色金属学报,2008,18(S1):230-235
    [278]Soare L, Bowen P, Lemaitre J, et al. Precipitation of nanostructured copper oxalate:substructure and growth mechanism. The Journal of Physical Chemistry B,2006,110:17763-17771
    [279]Liu Sha, Xu Kaihua, Wang Min. Preparation of Co Powders for Cemented Carbides in China. International Journal Refractory Metals and Hard Materials, 2006,24(6):405-412
    [280]黄明雯,宋鹂,张金朝.草酸钴对钴蓝颜料性能的影响.华东理工大学学报(自然科学版),2008,34(4):533-536
    [281]廖春发,梁勇,陈辉煌.由草酸钴热分解制备C0304及其物性表征.中国有色金属学报,2004,14(12):2131-2136
    [282]胡雷,刘志宏.四氧化三钻粉末的制备与应用现状.粉末冶金材料科学与工程,2008,13(4):195-200
    [283]Xu C, Liu Y, Xu Q et al. Fabrication of CoO nanorods via thermal decomposition of CoC2O4 precursor. Chemical Physics Letters,2002, 366(5-6):567-571
    [284]Aragon M, Leon B, Vicente C, et al. Cobalt oxalate nanoribbons as negative-electrode material for lithium-ion batteries. Chemistry of Materials, 2009,21(9):1834-1840
    [285]余宗学,陈莉芬,陆路德,等.草酸钴原位催化高氯酸铵热分解的DSC/TG-MS研究.催化学报,2009,30(1):19-23
    [286]徐明晗,丁时峰,宋鹏,等.用沉淀法制备草酸钴粉体.硅酸盐学报,2008,36(3):367-372
    [287]Ahmed J, Ahmad T, Kandalam V, et al. Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. Journal of Colloid and Interface Science,2008,321(2):434-441
    [288]Liang Y, Yang S, Yi Z, et al. Low temperature synthesis of a stable MoO2 as suitable anode materials for lithium batteries. Materials Science and Engineering B,2005,121:152-155
    [289]Salavati-Niasari M, Mohandes F, Davar F. Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron,2009,28:2263-2267
    [290]Ahmad T, Vaidya S, Sarkar N, et al. Zinc oxalate nanorods:a convenient precursor to uniform nanoparticles of ZnO. Nanotechnology,2006,17: 1236-1240
    [291]管洪波,王培,王晖,赵璧英,朱月香,谢有畅.高比表面纳米MgO的制备及其影响因素研究.物理化学学报,2006,22(7):804-808
    [292]袁平.草酸钴沉淀工艺对钴粉粒度影响的研究.硬质合金,2001,18(1):12-15
    [293]柳召刚,李梅,史振学,胡艳宏,王觅堂,国树山.草酸盐沉淀法制备超细氧化铈.中国稀土学报,2008,26(5):666-670
    [294]高玮,古宏晨.稀土草酸盐沉淀过程中颗粒大小的控制.稀土,2000,21(1):11-13
    [295]Wen Y, Xiang L, Jin Y. Synthesis of plate-like calcium carbonate via carbonation route. Materials Letters,2003,57:2565-2571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700