用户名: 密码: 验证码:
界面聚合法成膜过程观测及分离CO_2复合膜制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面聚合法已成功应用于商业化反渗透膜和纳滤膜的制备,在制备气体分离膜方面也表现出巨大的应用潜力。然而,界面聚合成膜过程的相关研究报道较少,同时,界面聚合分离气体复合膜的“制备—结构—性能”关系尚不明晰。基于此,本文分别以N-甲基二乙醇胺(MEDA)和均苯三甲酰氯(TMC)为水相和有机相单体,开发了两种可视化技术对界面聚合成膜过程进行研究,同时还探明了界面聚合分离气体复合膜的“制备—结构—性能”关系。
     采用视频光学接触角测量仪(OCA)对界面聚合过程中水相悬滴浸入有机相中的形貌以及所形成的膜的形貌进行了研究。首先,通过观察水相悬滴浸入有机相中的形貌变化,证实界面聚合膜朝有机相生长。其次,研究了多种聚合条件对界面聚合过程中膜形貌的影响,结果发现界面聚合膜上通常会出现“胞状”结构。膜上的“胞状”结构的产生归因于所形成的具有巨大表面能的初生膜处于热力学不稳定状态。最后,实验验证了界面聚合过程中形成的膜表面“胞状”结构最终会形成粗糙的复合膜表面。
     采用光学显微镜对界面聚合过程中膜形貌进行可视化研究。首先对界面聚合过程中两相单体的扩散进行分析,结果表明两相单体的扩散都导致水相-有机相界面处界面不稳定性的产生。其次,研究发现界面聚合膜形貌为典型的多尺度形貌,膜表面较小尺度的“胞状”结构均匀分布在较大尺度的凹凸不平的结构上。界面聚合膜表面较小尺度的“胞状”结构的产生归因于所形成的具有巨大表面能的初生膜处于热力学不稳定状态;而反映了水相-有机相界面处波动的膜表面较大尺度的凹凸不平归因于聚合过程中界面处存在的水相单体浓度梯度所引起的界面不稳定性。
     在涂敷一层硅橡胶(PDMS)涂层的聚砜(PS)超滤膜上界面聚合制备复合膜用于CO_2/N_2分离。利用多种测试手段对复合膜分离层的结构参数进行表征。研究了复合膜的“制备—结构—性能”关系。结果表明,同时具有高CO_2渗透速率和高CO_2/N_2分离因子的复合膜具有较薄的分离层厚度、较高的分离层交联度和较低的分离层结晶度。上述高性能气体分离膜可以按照以下两条原则制得:①增加水相单体在有机溶剂中的扩散性而降低水相单体在有机溶剂中的溶解性;②适当降低有机相单体浓度同时适当增加水相单体浓度。以上结论对气体分离复合膜的可控制备具有重要意义。
Interfacial polymerization (IP) has been a well-established method for thepreparation of commercially thin film composite (TFC) reverse osmosis (RO) andnanofiltration (NF) membranes. Moreover, it has been proved that IP is also aneffective way for the synthesis of gas separation membranes. However, little attentionhas been paid to the study of IP film formation. Meanwhile, no information has beenreported on studying the formation-structure-performance relationship for interfaciallypolymerized TFC gas separation membranes. Based on the above consideration, thisstudy makes attempts to develop two techniques to visualize the film formation by IP,as well as to elucidate the formation-structure-performance relationship forinterfacially polymerized TFC gas separation membranes based on the reaction ofN-methyldiethanolamine (MEDA) and trimesoyl chloride (TMC).
     An optical contact angle measuring device (OCA) was used to visualize themorphology of pendant drop of aqueous solution immersed in organic solution andthe film formed during IP process. Firstly, the variations of the morphology ofpendant drop of aqueous solution were studied, the results offered in-situexperimental evidence for the growth of interfacial film towards the organic phase.Furthermore, the effects of various synthesis conditions on film morphology werestudied. It was found that the bubbles were generally appeared on the films. Thebubbles on the films were attributed to the instability arising from the formation of thenascent solid thin film with a huge surface energy. The bubbles on the films couldultimately result in the rough membrane surface.
     A digital microscope was used to visualize the film morphology during IPprocess. Firstly, the diffusion of the monomers in both aqueous and organic phaseswas analyzed, and the results show that the diffusion of the monomers in both phasescould cause the interfacial instability of the aqueous-organic interface. Moreover, itwas found that the morphology of interfacially polymerized film is of multi-scalecharacteristic, wherein small-scale bubbles were evenly distributed on large-scalerugged film surfaces. The small-scale bubbles on the films were attributed to theinstability arising from the formation of the nascent solid thin film with a huge surfaceenergy. And the large-scale rugged film surfaces, which reflected the fluctuations of the aqueous-organic interface, were attributed to the interfacial instability arising fromthe presence of very steep concentration gradient of aqueous monomer near theaqueous-organic interface.
     TFC membranes for CO_2/N_2separation were prepared by IP on crosslinkedpolydimethylsiloxane (PDMS) coating polysulfone (PS) support membrane. Thestructural properties of TFC membrane surfaces were characterized by severaltechniques. The relationships among the skin layer formation conditions, skin layerstructure, and membrane separation performance were investigated. Results show thatmembranes with higher CO_2permeance and good CO_2/N_2selectivity appeared toconsist of thinner, more crosslinked, and less crystalline skin layer structures. Suchhigh performance gas separation membranes were obtained by (1) increasingdiffusivity and decreasing solubility of the aqueous monomer in the organic solvent,and (2) reducing the concentration of the organic monomer and raising theconcentration of the aqueous monomer. These findings have great theoreticalsignificance for the controlled preparation of gas separation membranes.
引文
[1] Mulder M.著,李琳译,Basic principles of membrane technology,2nd ed.,膜技术基本原理,北京:清华大学出版社,1999.
    [2]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001.
    [3]徐又一,徐志康,高分子膜材料,北京:化学工业出版社,2005.
    [4] Baker R. W., Future directions of membrane gas separation technology, Ind.Eng. Chem. Res.,2002,41:1393~1411.
    [5] Figueroa J. D., Fout T., Plasynski S., et al., Advances in CO2capturetechnology—the U.S. department of energy’s carbon sequestration program, Int.J. Greenh. Gas Con.,2008,2:9~20.
    [6] IPCC, Climate Change2001, Cambridge: Cambridge University Press,2002.
    [7] Kennedy D., Breakthrough of the Year, Science,2003,302:1.
    [8]李建基,电力行业如何应对全球变暖与温室气体,高科技与产业化,2009,5:106~108.
    [9] Herzog H., Golomb D., Carbon capture and storage from fossil fuel use,Encyclopedia of Energy,2004,1:277~287.
    [10] Favre E., Carbon dioxide recovery from post-combustion processes: can gaspermeation membranes compete with absorption?, J. Membr. Sci.,2007,294:50~59.
    [11] Metz B., Davidson O., Coninck H. D., et al., Special report on carbon dioxideand storage, International Panel on Climate Change, Geneva, Switzerland,2005.
    [12]王晓刚,李立清,唐琳,CO2资源化利用的现状及前景,化工环保,2006,26(3):198~203.
    [13]夏明珠,严莲荷,雷武,等,二氧化碳的分离回收技术与综合利用,现代化工,1991,19:46~48.
    [14] Pandey P., Chauhan R. S., Membranes for gas separation, Prog. Polym. Sci.,2001,26:853~893.
    [15] Dortmundt D., Doshi K., Recent developments in CO2removal membranetechnology, UOP LLC, Illinois, U.S.: Des Plaines,1999.
    [16] Nunes S. P., Peinemann K. V., Membrane technology in the chemical industry,Weinheim, Federal Republic of Germany: Wiley-VCH Verlag GmbH,2001.
    [17] Carbon dioxide capture&storage, Research Development&Demonstration InAustralia, A Technology Roadmap,2004.
    [18] Barrie J., Gupta M., CO2capture and storage technology roadmap, CanadianCC&S Technology Roadmap,2005.
    [19]刘茉娥,膜分离技术,北京:化学工业出版社,1998.
    [20] Koros W. J., Fleming G. K., Membrane-based gas separation, J. Membr. Sci.,1993,83(1):1~80.
    [21] Sandru M., Haukeb S. H., H gg M. B., Composite hollow fiber membranes forCO2capture, J. Membr. Sci.,2010,346:172~186.
    [22]王志,袁芳,王明,等,分离CO2膜技术,膜科学与技术,2011,31(3):11~17.
    [23] Li S. C., Wang Z., Yu X. W., et al., High-performance membranes withmulti-permselectivity for CO2separation, Adv. Mater.,2012,24:3196~3200.
    [24] Burns R. L., Koros W. J., Structure-property relationships forpoly(pyrrolone-imide) gas separation membranes, Macromolecules,2003,36(7):2374~2381.
    [25]徐南平,邢卫红,赵宜江,无机膜分离技术与应用,北京:化学工业出版社,2003.
    [26] Lin H. Q., Freeman B. D., Materials selection guidelines for membranes thatremove CO2from gas mixture, J. Mole. Stru.,2005,739:57~74.
    [27] Suzukia H., Tanakaa K., Kita H., et al., Preparation of composite hollow fibermembranes of poly(ethylene oxide)-containing polyimide and their CO2/N2separation properties, J. Membr. Sci.,1998,146:31~37.
    [28] Liu L., Chakma A., Feng X. S., A novel method of preparing ultrathinpoly(ether block amide) membranes, J. Membr. Sci.,2004,235:43~52.
    [29] Car A, Stropnik C, Yave W, et al., PEG modified poly(amide-b-ethylene oxide)membranes for CO2separation, J. Membr. Sci.,2008,307:88~95.
    [30] Zhao H. Y., Cao Y. M., Ding X. L., et al., Poly(ethylene oxide) inducedcross-linking modification of Matrimid membranes for selective separation ofCO2, J. Membr. Sci.,2008,320:179~184.
    [31] Ji P. F., Cao Y. M., Zhao H. Y., et al., Preparation of hollow fiber poly(N,N-dimethylaminoethyl methacrylate)–poly(ethylene glycol methyl ether methylacrylate)/polysulfone composite membranes for CO2/N2separation, J. Membr.Sci.,2009,342:190~197.
    [32] Yave W., Car A., Peinemann K. V., Nanostructured membrane materialdesigned for carbon dioxide separation, J. Membr. Sci.,2010,350:124~129.
    [33] Yave W., Car A., Funari S. S., et al., CO2-philic polymer membrane withextremely high separation performance, Macromolecules,2010,43:326~333.
    [34] Kusuma V. A., Freeman B. D., Smith S. L., et al., Influence of TRIS-basedco-monomer on structure and gas transport properties of cross-linkedpoly(ethylene oxide), J. Membr. Sci.,2010,359:25~36.
    [35] Yave W., Car A., Wind J., et al., Nanometric thin film membranes manufacturedon square meter scale: ultra-thin films for CO2capture, Nanotechnology,2010,21:395301.
    [36]王志,张莉莉,张颖,等,分离CO2的促进传递膜,膜科学与技术,2003,23:166~171.
    [37] Yoshikawa M., Ezaki T., Sanui K., et al., Selective permeation of carbondioxide through synthetic polymer membranes having pyridine moiety as afixed carrier, J. Appl. Polym. Sci.,1988,35:145~154.
    [38] Deng L. Y., Kim T. J., H gg M. B., Facilitated transport of CO2in novelPVAm/PVA blend membrane, J. Membr. Sci.,2009,340:154~163.
    [39] Wang M. M., Wang Z., Wang J. X., et al., An antioxidative compositemembrane with the carboxylate group as a fixed carrier for CO2separation fromflue gas, Energy Environ. Sci.,2011,4:3955~3959.
    [40] Zhang Y., Wang Z., Wang S. C., Selective permeation of CO2through newfacilitated transport membranes, Desalination,2002,145(1~3):385~388.
    [41] Wang Z., Li M., Cai Y., et al., Novel CO2selectively permeating membranescontaining PETEDA dendrimer, J. Membr. Sci.,2007,290(1~2):250~258.
    [42] Yu X. W., Wang Z., Wei Z. H., et al., Novel tertiary amino containing thin filmcomposite membranes prepared by interfacial polymerization for CO2capture, J.Membr. Sci.,2010,362(1~2):265~278.
    [43] Matsuyama H., Teramoto M., Sakakura H., Selective permeation of CO2through poly{2-(N, N-dimethyl) aminoethyl methacrylate} membrane preparedby plasma-graft polymerization technique, J. Membr. Sci.,1996,114:193~200.
    [44] Matsuyama H., Terada A., Nakagawara T., et al., Facilitated transport of CO2through polyethylenimine/poly(vinyl alcohol) blend membrane, J. Membr. Sci.,1999,163:221~227.
    [45] Kim T. J., Li B. A., H gg M. B., Novel fixed-site-carrier polyvinylaminemembrane for carbon dioxide capture, J. Polym. Sci. Part B: Polym. Phys.,2004,42:4326~4336.
    [46] Du R. H., Feng X. S., Chakma A., Poly(N, N-dimethylaminoethylmethacrylate)/polysulfone composite membranes for gas separations, J. Membr.Sci.,2006,279:76~85.
    [47] Zhang Y., Wang Z., Wang J. X., et al., Effect of heat cross-linking on carbondioxide fixed-carrier membrane structure and performance, Desalination,2006,193(1~3):299~303.
    [48] Wang Z., Yi C. H., Zhang Y., et al., CO2-facilitated transport throughPoly(N-vinyl-γ-sodium aminobutyrate-co-sodium acrylate)/polysulfonecomposite membranes, J. Appl. Polym. Sci.,2006,100(1),275~282.
    [49] Yi C. H., Wang Z., Li M., et al., Facilitated transport of CO2throughpolyvinylamine/polyethlene glycol blend membranes, Desalination,2006,193(1~3):90~96.
    [50] Zhao J., Wang Z., Wang J. X., et al., Influence of heat-treatment on CO2separation performance of novel fixed carrier composite membranes preparedby interfacial polymerization, J. Membr. Sci.,2006,283(1~2):346~356.
    [51] Cai Y., Wang Z., Yi C. H., et al., Gas transport property ofpolyallylamine-poly(vinyl alcohol)/polysulfone composite membranes, J.Membr. Sci.,2008,310(1~2):184~196.
    [52] Yuan S. J., Wang Z., Qiao Z. H., et al., Improvement of CO2/N2separationcharacteristics of polyvinylamine by modifying with ethylenediamine, J. Membr.Sci.,2011,378:425~437.
    [53] Qiao Z. H., Wang Z., Zhang C. X., et al., PVAm-PIP/PS composite membranewith high performance for CO2/N2separation, AIChE J.,DOI:10.1002/aic.13781.
    [54] Zhao J., Wang Z., Wang J. X., et al., High-performance membranes comprisingpolyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2separation, J. Membr. Sci.,2012,403~404:203~215.
    [55] Compan V., Castillo L. F. D., Heranandez S. I., et al., Crystallinity effect on thegas transport in semicrystalline coextruded films based on linear low densitypolyethylene, J. Polym. Sci., Part B: Polym. Phys.,2010,48:634~642.
    [56] Lin H., Wagner E. V., Swinnea J. S., et al., Transport and structuralcharacteristics of crosslinked poly(ethylene oxide) rubbers, J. Membr. Sci.,2006,276:145~161.
    [57] Cao C., Chung T. S., Liu Y., et al., Chemical cross-linking modification of6FDA-2,6-DTA hollow fiber membranes for natural gas separation, J. Membr.Sci.,2003,216:257~268.
    [58] Kelman S. D., Raharjo R. D., Bielawski C. W., et al., The influence ofcrosslinking and fumed silica nanoparticles on mixed gas transport properties ofpoly[1-(trimethylsilyl)-1-propyne], Polymer,2008,49:3029~3041.
    [59] Allen M., Fujii M., Stannett V., et al., The barrier properties of polyacrylonitrile,J. Membr. Sci.,1977,2:153~163.
    [60] Lu S., Chung T. S., Goh S. H., et al., Transport properties of cross-linkedpolyimide membranes induced by different generations of diaminobutane (DAB)dendrimers, J. Membr. Sci.,2004,238:153~163.
    [61] Du R. H., Chakma A., Feng X. S., Interfacially formed poly (N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for CO2/N2separation, J. Membr. Sci.,2007,290:19~28.
    [62] Wittbecker E. L., Morgan P. W., Interfacial polycondensation. I, J. Polym. Sci.,1959, XL:289~297.
    [63] Morgan P. W., Kwolek S. L., Interfacial polycondensation. II. Fundamentals ofpolymer formation at liquid interfaces, J. Polym. Sci.,1959, XL:299~327.
    [64] Petersen R. J., Composite reverse osmosis and nanofiltration membranes, J.Membr. Sci.,1993,83:81~150.
    [65] Lau W. J., Ismail A. F., Misdan N., et al., A recent progress in thin filmcomposite membrane: A review, Desalination,2012,287:190~199.
    [66] Whateley T. L., in: Benita S.(Ed.), Microencapsulation: methods and industrialapplications, New York: Marcel Dekker,1996.
    [67] Li W., Wamser C. C., Synthesis and characterization of interfaciallypolymerized films of tetraphenylporphyrin derivatives, Langmuir,1995,10:4061~4071.
    [68] Eccleston M. E., Slater N. K. H., Tighe B. J., Synthetic routes to responsivepolymers: co-polycondensation of tri-functional amino acids with diacylchlorides, React. Funct. Polym.,1999,42:147~161.
    [69] Michalska Z. M., Ostaszewski B., Zientarska J., Preparation and catalyticactivity of rhodium and platinum complexes attached to polyamides having apyridine moiety, J. Mol. Catal.,1989,55:256~267.
    [70] Wilks E. S.著,傅志峰等译,Industrial polymers handbook,工业聚合物手册,北京:化学工业出版社,2006.
    [71]崔绍波,卢忠远,刘德春,等,界面聚合技术及其应用研究进展,化工进展,2006,25:47~50.
    [72]张邦华,朱常英,郭天瑛,等,近代高分子科学,北京:化学工业出版社,2006.
    [73] Dhumal S. S., Wagh S. J., Suresh A. K., Interfacial polycondensation-modelingof kinetics and film properties, J. Membr. Sci.,2008,325:758~771.
    [74] MacRitchie F., Mechanism of interfacial polycondensation, Trans. Faraday Soc.,1968,65:2503~2507.
    [75] Freger V., Kinetics of film formation by interfacial polycondensation, Langmuir,2005,21:1884~1894.
    [76] Freger V., Nanoscale heterogeneity of polyamide membranes formed byinterfacial polymerization, Langmuir,2003,19:4791~4797.
    [77] Nadler R., Srebnik S., Molecular simulation of polyamide synthesis byinterfacial polymerization, J. Membr. Sci.,2008,315:100~105.
    [78] Karode S. K., Kulkarni S. S., Suresh A. K., et al., Molecular weight distributionin interfacial polymerization—model development and verification, Chem. Eng.Sci.,1997,52:3243~3255.
    [79] Karode S. K., Kulkarni S. S., Suresh A. K., et al., New insights into kinetics andthermodynamics of interfacial polymerization, Chem. Eng. Sci.,1998,53:2649~2663.
    [80] Janssen L. J. J. M., Nijenhuis K. T., Encapsulation by interfacialpolycondensation. I. the capsule production and a model for wall growth, J.Membr. Sci.,1992,65:59~68.
    [81] Yadav S. K., Khilar K. C., Suresh A. K., Microencapsulation in polyurea shell:kinetics and film structure, AIChE J.,1996,42:2616~2626.
    [82] Ji J., Dickson J. M., Childs R. F., et al., Mathematical model for the formationof thin-film composite membranes by interfacial polymerization: porous anddense films, Macromolecules,2000,33:624~633.
    [83] Bouchemal K., Couenne F., Briancon S., et al., Polyamides nanocapsules:modeling and wall thickness estimation, AIChE J.,2006,52:2161~2170.
    [84] Freger V., Srebnik S., Mathematical model of charge and density distributions ininterfacial polymerization of thin films, J. Appl. Polym. Sci.,2003,88:1162~1169.
    [85] Chai G. Y., Krantz W. B., Formation and characterization of polyamidemembranes via interfacial polymerization, J. Membr. Sci.,1994,93:175~192.
    [86] Song Y. J., Sun P., Henry L. L., et al., Mechanisms of structure andperformance controlled thin film composite membrane formation via interfacialpolymerization process, J. Membr. Sci.,2005,251:67~79.
    [87] Chern Y. T., Wu B. S., Behavior of interfacial polycondensation on synthesizingof poly(amic ester)s, J. Appl. Polym. Sci.,1996,61:1853~1863.
    [88] Kwak S. Y., Jung S. G., Kim S. H., Structure-motion-performance relationshipof flux-enhanced reverse osmosis (RO) membranes composed of aromaticpolyamide thin films, Environ. Sci. Technol.,2001,35:4334~4340.
    [89] Freger V., Gilron J., Belfer S., TFC polyamide membranes modified by graftingof hydrophilic polymers: an FT-IR/AFM/TEM study, J. Membr. Sci.,2002,209:283~292.
    [90] Elimelech M., Zhu X. H., Childress A. E., et al., Role of membrane surfacemorphology in colloidal fouling of cellulose acetate and composite aromaticpolyamide reverse osmosis membranes, J. Membr. Sci.,1997,127:101~109.
    [91] Hirose M., Ito H., Kamiyama Y., Effect of skin layer surface structures on theflux behaviour of RO membranes, J. Membr. Sci.,1996,121:209~215.
    [92] Honig R. O., Raim V., Srenik S., Simulation of thin film membranes formed byinterfacial polymerization, Langmuir,2010,26:299~306.
    [93] Ghosh A. K., Hoek E. M. V., Impacts of support membrane structure andchemistry on polyamide-polysulfone interfacial composite membranes, J.Membr. Sci.,2009,336:140~148.
    [94] Liu Y., He B., Li J., et al., Formation and structural evolution of biphenylpolyamide thin film on hollow fiber membrane during interfacialpolymerization, J. Membr. Sci.,2011,373:98~106.
    [95] Li X., Wang K. Y., Helmer B., et al., Thin-film composite membranes andformation mechanism of thin-film layers on hydrophilic cellulose acetatepropionate substrates for forward osmosis processes, Ind. Eng. Chem. Res.,2012,51(30):10039~10050.
    [96] Ji J., Mehta M., Mathematical model for the formation of thin-film compositehollow fiber and tubular membranes by interfacial polymerization, J. Membr.Sci.,2001,65:69~75.
    [97]张浩勤,刘金盾,范国栋,等,界面聚合制备复合膜过程的数学模型,高校化学工程学报,2004,18:146~151.
    [98]周勇,高性能反渗透复合膜及其功能单体制备研究:[博士学位论文],浙江:浙江大学,2006.
    [99] Janssen L. J. J. M., Nijenhuis K. T., Encapsulation by interfacialpolycondensation. II. the membranes wall structure and the rate of the wallgrowth, J. Membr. Sci.,1992,65:69~75.
    [100] Yadav S. K., Suresh A. K., Khilar K. C., Microencapsulation in polyurea shellby interfacial polycondensation, AIChE J.,1990,36:431~438.
    [101] Khare V. P., Greenberg A. R., Krantz W. B., Development of pendant dropmechanical analysis as a technique for determining the stress–relaxation andwater-permeation properties of interfacially polymerized barrier layers, J. Appl.Polym. Sci.,2003,90:2618~2628.
    [102] Roh I. J., Kim J.-J., Park S. Y., Mechanical properties and reverse osmosisperformance of interfacially polymerized polyamide thin films, J. Membr. Sci.,2002,197:199~210.
    [103] Khare V. P., Greenberg A. R., Krantz W. B., Investigation of the viscoelasticand transport properties of interfacially polymerized barrier layers usingpendant drop mechanical analysis, J. Appl. Polym. Sci.,2004,94:558~568.
    [104] Fields S. D., Thomas E. L., Ottino J. M., Visualization of interfacial urethanepolymerizations by means of a new microstage reactor, Polymer,1986,27:1423~1432.
    [105] Wagh S. J., Dhumal S. S., Suresh A. K., An experimental study of polyureamembrane formation by interfacial polycondensation, J. Membr. Sci.,2009,328:246~256.
    [106]宋玉军,刘福安,杨瑞华,等,界面聚合反应动力学及膜结构的表征方法研究,天津纺织工学院学报,1999,18:102~110.
    [107]朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996.
    [108] Cadotte J. E., Rozelle L. T., In-situ-formed condensation polymers for reverseosmosis membranes, NTIS Report, No. PB-229337,1972.
    [109] Liu M. H., Yu S. C., Tao J., et al., Preparation, structure characteristics andseparation properties of thin-film composite polyamide-urethane seawaterreverse osmosis membrane, J. Membr. Sci.,2008,325:947~956.
    [110] Liu L. F., Yu S. C., Zhou Y., et al., Study on a novel polyamide-urea reverseosmosis composite membrane (ICIC-MPD) I. Preparation and characterizationof ICIC-MPD membrane, J. Membr. Sci.,2006,281:88~94.
    [111] Yu S. C., Liu M. H., Lü Z. H., et al., Aromatic-cycloaliphatic polyamidethin-film composite membrane with improved chlorine resistance prepared fromm-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride, J.Membr. Sci.,2009,344:155~164.
    [112] Li L., Zhang S. B., Zhang X. S., et al., Polyamide thin film compositemembranes prepared from3,4’,5-biphenyl triacyl chloride,3,3’,5,5’-biphenyltetraacyl chloride and m-phenylenediamine, J. Membr. Sci.,2007,289:258~267.
    [113] Huang S.-H., Hsu C.-J., Liaw D.-J., et al., Effect of chemical structures ofamines on physicochemical properties of active layers and dehydration ofisopropanol through interfacially polymerized thin-film composite membranes,J. Membr. Sci.,2008,307:73~81.
    [114] Shintani T., Matsuyama H., Kurata N., Development of a chlorine-resistantpolyamide reverse osmosis membrane, Desalination,2007,207:340~348.
    [115] Tang B. B., Huo Z. B., Wu P. Y., Study on a novel polyester compositenanofiltration membrane by interfacial polymerization of triethanolamine(TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization andnanofiltration properties test of membrane, J. Membr. Sci.,2008,320:198~205.
    [116] Chern Y. T., Chen L. W., Preparation of composite membranes via interfacialpolyfunctional condensation for gas separation applications, J. Appl. Polym.Sci.,1992,44:1087~1093.
    [117] Chern Y. T., Chen L. W., Interfacial polyfunctional condensation: curingreaction, J. Appl. Polym. Sci.,1991,42:2535~2541.
    [118] Petersen J., Peinemann K. V., Novel polyamide composite membranes for gasseparation prepared by interfacial polycondensation, J. Appl. Polym. Sci.,1997,63:1557~1563.
    [119] Sridhar S., Smitha B., Mayor S., et al., Gas permeation properties of polyamidemembrane prepared by interfacial polymerization, J. Mater. Sci.,2007,42:9392~9401.
    [120]于型伟,界面聚合法制备分离CO2复合膜及成膜过程研究:[博士学位论文],天津:天津大学,2010.
    [121]王明明,抗氧化耐酸分离CO2膜制备及性能研究:[博士学位论文],天津:天津大学,2012.
    [122] Kwak S. Y., Yeom M. O., Roh I. J., et al., Correlations of chemical structure,atomic force microscopy (AFM) morphology, and reverse osmosis (RO)characteristics in aromatic polyester high-flux RO membranes, J. Membr. Sci.,1997,132:183~191.
    [123] Kwak S. Y., Ihm D. W., Use of atomic force microscopy and solid-state NMRspectroscopy to characterize structure property-performance correlation inhigh-flux reverse osmosis (RO) membranes, J. Membr. Sci.,1999:158:143~153.
    [124] Prakash Rao A., Joshi S. V., Trivedi J. J., et al., Structure-performancecorrelation of polyamide thin film composite membranes: effect of coatingconditions on film formation, J. Membr. Sci.,2003,211:13~24.
    [125] Ghosh A. K., Jeong B.-H., Huang X., et al., Impacts of reaction and curingconditions on polyamide composite reverse osmosis membrane properties, J.Membr. Sci.,2008,311:34~45.
    [126] van den Berg G. B., Smolders C. A., Review: Diffusional phenomena inmembrane separation processes, J. Membr. Sci.,1992,73:103~118.
    [127] Peng F., Huang X., Jawor A., et al., Transport, structural, and interfacialproperties of poly(vinyl alcohol)-polysulfone composite nanofiltrationmembranes, J. Membr. Sci.,2010,353:169~176.
    [128] Peng F., Jiang Z., Hoek E. M. V., Tuning the molecular structure, separationperformance and interfacial properties of poly(vinyl alcohol)-polysulfoneinterfacial composite membranes, J. Membr. Sci.,2011,368:26~33.
    [129] Duan M. R., Wang Z., Xu J., et al., Influence of hexamethyl phosphoramide onpolyamide composite reverse osmosis membrane performance, Sep. Purif.Technol.,2010,75(2):145~155.
    [130] Chopra K. L., Kaur I., Thin film device applications, New York, U.S.: Plenum,1983.
    [131] Gozzi D., Tomellini M., Lazzarini L., et al., High-temperature determination ofsurface free energy of copper nanoparticles, J. Phys. Chem. C,2010,114(28):12117~12124.
    [132] Aveyard R., Haydon D. A., An introduction to the principles of surfacechemistry, London, U.K.: Cambridge University Press,1973.
    [133] Earnshaw J. C., Johnson E. G., Carroll B. J., et al., The drop volume method forinterfacial tension determination: an error analysis, J. Colloid Interf. Sci.,1996,177:150~155.
    [134] Adamson A. W., Physical chemistry of surfaces,3rd ed., New York, U.S.: JohnWiley&Sons Inc.,1976.
    [135] Siegal M. P., Kaatz F. H., Graham W. R., et al., Formation of epitaxial yttriumsilicide on (111) silicon, J. Appl. Phys.,1989,66:2999~3006.
    [136] Shen G. H., Chen J. C., Lou C. H., et al., The growth of pinhole-free epitaxialDySi2x films on atomically clean Si(111), J. Appl. Phys.,1998,84,3630~3635.
    [137] Shen J., Giergiel J., Schmid A. K., et al., Surface alloying and pinholeformation in ultra-thin Fe/Cu(100)films, Surf. Sci.,1995,328:32~46.
    [138] Keavney D. J., Fullerton E. E., Bader S. D., Perpendicular conductance andmagnetic coupling in epitaxial Fe/MgO/Fe(100) trilayers, J. Appl. Phys.,1997,81:795~798.
    [139] Fischer A. E. M. J., Slijkerman W. F. J., Nakagawa K., et al., Growth ofuniform epitaxial CoSi2films on Si(111), J. Appl. Phys.,1988,64,3005~3013.
    [140]沈钟,赵振国,王果庭,胶体与表面化学,北京:化学工业出版社,2004.
    [141] O'Donnell J. L., Keefe M. H., Hupp J. T., Interfacial polymerization ofmolecular squares: thin microporous membranes featuring size selectivetransport, Mat. Res. Soc. Symp. Proc.,2002,734: B1.1.
    [142] Liao Y. X., Lucas D., A literature review on mechanisms and models for thecoalescence process of fluid particles, Chem. Eng. Sci.,2010,65(10):2851~2864.
    [143] Lin T. J., Lin G. M., Mechanisms of in-line coalescence of two-unequal bubblesin a non-Newtonian fluid, Chem. Eng. J.,2009,155(3):750~756.
    [144] Ruckenstein E., Jain R. K., Spontaneous rupture of thin liquid films, J. Chem.Soc., Faraday Trans.2,1974,70:132~147.
    [145] Lide D. R., CRC Handbook of chemistry and physics,84th ed., Boca Raton,Florida, U.S.: CRC Press,2003~2004.
    [146] Johnson K. L., Kendall K., Roberts A. D., Surface energy and the contact ofelastic solids, Proc. R. Soc. Lond. A,1971,324:301~313.
    [147] Reiter G., Khanna R., Sharma A., Enhanced instability in thin liquid films byimproved compatibility, Phys. Rev. Lett.,2000,85(7):1432~1435.
    [148] Kim S. H., Kwak S. Y., Suzuki T., Positron annihilation spectroscopic evidenceto demonstrate the flux-enhancement mechanism in morphology-controlledthin-film-composite (TFC) membrane, Environ. Sci. Technol.,2005,39:1764~1770.
    [149] Ahmad A. L., Ooi B. S., Properties-performance of thin film compositesmembrane: study on trimesoyl chloride content and polymerization time, J.Membr. Sci.,2005,255:67~77.
    [150] Pacheco F. A., Pinnau I., Reinhard M., et al., Characterization of isolatedpolyamide thin films of RO and NF membranes using novel TEM techniques, J.Membr. Sci.,2010,358(1~2):51~59.
    [151] Odian G., Principles of polymerization,4th ed., Hoboken, U.S.: John Wiley&Sons Inc.,2004.
    [152] Gunde R., Kumar A., Batar S. L., et al., Measurement of the surface andinterfacial tension from maximum volume of a pendant drop, J. ColloidInterface Sci.,2001,244:113~122.
    [153] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Oxford: OxfordUniversity Press,1961.
    [154]王志,合成膜成膜机理研究:[博士学位论文],天津:天津大学,1993.
    [155] Sternling C. V., Scriven L. E., Interfacial turbulence: hydrodynamic instabilityand the marangoni effect, AIChE J.,1959,5:514~523.
    [156] Ray R. J., Krantz W. B., Sani R. L., Linear stability theory model for fingerformation in asymmetric membranes, J. Membr. Sci.,1985,23:155~182.
    [157] Wang Z., Wang S. C., Instability of cast film and its relevance to membranemorphology, Chem. Eng. Sci.,1999,54:1243~1251.
    [158] Maldarelli C., Jain R. K., Ivanov I. B., et al., Stability of symmetric andunsymmetric thin liquid films to short and long wavelength perturbations, J.Colloid Interface Sci.,1980,78:118~143.
    [159] Bénard H., Les tourbillons cellulaires dans une nappe liquide, Science,1901,11:1261~1271.
    [160] Scriven L. E., Sternling C. V., The Marangoni effect, Nature,1960,127(4733):186~188.
    [161] Jain R. K., Ruckenstein E., Stability of stagnant viscous films on a solid surface,J. Colloid Interface Sci.,1976,54:108~116.
    [162] Ray R. J., Interfacial instabilities arising from excess intermolecular potentialgradients: application to asymmetric membrane morphology:[Ph.D. Thesis],Colorado, U.S.: University of Colorado,1983.
    [163]段美荣,复合反渗透膜的表面形貌与性能关系及性能强化研究:[博士学位论文],天津:天津大学,2011.
    [164] Krantz W. B., Ray R. J., Sani R. L., et al., Theoretical study of the transportprocesses occurring during the evaporation step in asymmetric membranecasting, J. Membr. Sci.,1986,29:11~36.
    [165] Kemperman A. J. B., Rolevink H. H. M., Bargeman D., et al., Stabilization ofsupported liquid membranes by interfacial polymerization top layers, J. Membr.Sci.,1998,138:43~55.
    [166] Sikdar S. K., Park C., Yeboah Y. D., Catalyzed interfacial polycondensationpolycarbonate process, U.S. Patent,4,515,936,1985.
    [167] Mansourpanah Y., Madaeni S. S., Rahimpour A., Fabrication and developmentof interfacial polymerized thin-film composite nanofiltration membrane usingdifferent surfactants in organic phase; study of morphology and performance, J.Membr. Sci.,2009,343:219~228.
    [168] Lin F.-C., Wang D-M., Lai C.-L., et al., Effect of surfactants on the structure ofPMMA membranes, J. Membr. Sci.,1997,123:281~291.
    [169] Wang D.-M., Lin F.-C., Wu T.-T., et al., Formation mechanism of themacrovoids induced by surfactant additives, J. Membr. Sci.,1998,142:191~204.
    [170] Tsai H. A., Li L. D., Lee K. R., et al., Effect of surfactant addition on themorphology and pervaporation performance of asymmetric polysulfonemembranes, J. Membr. Sci.,2000,176:97~103.
    [171] Alsari A. M., Khulbe K. C., Matsuura T., The effect of sodium dodecyl sulfatesolutions as gelation media on the formation of PES membranes, J. Membr. Sci.,2001,188:279~293.
    [172] Yamasaki A., Tyagi R. K., Fouda A. E., et al., in: Pinnau I., Freeman B. D.(Eds.), Effect of SDS surfactant as an additive on the formation of asymmetricpolysulfone membranes for gas separation, Membrane Formation andModification,2000(Chapter6).
    [173] Rahimpour A., Madaeni S. S., Mansourpanah Y., The effect of anionic,non-ionic and cationic surfactants on morphology and performance ofpolyethersulfone ultrafiltration membranes for milk concentration, J. Membr.Sci.,2007,296:110~121.
    [174] Arendt B., Eggers R., Interaction of Marangoni convection with mass transfereffects at droplets, Int. J. Heat Mass Transfer,2007,50:2805~2815.
    [175] Li X. J., Mao Z.-S., Fei W. Y., Effects of surface-active agents on mass transferof a solute into single buoyancy driven drops in solvent extraction systems,Chem. Eng. Sci.,2003,58:3793~3806.
    [176] Agble D., Mendes-Tatsis M. A., The effect of surfactants on interfacial masstransfer in binary liquid-liquid systems, Int. J. Heat Mass Transfer,2000,43:1025~1034.
    [177] Agble D., Mendes-Tatsis M. A., The prediction of Marangoni convection inbinary liquid-liquid systems with added surfactants, Int. J. Heat Mass Transfer,2001,44:1439~1449.
    [178] Browall W. R., Salemme R. M., Laminated porous/nonporous membranes, U.S.Patent,3,874,986,1975.
    [179] Lundy K. A., Cabasso I., Analysis and construction of multilayer compositemembranes for the separation of gas, Ind. Eng. Chem. Res.,1989,28:742~756.
    [180]远双杰,分离CO2固定载体复合膜制备装置及制备工艺研究:[硕士学位论文],天津:天津大学,2007.
    [181] Leo A., Hansch C., Elkins D., Partition coefficients and their uses, Chem. Rev.,1971,71:525~616.
    [182] Kosuri M. R., Koros W. J., Defect-free asymmetric hollow fiber membranesfrom Torlon, a polyamide–imide polymer, for high-pressure CO2separations, J.Membr. Sci.,2008,320:65~72.
    [183]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社,1992.
    [184]高家武,高分子材料近代测试技术,北京:北京航空航天大学出版社,1994.
    [185]郭素枝,扫描电镜技术及其应用,厦门:厦门大学出版社,2006.
    [186]汪昆华,罗传秋,周啸,聚合物近代仪器分析(第二版),北京:清华大学出版社,2000.
    [187] Yang D. X., Wang Z., Wang J. X., et al., Parametric study of the membraneprocess for carbon dioxide removal from natural gas, Ind. Eng. Chem. Res.,2009,48:9013~9022.
    [188] Wang R., Liu S. L., Lin T. T., et al., Characterization of hollow fibermembranes in a permeator using binary gas mixtures, Chem. Eng. Sci.,2002,57:967~976.
    [189] Francisco G. J., Chakma A., Feng X. S., Membranes comprising ofalkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2separation, J. Membr. Sci.,2007,303:54~63.
    [190] Nakanshi K., Solomon P. H., Infrared absorption spectroscopy, San Francisco,U.S.: Holden-Day,1977.
    [191] Graham N. B., in: Peppas N. A.(Ed.), Poly (ethylene oxide) and relatedhydrogels, Hydrogels in Medicine and Phamarcy, vol. II: Polymers, Boca Raton,U.S.: CRC Press,1987.
    [192] Zou J., Winston Ho W. S., CO2-selective polymeric membranes containingamines in crosslinked poly(vinyl alcohol), J. Membr. Sci.,2006,286:310~321.
    [193] Nobel R. D., Koval C. A., in: Yampolskii Y., Pinnau I., Freeman B. D.,(Eds.),Review of facilitated transport membranes, Materials science of membranes forgas and vapor separation, Chichester, England: John Wiley&Sons,2006.
    [194]伊春海,含氨基固定载体膜制备及其CO2传递特性研究:[博士学位论文],天津:天津大学,2007.
    [195] H rtel G., Püschel Th., Permselectivity of a PA6membrane for the separationof a compressed CO2/H2gas mixture at elevated pressures, J. Membr. Sci.,1999,162:1~8.
    [196] Bos A., Pünt I. G. M., Wessling M., et al., CO2-induced plasticizationphenomena in glassy polymers, J. Membr. Sci.,1999,155:67~78.
    [197] Bos A., Pünt I. G. M., Wessling M., et al., Plasticization-resistant glassypolyimide membranes for high pressure CO2/CH4separations, Sep. Purif.Technol.,1998,14:27~39.
    [198] Visser T., Masetto N., Wessling M., Materials dependence of mixed gasplasticization behavior in asymmetric membranes, J. Membr. Sci.,2007,306:16~28.
    [199] Basu S., Khan A. L., Cano-Odena A., et al., Membrane-based technologies forbiogas separations, Chem. Soc. Rev.,2010,39:750~768.
    [200] Robeson L. M., The upper bound revisited, J. Membr. Sci.,2008,320:390~400.
    [201] Merkel T. C., Lin H. Q., Wei X. T., et al., Power plant post-combustion dioxidecapture: an opportunity for membranes, J. Membr. Sci.,2010,359:126~139.
    [202] Chen H., Kovvali A. S., Sirkar K. K., Selective CO2separation from CO2-N2mixtures by immobilized glycine-Na-glycerol membranes, Ind. Eng. Chem.Res.,2000,39:2447~2458.
    [203] Duan S., Kouketsu T., Kazama S., et al., Development of PAMAM dendrimercomposite membranes for CO2separation, J. Membr. Sci.,2006,283:2~6.
    [204] Devore J. L., Probability and statistics for engineering and the sciences,3rd ed.,Pacific Grove, C.A.: Brooks/Cole Publishing,1991.
    [205]严丽坤,相关系数与偏相关系数在相关分析中的应用,云南财贸学院学报,2003,19:78~80.
    [206] de la Fuente A., Bing N., Hoeschele I., et al., Discovery of meaningfulassociations in genomic data using partial correlation coefficients,Bioinformatics,2004,20:3565~3574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700