用户名: 密码: 验证码:
非常规绿色介质制备甘蔗渣纤维素高附加值材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油、煤等不可再生资源的日益枯竭,以可再生物质特别是废弃生物质为原料制备高附加值化工产品逐渐成为人们研究热点。我国是世界上甘蔗产量的第三大国,其中广西是我国种植和生产甘蔗糖的最大省份,近年来广西的甘蔗产量均占全国总产量的60%以上。甘蔗榨糖的副产物为甘蔗渣,由于甘蔗渣中含有大量的纤维素,因此充分利用可再生的甘蔗渣纤维素生产高附加值的纤维素衍生物不仅具有很高的学术价值,也有很大的经济效益和社会效益。本文研究了在非常规介质中利用蔗渣纤维素制备高附加值的材料,包括使用近临界水/CO_2非常规介质制备出高纯度微晶纤维素,并以制备的微晶纤维素为原料,在新型绿色溶剂离子液体中一步清洁制备高附加值的纤维素有机酯,同时实现离子液体溶剂的循环利用。整个工艺过程高效、清洁,真正实现了从甘蔗渣纤维素到微晶纤维素再到纤维素酯的全过程绿色转化。主要研究成果如下:
     利用近临界水/CO_2二元体系中具有较高H+浓度、较低介电常数和粘度、较大扩散系数及较高温度的特性,本文以蔗渣纤维素为原料首次在近临界水/CO_2中降解制备蔗渣微晶纤维素(SBMC),避免了传统酸水解工艺中污染较严重、反应时间长等缺陷,通过研究得到最佳工艺条件为:反应温度为200℃,反应时间为60min,液固比为40:1,反应初压力为2MPa。在此条件下,SBMC的聚合度为215。通过表征表明蔗渣纤维素在降解过程中仅仅发生苷键的断裂,没有发生晶型的改变。所得的SBMC呈现短棒状结构,分子量分布较传统工艺均一,结晶度为74%,最初分解温度为308.3℃,粒径140目以上占87.2%,体积密度和拍实密度分别为0.32g/cm3和0.42g/cm3。
     以烯丙基氯和N-甲基咪唑为原料,制备出1-烯丙基-3-甲基咪唑氯盐(AmimCl)离子液体。所得的AmimCl离子液体具有良好热稳定性及流动性,初始分解温度为270℃,粘度和密度分别为1179mPa·s和1.1438g/cm3。同时,所制备的微晶纤维素在离子液体中能够直接快速的溶解,在80℃、1h内形成完全均匀的溶液,远优于纤维素在离子液体中的溶解效果。这是由于微晶纤维素较纤维素聚合度低,分子量分布更均一,更易溶解。
     以自制的蔗渣微晶纤维素为原料,在无催化剂加入条件下,在AmimCl离子液体中一步制备出醋酸纤维素(CA,取代度为0.71~2.92)、醋酸丙酸纤维素(CAP,丙酰基含量为24.4~47.7%,乙酰基含量为1.7~10.3%)和醋酸丁酸纤维素(CAB,丁酰基含量为27.5~52.8%,乙酰基含量为1.7~9.7%)三种纤维素酯类产品。研究发现,均合成了指定结构的纤维素酯产品,酰基取代首先发生在C6位;醋酸纤维素、醋酸丙酸纤维素和醋酸丁酸纤维素初始分解温度随酰基碳链的延长而降低,分别为353℃、346℃和341℃;结晶度分别为37.0%、33.9%和47.5%;特性粘度随纤维素酯分子量增大分别以1.00mL·g~(-1)、3.00mL·g~(-1)和5.00mL·g~(-1)呈递增趋势;三种酯分别在二甲基亚砜、丙酮、丁酮等溶剂中具有良好的溶解性能。
     为更好控制反应条件,掌握离子液体中微晶纤维素酯化反应规律,研究了微晶纤维素在离子液体中均相酯化反应动力学。研究发现,纤维素在离子液体中均相乙酸酐酯化和混酐酯化均为1级反应,乙酸酐酯化反应的活化能为17.70kJ·mol~(-1),酯化反应的反应速率表达式为Rg=3.15×10~(-2)e~(-17700)/RT[MCC]1.0[Anhydl]~(0.04)(mol·L~(-1)·s~(-1));混酐酯化反应的活化能为20.30kJ·mol~(-1),酯化反应的反应速率表达式为Rg=9.94×10~(-2)e~(-20370)/RT[MCC]~(1.0)[Anhydl]~(0.039)[Butyryl]~(0.038)(mol·L~(-1)·s~(-1))。
     鉴于分子蒸馏是依靠不同物质分子逸出后的平均自由程的差别来实现物质的分离,具有分离程度高、温度低等特点,本文采用分子蒸馏技术,对微晶纤维素发生酯化反应后离子液体进行回收并循环利用。研究发现,纤维素乙酸酐酯化反应后离子液体回收的最佳工艺条件为:进料速率2mL/min、蒸馏温度95℃、刮膜转速413rpm、蒸馏压力0.1Torr;微晶纤维素混酐酯化反应后离子液体废液分子蒸馏的最佳工艺条件为:进料速率2mL/min、蒸馏温度110℃、刮膜转速413rpm、蒸馏压力0.1Torr。得到5次回收-循环利用所得离子液体(RIL)的含量都在99.5%以上,而且与新鲜离子液体(FIL)相比,外观、结构等同新鲜离子液体(FIL)相差不大;同时,得到在相同条件下,利用回收的离子液体循环制备的醋酸纤维素及醋酸丁酸纤维素与新鲜离子液体所得产品相比较,外观、粘度、取代度、结构等性质都十分相近。
With the oil, coal and other non-renewable resources exhausted gradually, thepreparation of high value-added chemical products from renewable biomass, speciallythe waste biomass, has become a hot topic in the field of biomedical. The sugar caneproduction of China is the third largest country in the world and the Guangxi provincehave largest output, which accounts for60percent of national output of sugar cane inrecent years. Sugarcane bagasse (SB) is the byproduct of sugar cane sugarmanufacture, which contains a lot of cellulose. Therefore, it is significant to make fulluse of sugarcane bagasse cellulose (SBC) to produce high value-added cellulosederivatives products, not only the high academic value, but also the great economicand social benefits. In this paper, high purity sugarcane bagasse microcrystallinecellulose(SBMC) was prepared from the Green Process of the near-critical water/CO_2, and the high value-added of the cellulose derivative was prudued in the newgreen solvent by one step using the obtained SBMC as raw material. In the meanwhile,the recycling of the ionic liquid solvent was achieved. The entire process was efficient,clean, and characteristic of entirely green transformation process from sugarcanebagasse cellulose to cellulose esters. The results were summarized as follows:
     Since the high concentration of H+were generated in near-critical water/CO_2under high temperature and high pressure, the sugarcane bagasse microcrystallinecellulose (SBMC) was prepared for the first time with SBC in near-critical water/CO_2,which overcomed the drawbacks of high-pollution and long-reaction time created bytraditional acid hydrolysis process. Based on a serial of experiments, the optimumsynthesis parameters, i.e., the reaction temperature is200℃the reaction time is60min, liquid-solid ratio is40:1, the initial reaction pressure is2MPa, had been obtained.The degree of polymerization (DP) of SBMC obtained under the above conditionswas215. During the SBC degradation process, the crystalline phases kept stable butthe breaking of glycosidic bonds was taken place. SBMC showed the short rod-likestructure and the uniform molecular weight distribution. The obtained SBMC had thefollowing parameters, i.e., the degree of crystallinity was74%,the initialdecomposition temperature was308.3°C, the content of the particle size above140mesh was87.2%, and the bulk density and shoot density were0.32g/cm3and0.46g/cm3, respectively.
     1-allyl-3-methylimidazolium chloride (AmimCl ionic liquid) was synthesizedwith Allyl chloride and N-methyl imidazole, and the dissolution and the influence oftemperature on the property of SBMC in AmimCl was studied. The results showedthat the initial decomposition temperature of AmimCl ionic liquids was270℃, the viscosity and density were1179mPa s and1.1438g/cm3respectively, and theobtained AmimCl had better thermal stability and flowability. Furthermore, theobtained SBMC could dissolve in AmimCl quickly and the homogeneous solutionwas formed at80℃for1h, This results were far superior to the cellulose, beingattribute to the lower polymerization degree and uniform molecular weight of SBMC.
     The three cellulose esters, cellulose acetate (CA, the degree of substitution from0.71to2.92), cellulose acetate propionate (CAP, propionyl content from24.4to47.7%, acetyl content from1.7to10.3%), cellulose acetate butyrate (CAB, butyrylcontent from27.5to52.8%acetyl content from1.7to9.7%), had been made withhome-made SBMC in AmimCl. The substitution reactions occurred first in C6. Theinitial decomposition temperature of CA, CAP and CAB were353℃,346℃and341℃; respectively. The degree of crystallinity of CA, CAP and CAB were37.0%,47.5%and33.9%, respectively. The features viscosity of CA, CAP and CAB wereincreased with the molecular weight from1.00mL·g~(-1),3.00mL·g~(-1)to5.00mL·g~(-1)respectively. CA, CAP and CAB had good solubility respectively in DMSO, acetone,butanone and so on.
     In order to better control of the reaction condition, get the esterization reactionbehavior of SBMC in AmimC, the homogeneous esterization kinetics of SBMC bothesterified with acetic anhydride and mixed anhydride (acetic anhydride and butyricanhydride) in AmimCl were studied. The reasearch found that the order of theesterization with acetic anhydride was1, and so was the esterization with aceticanhydride. The activation energy of the esterization with acetic anhydride was5.24kJ·mol~(-1), the kinetic equation was Rg=3.15×10-2e~(-1)7700/RT[MCC]1.0[Anhydl]0.04(mol·L~(-1)·s~(-1)). The activation energy of the esterization with mixed anhydride was9.64kJ·mol~(-1), the kinetic equation was Rg=9.94×10~(-2)e~(-20370)/RT[MCC]~(1.0)[Anhydl]~(0.039)[Butyryl]~(0.038)(mol·L~(-1)·s~(-1)).
     Molecular distillation operating based on the differences in the mean free path ofgas molecules, had the characteristics of high seperation degree and lowtemperature,therefore, molecular distillation technology was used to recycle AmimClionic liquid after the acylate reaction of SBMC, and the reuse of the recycling ionicliquid(RIL) was also investigated. The results show that the optimum conditions ofthe recycled ionic liquid from esterization with acetic anhydride were as follows:distillation pressure was0.1Torr, distillation temperature was95℃, flow of thematerial was2mL/min, speed of the scraping film was413rpm. The optimumconditions of the recycled ionic liquid from esterization with mixed anhydride were asfollows: distillation pressure was0.1Torr, distillation temperature was110℃, flow ofthe material was2mL/min~(-1), and speed of the scraping film was413rpm. The contentof the5th recycling-reusing ionic liquid was above99.5%. Compared with the fresh ionic liquid,5th recycling-reusing ionic liquid had the similar appearance andstructure. At the same time, the CA and CAB from the5th recycling-reusing ionicliquid also had the similar nature, such as the appearance, viscosity, degree ofsubstitution, structure etc.
引文
[1]聂艳丽,刘永国,李娅.甘蔗渣资源利用现状及开发前景[J].林业经济,2007,28(5):61-63.
    [2] http://www.gdprice.org/2012/0320/9821.html.
    [3]刘星生,张鸿雁,黄国林.甘蔗渣制浆技术研究进展[J].江西化工,2005,20(1):38-41.
    [4]中华人民共和国国家统计局.2011年中国统计年鉴[M].中国统计出版社,2011.
    [5] Lee Y J, Chung C H, Donal F D. Sugarcane bagasse oxidation using a combination ofhypochlorite and peroxide[J]. Bioresource Technology,2009,100:935-941.
    [6]涂启梁,付时雨,詹怀宇.甘蔗渣综合利用的研究进展[J].中国资源综合利用,2006,24(11):13-15.
    [7] Senthil K S, Kalaamani P, Porkod K.Adsorption of dissolved reactive red dye from aqueousphase onto activated carbon prepared from agricultural waste[J].Bioresour Technol,2006,97:1618-1625.
    [8] Nevine K A. Removal of reactive dyefrom aqueous solutions by adsorption onto activatedcarbons prepared from sugarcane bagasse pith[J]. Science Direct Desalination,2008,223:152-161.
    [9] Dimitrios K, Dimitrios K, Panagiota P. Adsorption of polluting substances on activatedcarbons prepared from rice husk and sugarcane bagasse [J]. Chemical Engineer Journal,2008,28:42-50.
    [10]陆登俊,郭祀远,肖凯军.利用甘蔗渣制取乙醇和低聚木糖[J].甘蔗糖业,2005,(5):33-36.
    [11]林明穗,崔国星,张启卫,等.甘蔗渣木质素改性酚醛树脂胶粘剂研究[J].湖南文理学院学报(自然科学版),2009,21(1):47-50.
    [12]庞浩,柳雨生,廖兵,等.甘蔗渣多元醇制备聚氨酯硬泡的研究[J].林产化学与工业,2006,26(2):57-60.
    [13]张平远,译.废弃甘蔗渣可做虾饲料[J].饲料世界,2006,(3):54-56.
    [14] Rose G P, Guimes R F, Rosana M N, et al. Synthesis and characterization of methylcellulosefrom sugar cane bagasse cellulose[J]. Carbohydrate Polymers,2007,67:182-189.
    [15]杨之礼,蒋听赔,邬国铭.纤维素与粘胶纤维[M].北京:纺织工业出版社,1985.
    [16]刘仁庆.纤维素化学基础[M].北京:科学出版社,1985.
    [17]杨淑蕙.植物纤维素化学[M].北京:中国轻工业出版社,2004.
    [18]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [19] Filho G R, Deassuncao R M. Application of the cuprammonimu process (process for theproduction of regenerated cellulose membranes for hemodialysis) to sugarcane bagasse[J].Journal of memberane science,1993,82(1-2):43-49.
    [20] Podrigues G D, Leal D A, et al. Alternative for the reduction of Cu(II) ion levels inhemodialysis memberanes produced from sugarcane bagasse[J]. Journal of membranescience.1996,111(1):143-146.
    [21]张丽娜.再生纤维素防水膜:中国,95118161.0[P].1995-11-07.
    [22] Filho R,Da S F,Curz D, et al. Water flux through cellulose triacetate films produced fromheterogeneous acetylation of sugar cane bagasse[J]. Journal of membrane science,2000,177,225-231.
    [23] Cerqueria A, Filho G R, Meireles C S. Optimization of sugarcane bagasse celluloseacetylation[J].2007,69,579-582.
    [24] Ciacco G T, Ass B A, Ramos L A. Frollini, et al. Sugarcane bagasse and microcrystallinecelluloses: influence of the composition of the solvent system N,N-dimethylacetamide/lithium chloride on the solubility and acetylation of these polysaccharides[J].E-Polymers,2008,22:1-11.
    [25] Liu C F, Sun R C, Qin M H,.et al. Chemical modification of ultrasound-pretreatedsugarcane bagasse with maleic anhydride[J]. Industrial Crops and Products,2007,26:212-219.
    [26] Liu C F, Sun R C, Qin M H. et al. Succinoylation of sugarcane bagasse under ultrasoundirradiation[J]. Bioresource technology,2008,99:1465-1473.
    [27]崔志敏,罗儒显,朱锦瞻.甘蔗渣纤维素磷酸酯的合成与应用研究[J].精细化工,2001,18(12):699-702.
    [28]邹君,凌秀琴,粱丽明.甘蔗渣制备废水处理剂纤维素黄原酸酯的研究[J].广西纺织科技,2005,34(2):21-23
    [29]张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社,2006.
    [30] Pereira R, Filho S P, Curvelo A S. Benzylated pulps from sugarcane bagasse[J]. Cellulose,1997,4(1):21-31.
    [31]覃海错,黄文榜,孙一峰,等.甘蔗渣纤维制备羧甲基纤维素新工艺[J].广西师范大学学报(自然科学版),1998,16(1):87-90.
    [32]谢文伟,孙一峰,刘治国.蔗渣纤维素制备高取代度羧甲基纤维素[J].广西轻工业.2000,16(1):31-32.
    [33] Viera G P, Filho G R, Assuncao R M,et al. Synthesis and characterization of methylcellulosefrom sugar cane bagasse cellulose[J]. Caebohydrate Polymers,2007,67,182-189.
    [34]李永芬,吴兴福,马光复,等.黄原酸酯法接枝-丙烯酰胺和蔗渣纤维素浆粕接枝共聚的研究[J].天然产物研究与开发,1991,3(2):23-28.
    [35] Herna′ndez-Salas M, Villa-Ram′rez M S, Veloz-Rendo′n J S. Comparative hydrolysis andfermentation of sugarcane and agave bagasse[J]. Bioresource Technology,2009,100:1238-1245.
    [36] Kuo C H, Lee C K. Enhanced enzymatic hydrolysis of sugarcane bagasse byN-methylmorpholine-N-oxide pretreatment[J]. Bioresource Technology,2009,100:866-871.
    [37]罗素娟.甘蔗渣微晶纤维素的研制[J].广西化工,1997,26(3):4-7.
    [38] Padmadisastra Y, Gonda I. Preliminary studies of the development of a direct compressioncellulose excipient from bagasse[J]. Journal of Pharmaceutical Sciences,1989,78(6):508-514.
    [39] Paralikar K M, Bhatawdekar S P. Microcrystalline cellulose from bagasse pulp[J].Biological Wastes,1988,24:75-77.
    [40] Warwicker J O, Swelling. In: Cellulose and Cellulose Derivatives Part IV [M]. Vol V Part,New York:N M Bikales and L Segal(eds) J. Wiley,1971.
    [41] Sellars W, Vilbrandt F. Mercerization of cotton with sulfuric acid[J].Am. Dyest. Rep.,1928,17:645.
    [42] Aaltonen O, Karvinen J, et al. Properties of rayon spun from cellulose dissolved intoN-ethylpyridinium chloride solution[J]. Paperi ja Puu,1977,59(11):739-42.
    [43] Williams H E. Action of thiocyanates on cellulose[J]. Journal of the Society of ChemicalIndustry,1921,40:221-225.
    [44] Davidson G F.The solution of chemically modified cotton cellulose in alkaline solutions.II.Comparison of the solvent actions of solutions o lithium, sodium, potassium andtetramethylammonium hydroxides[J]. Journal of the Textile Institute,1936,27:112-130.
    [45] Isogai A, Atalla R H. Alkaline method for dissolving cellulose: US:5410034[P].1995-04-25.
    [46] Litt M H, Kumar N G, Shimko TM, et al. Paper and textile chemistry[M]. New York,1976.
    [47] Moton H, Narayon G K. Cellulose solutions and products prepared therefrom: US:4028132[P].1977-06-07.
    [48]张俐娜,蔡杰,周金平.一种溶解纤维素的溶剂及其用途:中国,200310111447.8[P],2003-11-25.
    [49]张俐娜,阮东,高山俊.溶解纤维素的硫脲碱水溶剂及制备再生纤维素的方法:中国,00128162.3[P].2000-12-28.
    [50] Suvorova S I, Scharkov V I. Effect of preswelling of cellulose on the degree of substitutionby ethylxanthate sodium salt[J]. Nauch. Tr. Leningrad.Lesotekh.Akad,1971,137:65-71.
    [51]张俐娜,蔡杰.一种溶解纤维素的氢氧化锂和尿素组合物溶剂及用途:中国,200310111567.8[P].2003-12-12.
    [52] McComick C L. Novel cellulose solutions: US,4278790[P].1981-6-14.
    [53] Tsygankova N G, Grinshpan D D, Koren A O. Mndo modeling of complex formation in N,Ndimethylacetamide-lithium chloridecellulose dissolving system[J]. Cellul. Chem. Technol.,1996,30:357-373.
    [54] Quigley M, Colin. Forming solutions of cellulose in tertiary amine N-oxide solvents: WO,9621678[P].1996.
    [55] Quigley M, Armistead R J. Forming solutions of cellulose in aqueous teritary amine oxide:WO,5888288[P].1999-03-30.
    [56] Philipp B,Wagenknecht W. Cellulose sulfate half-esters synthesis, structure and properties[J].Cellul.Chem.Technol.,1983,17:443-459.
    [57]董绮功,金小铃,郭振琪.用荞麦皮制备氰乙基纤维素的研究[J].西北大学学报(自然科学版),2000,30(3):214-216.
    [58] Samaranayake G, Glasser W G. Cellulose derivatives with low DS-I: a novel acylationsystem[J]. Carbohydr. Polym.,1993,22:1-7.
    [59] Samaranayake G, Glasser W G. Cellulose derivatives with low DS-II: analysis ofalkanoates[J]. Carbohydr. Polym.,1993,22:79-86.
    [60] Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull AcadImperial Sci (St. Petersburg),1914,1800:405-422.
    [61]李雪辉,徐建昌,王乐夫,等.室温离子液体[J].现代化工,2001,21(8):58-61,63.
    [62] Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cations andfluoroanions[J]. Fluorine Chem.,2000,105(2):221-22.
    [63]石家华,孙逊,杨春和,等.离子液体研究进展[J].化学通报,2002,(4):243-250.
    [64] Welton T. Room-tempreture ionic liquid, solvents for synthesis and catalysis[J]. Chem. Rev.,1999,99(8):2071-2084.
    [65] Swatloski P R, Spear S K,etal. Dissolution of cellulose with ionic liquid[J]. J.Am.Chem.Soc.,2002,124:4974-4975.
    [66]李东娟.纤维素在离子液体中的溶解及反应性能[D].大连:大连轻工业学院化工与材料学院,2007.
    [67]张军,张金明,吕玉霞.2009年全国高分子学术论文报告会[C].天津:2009.
    [68] Liu Q B, Janssen M H, Van R F, et al. Room-temperature ionic liquids that dissolvecarbohydrates in high concentrations. Green Chem.,2005,7(1):39-42.
    [69] Xie H B, Zhang S B, Li S H. Chitin and chitosan dissolved in ionic liquid as reversiblesorbents of CO2[J]. Green Chem.,2006,8(7):630-633.
    [70] Phillips D M, Drummy L F, Conrady D G, et al. Dissolution and regeneration of bombyxmori silk fibroin using ionic liquids[J]. J. Am. Chem. Soc.,2004,126(44):14350-14351.
    [71] Xie H B, Li S H, Zhang S B. Ionic liquids as novel solvents for the dissolution and blendingof wool keratin fibers[J]. Green Chem.,2005,7(8):606-608.
    [72] Li X, Simonsen J, Li K C. Wood dissolution and the regeneration of its components usingionic liquids[J]. Abstracts of Papers of the American Chemical Society,2004,227:U310-U311199-CELL Part1.
    [73] Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids for the extractionof metal ions from aqueous solutions[J], Chem. Commun.,2001,(1):135-136.
    [74] Dai S, Ju Y H, Barnes C E. Solvent extraction of strontium nitrate by a crown ether usingroom-temperature ionic liquids[J]. J. Chem. Soc. Dalton.,1999,(8):1201-1202.
    [75] Visser A E, Swatloski R P, Griffin S T,et al. Liquid/liquid extraction of metal ions in roomtemperature ionic liquids[J]. Separ. Sci. Technol.,2001,36(5&6):785-804.
    [76] Song C E, Shim W H, Roh E J, et al. Scandium(III) triflate immobilized in ionic liquids: anovel and recyclable catalytic system for Friedel-Crafts alkylation of aromatic compoundswith alkenes[J]. Chem. Commun.,2000,(17):1695-1696.
    [77] Song C E, Shim W H, Roh E J, et al. Ionic liquids as powerful media in scandium triflatecatalysed Diets-Alder reactions: significant rate acceleration, selectivity improvement andeasy recycling of catalyst[J]. Chem. Commun.,2001,(12):1122-1123.
    [78] Wolfson A, Wuyts S, Devos D E, et al. Aerobic oxidation of alcohols with rutheniumcatalysts in ionic liquids[J]. Tetrahedron Lett.,2002,43(45):8107-8110.
    [79] Kabalka G W, Malladi R R. Reduction of aldehydes using trialkylboranes in ionic liquids[J].Chem. Commun.,2000,(22):2191-2191.
    [80] Fuller J,CarlinR T,Osteryoung R A.The room temperature ionic liquid1-ethyl-3methylimidazolium tetrafluoroborate:electrochemical couples and physical properties[J].JElectrochem.Soc.,1997,144(11):3881-3885
    [81] Hinckley G,Mozhaev V V,Budde C, et a1. Oxidative enzymes possess catalytic activity insystems with ionic liquid[J]. Biotechnol. Lett.,2002,24:2083-2087.
    [82] Ye C F, Liu W M, Chen Y X, et al. Room-temperature ionic liquids: a novel versatilelubricant[J]. Chem. Commun.,2001,(21):2244-2245.
    [83] Armstrong D W, Zhang L K, He L F, et al. Ionic liquids as matrixes for matrix-assisted laserdesorption/ionization mass spectrometry[J]. Anal. Chem.,2001,73(15):3679-3686.
    [84] Armstrong D W, He L F, Liu Y S. Examination of ionic liquids and their interaction withmolecules, when used as stationary phases in gas chromatography[J]. Anal. Chem.,1999,71(17):3873-3876.
    [85] Zhang H, Wu J, Zhang J, et al.1-Allyl-3-methylimidazolium chloride room temperatureionic liquid: A new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules,2005,38:8272-8277.
    [86]曹妍,李会泉,张军.玉米秸秆纤维素在离子液体中的溶解再生研究[J].现代化工,2008,28(S2):184-187.
    [87]翟蔚,陈洪章,马润宇.离子液体中纤维素的溶解及再生特性[J].北京化工大学学报,2007,38(2):138-141.
    [88]王犇,黄科林,曹妍,等蔗渣纤维素在离子液体中的溶解与再生[J].化工学报,2010,61(6):1592-1598.
    [89]张慧慧,蔡涛,郭清华,等.以离子液体为溶剂的纤维素纤维的结构与性能[J].合成纤维,2007,11:11-15.
    [90] Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids[J].Cellulose,2008,15(1):59-66.
    [91]张昊.纤维素在离子液体中的溶解与再生[D].北京:中国科学院研究生院化学研究所,2007.
    [92] Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionicliquid[J]. Biomacromolecules,2004,5(2):266-268.
    [93] Heinze T, Schwikal K, Barthel S, Ionic liquids as reaction medium in cellulosefunctionalization[J]. Macromol. Biosci.,2005,5:520-525.
    [94] Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids[J]. Green.Chem.,2006,8:301-306.
    [95] Abbott A P, Bell T J, Handa S, et al. O-Acetylation of cellulose and monosaccharides using azinc based ionic liquid[J]. Green. Chem.,2005,7:705-707.
    [96]曹妍,李会泉,张懿.低取代醋酸纤维素的均相合成及其水溶性[J].高等学校化学学报,2008,29(10):2115-2117.
    [97]武进,张昊,张军,等.纤维素在离子液体中的均相乙酰化及其选择性[J].高等学校化学学报,2006,27(3):592-594.
    [98] Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids[J]. Green.Chem.,2006,8:301-306.
    [99] Erdmenger T, Haensch C, Hoogenboom R, et al. Homogeneous tritylation of cellulose in1-Bubyl-3-methylimidazolium Chloride[J]. Macromil. Biosci,2007,7:440-445.
    [100] Kobler S, Heinze T. Efficient synthesis of cellulose furoates in1-N-butyl-3-methylimidazolium chloride[J]. Cellulose,2007,14:489-495.
    [101]胡杰,邵媛,邓宇.离子液体中纤维素氨基甲酸酯的合成[J].皮革化工,2007,24(3):31-35.
    [102] Liu C F, Sun R C, Zhang A P, et al. Structural and thermal characterization of sugarcanebagasse cellulose succinates prepared in ionic liquid[J]. Polym. Deg. Stab.,2006,91:3040-3047.
    [103] Liu C F, Sun R C, Zhang A P, et al. Homogeneous modification of sugarcane cellulose withsuccinic anhydride using a ionic liquid as reaction medium[J]. Carbohydr. Res.,2007,342:919-926.
    [104] Liu C F, Sun R C, Zhang A P,et al. Preparation and characterization of phthalated cellulosederivatives in room-temperature ionic liquid without catalysts[J]. J. Agric. Food Chem.,2007,55:2399-2406.
    [105]邱常玲,王兆梅,郭祀远.离子液体中蔗渣纤维素的硫酸酯化及抑菌效果研究[J].现代食品科技,2008,24(6):535-538.
    [106] Wang Z M, Li L, Xiao K J, et al. Homogeneous sulfation of bagasse cellulose in an ionicliquid and anticoagulation activity[J]. Bioresource Technology,2009,100(4):1687-1690.
    [107]马艳华.纤维素在近临界水中催化水解反应及动力学研究[D].上海:上海大学环境工程,2010.
    [108]王文钊.纤维素热重分析及热解动力学研究[D].重庆:重庆大学热能工程,2009.
    [109]彭锦雯.纤维素接枝共聚动力学研究[J].桂林工学院学报,2002,(2):188-191.
    [110]蒋彩云,黄春香,邓照夕.醋酸丁酸纤维素的均相合成及动力学研究[J].江苏工业学院学报,2009,21(1):15-17.
    [111] éva Borbély. The Kinetics of cellulose grafting with vinyl acetate monomer[J]. ActaPolytechnica Hungarica,2005,2(2):67-76.
    [112] Dadi A P, Varanasim S, Schall C A. Enhancement of cellulose saccharification kinetics usingan ionic liquid pretreatment step[J]. Biotechnology and Bioengineering,2006,95:904-910.
    [113] Laurent V, Markus F, John D, et al. The kinetics of the acid-catalysed hydrolysis ofcellobiose in the ionic liquid1-ethyl-3-methylimidazolium chloride,[C2mim]Cl[J]. GreenChem.,2009,11:390-396.
    [114]张益良.离子液体溶解及酶降解纤维动力学初探[D].天津:天津大学化学化工学院,2008.
    [115]林春香,詹怀宇,刘明华.纤维素在离子液体中均相接枝共聚反应动力学研究[J].造纸科学与技术,2009,28:25-27.
    [116] Heimers J A, Storff B, Molter K, et al. Pro-gress in evaluation of risk potential of ionicliquids basis for an eco-design of sustainable products[J]. Green Chem.,2005,7:362-372.
    [117] Docherty K M, Kulpac F. Oxicity and antimicrobial activity of imidazolium and pyridiniumionic liquids[J]. Green Chem.,2005,(4):185-189.
    [118]丁琪,孙国泉,乐长高,等.离子液体的毒性及其潜在风险评估[J].云南大学学报(自然科学版),2007,29(S1):232-236.
    [119]王华平.一种离子液体为溶剂的纤维素纤维制备中溶剂回收方法:中国,180416[P].2006-07-19.
    [120]吴波,董炜星,朱天祥,等.提纯离子液体的方法:中国,200910196700.1[P].2009-9-29.
    [121] Wasserscheid P, Keim W. Ionic liquids-new“solutions”for transition metal catalysis[J].Angew. Chem. Int. Ed. Engl.,2000,39:3772-3789.
    [122] Scurto A M, Aki S N, Brennecke J F. Carbon dioxide induced separation of ionic liquids andwater[J]. Chem. Commun.,2003,(5):572-573.
    [123] Gutowski K E. Controlling the aqueous miscibility of ionic luquids: aqueous biphasicsystems of water-miscible ionic liquids ang water-structuring salts for recycle, metathesisand separations[J]. J. Am. Chem. Soc.,2003,125:6632-6633.
    [124] Han S. Application of organic solvent nanofiltration toseparation of ionic liquids andproducts from ionic liquid mediated reaction[J]. Chem. Eng. Res. Des.,2005,83:309-311.
    [125]王薇.一种从纺丝废液中回收离子液体的方法:中国,101219840[P].2008-07-16.
    [126] Battista O A, Smith P A.Microcrystalline cellulose[J]. Industrial Engineering Chemistry,1962,54(9):20-29.
    [127]扬农,殷厚义,王志茂.微晶纤维素开发应用前景展望[J].江苏氯碱,2002,(3):30-31.
    [128]陈家楠,谢春雷,颜少琼,等.稻草微晶纤维素的制备及其形态结构[J].纤维素科学与技术,1993,1(3):34-36.
    [129] Foster A,Agblevor M. Coupled acid and enzyme mediated production of microcrystallinecellulose from corn cob and cotton gin waste[J]. Cellulose,2007,(14):247-256.
    [130]张彩莉,张鑫.微晶纤维素的特性及应用[J].中国调味品,2006,9(9):46-48.
    [131]杨维生.微晶纤维素的开发及应用[J].化工时刊,1994,(5):18-19.
    [132]曹咏梅,黄科林,吴睿,等.微晶纤维素的性质、应用及市场前景[J].企业科技与发展,2009,12:48-51.
    [133] Tuason J R, Domingo C. Microcrystalline cellulose-based stabilizer system for dry mixinstant chocolate drink: US,4980193[P].1989-11-16.
    [134]侯永发.合成革MCC微孔剂的研制和应用[J].林产化工通讯,1994,28(3):16-20.
    [135]袁赞,胡小梅,张永忠.近临界水中废油脂无催化水解研究[J]中国油脂,2012,37(1):41-43.
    [136]吕秀阳,何龙,郑赞胜,等.近临界水中的绿色化工过程[J].化工进展,2003,22(4):477-481.
    [137]李向科.亚临界H2O-CO2体系中纤维素降解制备乙酰丙酸的研究[D].天津:天津大学化学工艺,2007.
    [138]朱志强,曾健青,刘莉玫.近临界水中苯丁烯酮合成新方法[J].有机化学,2002,(22)7:508-510.
    [139]朱志强,曾健青,刘莉玫.近临界水中苯甲醛与丙酮的Claisen-Schmidt缩合反应[J]广州化学,2002,27(2):17-20.
    [140]朱志强,曾健青,刘莉玫.近临界水中苄叉乙酰苯的合成研究[J].广州化学,2002,27(4):6-9.
    [141]李华明.近临界水聚碳酸酯催化解聚研究[D].杭州:浙江工业大学环境工程,2007.
    [142]李志,陈晋阳,刘桂洋,等.近临界水中4,4′-二溴联苯催化氧化降解的研究[J].现代化工,2010,30(5):41-43.
    [143]石超君.腈类化合物在近临界水中的水解反应研究[D].杭州:浙江大学材料与化学工程学院,2008.
    [144]高浩其,徐良峰,杨建平,等.壳聚糖在近临界水中降解及其工艺研究[J].西北大学学报(自然科学版),2004,34(4):436-438.
    [145]余强,庄新姝,袁振宏,等.高温液态水中甜高粱渣半纤维素水解及其机理[J]化工学报,2012,63(2):599-605.
    [146] Katsunobu E, Shiro S. Decomposition behavior of cellulose in supercritical water,subcritical water, and their combined treatments[J]. Journal of Wood Science,2005,51(2):148-153.
    [147] Shiro S,Tomonori U. Chemical conversion of various celluloses to glucose and itsderivatives in supercritical water[J]. Cellulose,1999,6(3):189-195.
    [148] Sasaki M, Zhen F, Fukushima Y, et al. Dissolution and hydrolysis of cellulose in subcriticaland supercritical water[J].Industrial andEngineering Chemistry Research,2000,39(8):2883-2890.
    [149]吕秀阳,任浩明,李准. CO2-高温液态水介质中的频那醇重排反应[J].化工学报,2008,59(1):97-100.
    [150]张明.高温液态水中CO2催化棉纤维水解制取葡萄糖的研究[D].山东:山东理工大学应用化学,2007.
    [151]庞斐,吕惠生,张敏华.亚临界水/二氧化碳中纤维素降解制备5-羟甲基糠醛的机理及动力学[J].化学反应工程与工艺,2007,23(1):55-60.
    [152] Huang K L, Wang B, Cao Y, et al. Homogeneous preparation of cellulose acetate propionate(CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionicliquid[J] J. Agric. Food Chem.,2011,59,5376-5381.
    [153]陈嘉川,谢益民,李彦春.天然高分子科学[M].北京:科学出版社,2008.
    [154]顾王文,郁莉锋,杨昊松,等.国产微晶纤维素与Avicel的性能比较[J].中国药学,2001,36(8):532-536.
    [155]王则奋,黄科林,王犇,等.纤维素微球的分子质量及其分布[J].安徽农业科学,2012,40(7):3840-3844.
    [156] ASTM D. Standard test methods of testing cellulose acetate propionate and cellulose acetatebutyrate,2004.817-96.
    [157]武汉大学.分析化学[M].北京:高等教育出版社,2000:200-204.
    [158] GB/T1628-2008GB/T1628-2008.工业用冰乙酸[S].中国标准出版社:中国,2008.
    [159]孙静霞,张正行. NMR在药物定量分析中的应用[J].药物分析杂志,2005,25(1):117-119.
    [160]牛延磊.单腈在近临界水中的水解反应研究[D].上海:华东师范大学,2009.
    [161]傅相锴.高等有机化学[M].北京:科学教育出版社,2005,184-1907.
    [162] Yan C, Jun Z H, Song H E. Homogeneous acetylation of cellulose at relatively highconcentrations in an ionic liquid[J]. Chinese Journal of Chemical Engineering,2010,18(3):515-522.
    [163] Tezyka Y, Imai Z. Determination of distribution in cellulose ethers by13C and1H NMR.studie of their acetylated derivatives: O-(2-Hydroxypropyl) cellulose[J]. CarbohydrateResearch,1990,196(1):1-10.
    [164] Yasuyuki T.13C NMR determination of the distribution of two ester substituents in celluloseacetate butyrate[J]. Carbohydrate Research,1993,241(1):285-290.
    [165] Tezuka Y, Tsuchiya Y. Determination of distribution in cellulose acetate by means of13C-NMR study on its propanoated derivative[J]. Carbohydrate Research,1995,273(1):83-91.
    [166] Akira I, Makoto U. Solid-state CP/MAS13C NMR study of cellulose polymorphs[J].Macromolecules,1989,22:3168-3172.
    [167]徐寿昌.有机化学[M].北京:高等教育出版社,1993.
    [168]郭汉贤.化工反应动力学[M].北京:化学工业出版社,2003:10-39.
    [169]李云雁,胡传荣.实验设计与数据处理[J].北京:化学工业出版社,2008:121-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700