用户名: 密码: 验证码:
己二腈及苯部分加氢过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
己内酰胺是一种重要的有机化工原料。目前,工业化的己内酰胺生产工艺都经过了多步反应,其中占主导地位的环己酮-羟胺路线经历了环己烷氧化这一收率极低的过程,副产大量的硫酸铵副产物,不仅原子经济利用率低,还导致了严重的设备腐蚀和环境压力等问题。因此研究开发绿色工艺、简化工艺路线、降低能耗物耗,进而降低生产成本、提高竞争力成为现今研究己内酰胺生产的重点内容。丁二烯氢氰化和苯部分加氢法这两条生产己内酰胺的新工艺,避开了环己烷氧化的过程,极大的缩短了工艺流程、降低了能耗物耗、缓解了环境压力,符合原子经济性和节能减排的工艺要求,具有很好的研究价值和应用前景。本文对丁二烯氢氰化路线中的关键步骤己二腈部分加氢合成6-氨基己腈以及苯部分加氢路线中合成环己烯两个过程中的催化剂的制备与优化展开了系统的研究,取得了一定的突破,本工作的主要内容总结如下:
     一、己二腈部分加氢合成6-氨基己腈过程的研究
     采用初湿浸渍法制备了高镍负载量的负载型Ni-K_2O/α-Al_2O_3和Ni/α-Al_2O_3两种催化剂应用于液相己二腈部分加氢合成6-氨基己腈的反应。通过对催化剂进行表征分析和性能测试,发现:较低的催化剂还原温度和助剂氧化钾的引入都有利于提高活性组分镍的分散度和比表面积,减小镍的粒径,从而有利于提高6-氨基己腈的选择性;氧化钾还能增加催化剂表面的碱性位点,从而取代氨水或第一主族氢氧化物对副反应的抑制作用,可以有效的促进6-氨基己腈和己二胺两种伯胺从催化剂表面及时脱附而提高其总选择性。当钾和镍的摩尔比为0.33%,催化剂还原温度为523K,以乙醇为溶剂,在423K和2MPa H_2的无氨体系中,Ni-K_2O/α-Al_2O_3催化剂催化己二腈转化74.1%时,6-氨基己腈的选择性为84.0%,6-氨基己腈和己二胺的总选择性可达99.7%;Ni-K_2O/α-Al_2O_3催化剂的稳定性和重复利用率较高。
     二、苯部分加氢合成环己烯过程的研究
     (1)采用沉淀法,分别以ZrO_2、TiO_2、ZnO、Al_2O_3、SiO_2、介孔分子筛MCM-41和SBA-15、CNT等作载体,以Fe、Zn、La作助剂,制备了多种负载型Ru基催化剂应用于液相苯部分加氢反应中。研究发现环己烯的选择性与载体的亲水性和孔道结构特征密切相关。载体ZrO_2的强亲水性和介孔分子筛MCM-41有序的介孔结构及丰富的孔体积都能促使生成的环己烯及时从催化剂表面脱附出来,从而达到提高环己烯选择性的目的。助剂金属Fe、Zn、La等有利于提高Ru活性组分的分散度和亲水性、覆盖部分Ru活性位点,也可以进一步提高环己烯的选择性。
     (2)以廉价的ZrOCl_2·8H_2O作锆源,以CTAB作模板剂,采用水热合成法制备出具有类似MCM-41介孔结构的介孔氧化锆。介孔氧化锆负载Ru-Zn催化剂相对普通氧化锆负载Ru-Zn催化剂具有更好的催化苯部分加氢性能。其主要原因可能是介孔氧化锆有序的介孔结构有利于环己烯的脱附而提高了环己烯的选择性。
     (3)采用水热合成法、沉淀法和原位合成法,在两亲性的介孔分子筛MCM-41中掺杂亲水性的金属氧化物ZrO_2、TiO_2、ZnO等,制备了亲水性的MOx-MCM-41载体(M代表不同的金属原子Zr、Ti、Zn,x代表O原子的化学计量数);采用双溶剂浸渍法制备了负载型的Ru-N/MOx-MCM-41催化剂(N代表了不同的助剂金属La、Ce、Zn、Fe、Cu等),考察了它们在苯部分加氢反应中的催化性能。金属氧化物ZrO_2、TiO_2、ZnO都能有效提高MCM-41分子筛的亲水性,其中以水热合成法制备的ZrO_2-MCM-41-HS载体的亲水性最强,且具有较低的比表面积和较大的孔径,相应的Ru/ZrO_2-MCM-41-HS催化剂有利于促进环己烯的及时脱附和抑制环己烯的再吸附从而表现出更优的苯部分加氢性能;助剂元素La、Ce、Zn、Fe、Cu等可以有效提高Ru活性位的分散度,能进一步提高催化剂对环己烯的选择性,其中La的分散效果最佳;苯部分加氢反应过程中,反应温度、反应时间、Ru的负载量、苯/水体积比和催化剂的钝化处理等都对环己烯的选择性有较大的影响。
     (4)对介孔分子筛MCM-41的合成和ZrO_2-MCM-41载体的制备过程进行系统的优化研究,探索了MCM-41的孔道结构特征和ZrO_2的性质对Ru-La/ZrO_2-MCM-41-HS催化剂催化苯部分加氢性能的影响。通过对晶化温度、晶化时间、pH值、模板剂与硅源摩尔比、添加扩孔剂、Si/Al摩尔比和焙烧温度等条件的优化,合成出比表面积相对较小、孔径和孔体积较大的有序介孔分子筛MCM-41,在苯部分加氢反应中表现出较好的性能。进一步研究了晶化温度和晶化时间对ZrO_2-MCM-41载体的亲水性和表面酸性的影响,发现不同条件下合成的ZrO_2-MCM-41的亲水性、表面羟基种类和数量以及表面酸中心类型有较大的差异。在较低的晶化温度下,通过适当的延长晶化时间,可以合成出四方型氧化锆含量较多的ZrO_2-MCM-41载体,其表面羟基数量较多,亲水性较强,有利于环己烯的脱附;其表面B酸中心数目相对较少,减少了环己烯与吸附在B酸位点上的溢流氢加氢的机会;该载体的介孔结构有序,比表面积较小,孔径和孔体积较大,热稳定性较高,这些因素共同有利于提高环己烯的选择性。以性能最优的ZrO_2-MCM-41-HS做载体制备的Ru-La/ZrO_2-MCM-41-HS催化剂,在150℃、4MPaH_2、0.3M硫酸锌溶液与苯体积比为3:1、钝化处理10h、0.2g催化剂的反应条件下,苯的转化率为65.6%时,环己烯的选择性为70.4%,环己烯收率可达46.2%。
ε-Caprolactam is a very important intermediate materials for nylon-6synthesis. Allcurrent commercial ε-caprolactam synthesis processes are main based on the classicaltechnologies, undergoing the cyclohexane oxidation which is a very low efficientprocess with per pass yield of4-5%without catalyst and8-10%catalyzed by cobaltcatalyst. Moreover, the traditional processes involve have several disadvantages such asmulti-step reactions, low atom efficiency, reactor corrosion, environmental pollution andlarge amounts of ammonium sulphate and wastes. To overcome the above-mentionedproblems, it is very attractive to simplify the traditional ε-caprolactam synthesisprocesses and develop the green chemistry method for ε-caprolactam production. Thenovel production routes for caprolactam based on hydrocyanation of butadiene andpartial hydrogenation of benzene avoiding the cyclohexane oxidation have theadvantages of high yield, environmental friendliness and atomic economy. Hence, weprepared and characterized a series of catalysts and their catalytic properties in the keysteps of selective hydrogenation of adiponitrile to6-aminocapronitrile and partialhydrogenation of benzene to cyclohexene were performed.
     Ni/α-Al_2O_3and potassium doped Ni/α-Al_2O_3catalysts with high nickel loadingwere prepared by incipient impregnation method and characterized by nitrogenadsorption-desorption, temperature programmed reduction, hydrogen chemisorption,power X-ray diffraction, transmission electron microscopy, scanning electronmicroscopy and laser particle size analytical technique. It reveals that potassium dopedNi/α-Al_2O_3has smaller nickel crystal size, higher nickel metallic surface area and betternickel dispersion. The prepared catalysts have been tested in liquid phase hydrogenationof adiponitrile in the absence of ammonia under mild condition. It has been found thatthe Ni/α-Al_2O_3catalyst doped with potassium and reduced under relatively lowertemperature is favorable to the formation of primary amines. And the Ni-K_2O/α-Al_2O_3catalyst exhibits good performance that the selectivity of6-aminocapronitrile andhexamethylenediamine is99.7%at the adiponitrile conversion of74.1%.
     A series Ru catalyst supported on ZrO_2, TiO_2, ZnO, Al_2O_3, SiO_2, CNT, MCM-41and SBA-15were prepared by precipitation method and tested in partial hydrogenationof benzene. The effects of supports’ properties and co-catalysts on cyclohexeneselectivity were discussed. It has been found that Ru/ZrO_2with superior hydrophilicity and small specific surface areas and Ru/MCM-41with regular mesoporous structure andbig pore volume exhibit better cyclohexene selectivity than others. The strongerhydrophilicity, relative smaller specific surface areas, regular mesoporous structure andbiger pore volume of the Ru catalyst are beneficial to the desorption of the formedcyclohexene, which inhibits the further hydrogenation of cyclohexene to cyclohexane.Additionally, the promoters of Zn, Fe, La are in favour of improving the catalysthydrophilicity and Ru dispersion and decreasing the Ru activity, which could furtherincrease the cyclohexene selectivity.
     A mesoporous ZrO_2was synthesized by hydrothermal method and characterized viaX-ray Diffraction, N_2absorption-desorption technologies. The effects of crystallizationpH, crystallization time and crystallization temperature on the structure of ZrO_2wereinvestigated. Ruthenium catalysts supported on the mesoporous ZrO_2bydeposition-precipitation method were tested in the selective hydrogenation of benzene. Ithas been demonstrated that the superior hydrophilicity and regular mesoporous ofmesoporous ZrO_2are helpful to improve the cyclohexene selectivity. The Ru-Zn catalystsupported on mesoporous ZrO_2exhibits better performance than the catalyst supportedon the general ZrO_2in partial hydrogenation of benzene.
     Zirconia, titania and zinc oxide modified mesoporous molecular sieve MCM-41supports were prepared by hydrothermal synthesis method, in situ synthesis method andprecipitation method. Ruthenium promoted by La, Ce, Zn, Fe and Cu catalysts supportedon modified MCM-41were prepared via two solvents impregnation method. Thecatalysts were characterized by X-ray diffraction, Transmission electron microscopy,nitrogen adsorption-desorption and water/benzene static adsorptions techniques. It hasbeen found that Ru-La supported on MCM-41modified with zirconia by hydrothermalsynthesis method (Ru-La/ZrO_2-MCM-41-HS) leads to the biggest increase of thehydrophilicity and La shows better dispersity modification to Ru.Ru-La/ZrO_2-MCM-41-HS catalyst with the highest hydrophilicity and dispersity showsthe best performance in liquid phase partial hydrogenation of benzene to cyclohexene.
     A further research of the effect of the pore structure and surface characteristic ofMCM-41and ZrO_2on Ru catalyst performance has been developed. It has been foundthat the synthetic conditions of crystallization temperature, crystallization time, pH,mole ratio of surfactant to silicon, the dosage of assistant agent, mole ratio of Si/Al andcalcination temperature has strong impact on the specific surface area, pore volume andpore size and distribution. And relative smaller specific surface area, larger pore size and pore volume and regular mesorporous structure of MCM-41is favorable to thedesorption of cyclohexene. Furthermore, for the ZrO_2-MCM-41-HS support, the surfaceproperty like the hydrophilicity, hydroxyl content and acid site of ZrO_2also influencesthe performance of Ru-La/ZrO_2-MCM-41-HS catalyst. It revels that the hydrophilicityof tetragonal zirconia is stronger than monoclinic zirconia and amorphous zirconiabecause of the richer surface hydroxyl content and form in tetragonal zirconia.Furthermore, only Lewis acid site exists on the surface of tetragonal zirconia, whichcould avoid the further hydrogenation of cyclohexene with the spilt-over hydrogenadsorbed on Br nsted acid site and lead to better performance ofRu-La/ZrO_2-MCM-41-HS catalyst in partial hydrogenation of benzene. Over theRu-La/ZrO_2-MCM-41catalyst, the benzene conversion is65.6%and the cyclohexeneyield is46.2%.
引文
[1]张万欣,侯芙生.当代中国的石油化学工业,北京:中国社会科学院出版社,1987,251-257.
    [2]杨杏生. ε-己内酰胺发展概况[J].岳化科技,2002,189(4):1-10.
    [3]陈冠荣.化工百科全书第7卷[M].北京:化学工业出版社,1994:877-880.
    [4]朱明乔.己内酰胺的绿色化[J].合成纤维工业,2002,25(2):38-41.
    [5]晓铭.我国己内酰胺生产技术进展及市场分析[J].精细化工中间体,2012,34(01):34-39.
    [6]汪家铭.己内酰胺的生产现状及发展建议[J].川化,2011,4(4):1-5.
    [7]张从容.己内酰胺生产技术及进展[J].化学工业工程技术,2000,21(3):33-38.
    [8]朱凌皓.环己酮肟的生产方法[J].化工设计,1994,(4):17-20.
    [9]刘辉.当代己内酰胺工业及技术[J].化学工业与工程,1996,13(1):53-60.
    [10] Ichihashi H, Sato H. The development of new heterogeneous catalytic processes for theproduction of [var epsilon]-caprolactam[J]. Appl Catal A Gen,2001,221(1-2):359-366.
    [11] Yamamoto S, Sakaguchi S, Ishii Y. Noncatalytic beckmann and pinacol rearrangements [J].Green chemistry,2003,5,300-302.
    [12]范冰.己内酰胺生产的现状与展望.石油化工,1994,23(10):678-686.
    [13]聂颖.世界己内酰胺生产技术研究新进展[J].化工文摘,2005,(6):50-52
    [14]张伦,马忠龙.丁二烯路线制己内酰胺技术研究进展[J].化学工业与工程,2004,21(1):78-82.
    [15] Syed N. Processes to produce caprolactam from butadiene[J/OL]. Process Econonics ProgramReview,1999,95:l-2.
    [16] Sheldon R. Green chemistry-one year on[J]. Green Chem,2000,2:G1-G4.
    [17] Fischer R, Bassler P, Luyken H, et al. Method for producing hexamethylene diamine: US,6359178B1[P].2002-03-19.
    [18] Cotting MC, Gilbert L, Leconte P. Method for partially hydrogenating dinitriles to aminonitriles:US,5981790[P].1999-11-09.
    [19] Ziemecki S B. Selective low pressure hydrogenation of a dinitrile to anaminonitrile: US,5151543[P].1992-09-29.
    [20] Mark H. Raney cobalt catalyst and a process for hydrogenating organic compounds using saidcatalyst: WO,0027526A1[P].2000-05-18.
    [21] Rigby G W. Aliphatic amino-nitriles and process of producing them: US,2208598[P].1940-07-23.
    [22] Swerdloff J. Prepatation of amino nitriles: US,2762835[P].1956-09-11.
    [23] Bassler P, Luyken H, Achhammer G, et al. Simultaneous preparation of caprolactam andhexamethylenediamine: US,5717090A[P].1998-12-10.
    [24]博切特,布伦奈勒.二腈的半氢化方法:中国,1189450C[P].2005-02-16.
    [25] Galle J E, Mares F, Diamond S E, et al. Selective hydrogenation of aliphatic dinitriles toomega-aminonitriles in ammonia with supported, finely dispersed phodium-containing catalyst:US,4601859[P].1986-07-22.
    [26] Alex I, Stanislaw Z, Mark H, Theodore K. Aminonitrile production: WO,9947492A1[P].1999-09-23.
    [27] Guido V, Rolf F, Peter B, Andreas A, et al. Iron-based catalyst for hydrogenating alpha-,omega-dinitriles: WO,9944984A1[P].1999-09-10.
    [28] Augustine R L. Organic functional group hydrogenation[J]. Catal Rev Sci Eng,1976,13(1):285-316.
    [29] Rapoport M. Hydrocyanation of olefins: US,4330483[P]. l982-05-l8.
    [30] Rode C V, Arai M, Shirai M, Nishiyama Y. Gas-phase hydrogenation of nitriles by nickel onvarious supports[J]. Appl Catal A Gen,1997,148:405-413.
    [31] Huang Y, Sachtler W M H. On the mechanism of catalytic hydrogenation of nitriles to aminesover supported metal catalysts[J]. Appl Catal A Gen,1999,182:365-378.
    [32] Buijs W, Henricus F W W, Rudolf P M G, et a1. Process to prepare epsilon-caprolactam: US,7194572[P].2001-12-27.
    [33] Immel T. Method for the production of lactams: DE l9632006[P]. l998-02-19.
    [34] Barral T. Preparation of lactams: US,549302l[P]. l996-12-20.
    [35] Sie J, James B. Purification of6-aminocapronitrile: US,5162567[P].1992-11-10.
    [36]Sever H. Method for cyclizing hydrolysis of an aminonitrile compound into lactam: US,6479658[P].2002-02-09.
    [37] Chen B, Dingerdissen U, Krauter J G E, et al. New developments in hydrogenation catalysisparticularly in synthesis of fine and intermediate chemicals[J]. Appl Catal A Gen,2005,280:17-46.
    [38] Hochard F, Jobic H, Massardier J, Renouprez A J. Gas phase hydrogenation of acetonitrile onRaney nickel catalysts: reactive hydrogen[J]. J Mol Catal A Chem,1995,95:165-172.
    [39] Medina F, Salagre P, Sueiras J E, Fierro J L G. Characterization and catalytic properties ofseveral potassium-doped iron-nickel catalysts[J]. Appl Catal A Gen,1992,92:131-141.
    [40] Medina F, Salagre P, Sueiras J E, Fierro J L G. Characterization of several γ-alumina-supportednickel catalysts and activity for selective hydrogenation of hexanedinitrile[J]. J Chem SocFaraday Trans,1994,90:1455-1459.
    [41] Medina F, Salagre P, Sueiras J E, Fierro J L G. Structural and catalytic properties of severalpotassium-doped nickel/α-alumina solids[J]. J Chem Soc Faraday Trans,1993,89:3981-3986.
    [42] Medina F, Salagre P, Sueiras J E, Fierro J L G. Synthesis and characterization of severalpotassium-doped iron-nickel samples active for the1,6-hexanedinitrile hydrogenation[J]. SolidState Ionics,1993,59:205-210.
    [43] Medina F, Salagre P, Sueiras J E, Fierro J L G. Characterization of potassium-doped nickelcatalysts and activity for selective hydrogenation of1,6-hexanedinitrile[J]. J Mol Catal,1993,81:387-395.
    [44] Medina F, Salagre P, Sueiras J E, Fierro J L G. Surface characterization and catalytic propertiesof several graphite supported potassium-free and potassium-doped nickel catalysts[J]. ApplCatal A Gen,1993,99:115-129.
    [45] Yu X, Li H, Deng J F. Selective hydrogenation of adiponitrile over a skeletal Ni-P amorphouscatalyst (Raney Ni-P) at1atm pressure[J]. Appl Catal A Gen,2000,199:191-198.
    [46] Li X, Xu Y, Deng J F. Selective hydrogenation of adiponitrile over a Raney Ni-P amorphouscatalyst[J]. New J Chem,1999,23:1059-1061.
    [47] Li X, Xu Y, Li H, Deng J F. Gas-phase hydrogenation of adiponitrile with high selectivity toprimary amine over supported Ni-B amorphous catalysts[J]. Appl Catal A Gen,2001,216:51-58.
    [48] Serra M, Salagre P, Cesteros Y, et al. Nickel-magnesia catalysts: an alternative for thehydrogenation of1,6-hexanedinitrile[J]. J Catal,2002,209:202-209.
    [49] Serra M, Salagre P, Cesteros Y, et al. Evolution of several Ni and Ni-MgO catalysts during thehydrogenation reaction of adiponitrile[J]. Appl Catal A Gen,2004,272:353-362.
    [50] Serra M, Salagre P, Cesteros Y, et al. Nickel and nickel-magnesia catalysts active in thehydrogenation of1,4-butanedinitrile[J]. J Catal,2001,197:210-219.
    [51] Zhao L, Wang C Y, Chen JX, Zhang J Y. Partial hydrogenation of adiponitrile to6-aminocapronitrile over Ni/α-Al2O3catalyst promoted with K2O and La2O3[J]. Chin ChemLett,2007,18:685-688.
    [52] Cesteros Y, Fernàndez R, Estellé J, et al. Characterization and catalytic properties of severalLa/Ni and Sr/Ni solids[J]. Appl Catal A Gen,1997,152:249-269.
    [53] Alini S, Bottino A, Capannelli G, et al. The catalytic hydrogenation of adiponitrile tohexamethylenediamine over a rhodium/alumina catalyst in a three phase slurry reactor[J]. J MolCatal A,2003,206:363-370.
    [54] Alini S, Bottino A, Capannelli G, et al. Prepatation and characterization of Rh/Al2O3catalystsand their application in the adiponitrile partial hydrogenation and styrene hydroformylation[J].Appl Catal A Gen,2005,292:105-112.
    [55] Odenbrand C U L, Andersson L T. Hydrogenation of benzene to cyclohexene on a Ru catalyst:physical and chemical charaeterization of the catalysts and its Precursor[J]. Chem TeehBioteehnol,1982,32:365-375.
    [56]丹羽修一.化学技术研究所报告[R].1992,87:283-285.
    [57]罗鸽.苯选择加氢制环己烯Ru-Zn催化剂制备及表征[D].郑州:郑州大学,2002.
    [58]王建强.新型钉催化剂的制备表征及苯选择加氢反应研究[D].上海:复旦大学,2005.
    [59] PrasadK H V, PrasadK B S, Mallikarjunan M M, Vaidyeswaran R. Self-poisoning and ratemultiplieity in hydrogenation of benzene[J]. J Catal,1983,84:65-73.
    [60] Ronchin L, Toniolo L. Selective hydrogenation of benzene to cyclohexene using a Ru catalystsuspended in an aqueous solution in a mechanically agitated tetraphase reactor: a study of theinfluence of the catalyst preparation on the hydrogenation kinetics of benzene and ofcyclohexene[J]. Applied Catalysis A: General,2001,208(1):77-89..
    [61]姜波,赵立芳.固体酸催化环己醇脱水制备环己烯[J].精细石油化工,2005,5:52-54.
    [62]袁先友,张敏,刘元圆.催化合成环己烯[J].化学试剂,2001,23(3):182-183.
    [63]刘建良.液相苯部分加氢制环己烯反应Ru基催化剂的研究[D].上海:复旦大学,2010.
    [64]宁剑波.钌催化剂上苯选择加氢合成环己烯的研究[D].大连:中国科学院研究生院,2007.
    [65]刘寿长,李利民,王向宇.苯选择加氢制环己烯催化剂及其制造方法:中国,1337386A[P].2002-02-27.
    [66] Hartog F, Zwietering P. Olefins as intermediates in the hydrogenation of aromatichydrocarbons[J]. J Catal,1963,2:79-81.
    [67] Anderson J R. The catalytic hydrogenation of benzene and toluene over evaporated films ofnickel and tungsten[J]. Australian J Chem,1957,10:409-416.
    [68] Lu S L, Lonergan W W, Bosco J P, et al. Low temperature hydrogenation of benzene andcyclohexene: A comparative study between γ-Al2O3supported PtCo and PtNi bimetalliccatalysts[J]. J Catal,2008,259:260-268.
    [69] Antonucci P, Truong N, Giordano N, Maggiore R. Hydrogen spillover effects in thehydrogenation of benzene over Pt/Al2O3catalysts[J]. J Catal,1982,75:140-150.
    [70] Marecot P, Paraiso E, Dumas J M, Barbier J. Benzene hydrogenation on nickel catalysts: Role ofweakly bound hydrogen [J]. Appl Catal,1991,74:261-272.
    [71] Savva P G, Goundani K, Vakros J, et al. Benzene hydrogenation over Ni/Al2O3catalystsprepared by conventional and sol-gel techniques[J]. Appl Catal B Environ,2008,79:199-207.
    [72] Toppinen S, Rantakyl T K, Salml T, Aittamaa J. The liquid phase hydrogenation of benzene andsubstituted alkylbenzenes over a nickel catalyst in a semi-batch reactor[J]. Catal Today,1997,38:23-30.
    [73] Li J, Qiao M H, Deng J F Amorphous Ni-B/γ-Al2O3catalyst prepared in a modified dryingapproach and its excellent activity in benzene hydrogenation[J]. J Mol Catal A Chem,2001,169:295-301.
    [74] Ratanatawanate C, Macias M, Jang B W L. Promotion Effect of the Nonthermal RF PlasmaTreatment on Ni/Al2O3for Benzene Hydrogenation[J]. Ind Eng Chem Res,2005,44:9868-9874.
    [75] Mu X D, Meng J Q, Li Z C, Kou Y. Rhodium Nanoparticles Stabilized by Ionic Copolymers inIonic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation[J]. J Am ChemSoc,2005,127:9694-9695.
    [76] Fajardie F, Tempere J F, Mariadassou G D, Blanchardy G. Benzene Hydrogenation as a Tool forthe Determination of the Percentage of Metal Exposed on Low Loaded Ceria SupportedRhodium Catalysts[J]. J Catal,1996,163:77-86.
    [77] Rodriguez-Rivera G J, Kim W B, Evans S T, et al. Hydrogenation of Benzene Using AqueousSolution of Polyoxometalates Reduced by CO over Gold Catalysts[J]. J Am Chem Soc,2005,127:10790-10791.
    [78] Jen P H, Hsu Y H, Lin S D. The activity and stability of Pd/C catalysts in benzenehydrogenation[J]. Catal Today,2007,123:133-141.
    [79] Zhang A M, Dong J L, Xu Q H, et al. Palladium cluster filled in inner of carbon nanotubes andtheir catalytic properties in liquid phase benzene hydrogenation[J]. Catal Today,2004,93-95:347-352.
    [80] Sancier K M. Hydrogen migration on alumina/Pd catalyst for benzene hydrogenation[J]. J Catal,1971,20:106-109.
    [81] Imamura H, Konishi T, Sakata Y, Tsuchiya S. Highly selective hydrogenation of benzene tocyclohexene catalysed by a SiO2or Al2O3immobilized lanthanide catalyst[J]. J Chem SocChem Commun,1993,24:1852-1853.
    [82] Suzuki K, Ishida H, Nagahara H. Partial hydrogenation of benzene to cyclohexene oversupported ruthenium carbonyl cluster-derived catalysts[J]. Sci Tech Catal,2003,145:545-546.
    [83] Galvagno S, Donato A, Neri G, Pietropaolo D. Rhodium/nylon catalysts for partialhydrogenation of benzene to cyclohexene[J]. React Kinet Catal Lett,1988,37(2):443-449.
    [84] Liu S, Liu Z, Wu Y, et al. Effect of lanthanum on performance of RuB amorphous alloy catalystfor benzen selective hydrogenation[J]. Journal of Rare Earths,2006,24(4):456-460.
    [85] Kluson P, Cerveny L. Selective hydrogenation over ruthenium catalysts[J]. Appl Catal A Gen,1995,128(1):13-31.
    [86] Liu J L, Zhu L J, Pei Y, et al. Ce-promoted Ru/SBA-15catalysts prepared by a ‘‘two solvents”impregnation method for selective hydrogenation of benzene to cyclohexene[J]. AppliedCatalysis A: General,2009,353:282–287.
    [87] Nagahara H, One M, Konishi M, Fukuoka Y. Partial hydrogenation of benzene to cyclohexene[J].Applied surface science,1997,121-122(2):448-451.
    [88] Nagahars H, Konishi M. Process for producing cycloolefins: US,4734536[P].1988-03-29.
    [89] Liu S, Liu Z, Wang Z, et al. A novel amorphous alloy Ru-La-B/ZrO2catalyst with high activityand selectivity for benzene selective hydrogenation[J]. Appl Catal A Gen,2006,313:456-460.
    [90] Yuan P Q, Wang B Q, Ma Y M, et al. Partial hydrogenation of benzene over the metallic Znmodified Ru-based catalyst[J]. J Mol Catal A Chem,2009,309(1-2):124-130.
    [91] Wang W, Liu H, Wu T, et al. Ru catalyst supported on bentonite for partial hydrogenation ofbenzene to cyclohexene[J]. J Mol Catal A Chem,2012,355:174-179.
    [92]宁剑波,刘菁,路芳,徐杰.微乳法制备纳米钌基催化剂及其对苯选择加氢反应的催化性能[J].石油化工,2005,34:459-461.
    [93]刘寿长,罗鸽,谢云龙.沉淀法制备苯选择加氢制环己烯Ru-Zn催化剂的研究[J].分子催化,2002,16(5):349-351.
    [94] Hu S C, Chen Y W. Effect of preparation on Ru-Zn catalysts in partial Hydrogenation ofbenzene[J]. Ind Eng Chem Res,2001,40:3127-3132.
    [95] Wang J Q, Xie S H, Qiao M H, et al. Partial hydrogenation of benzene to cyclohexene on aRu-Zn/m-ZrO2nanocomposite catalyst[J]. Appl Catal A Gen,2004,272(1):29-36.
    [96]吴敏,陈志祥,孙作霖.苯选择性加氢制环己烯催化剂及制备方法与应用:中国,1978056A[P].2007-06-13.
    [97]黄振旭.苯选择加氢制环己烯新型Ru-Zn催化剂的研究[D].郑州:郑州大学,2006.
    [98] Liu H, Liang S, Wang W, et al. The partial hydrogenation of benzene to cyclohexene over Ru-Cucatalyst supported on ZnO[J]. J Mol Catal A Chem,2011,341(1-2):35-41.
    [99] Mizukami F, Niwa S, Toba M, et al. Preparation and properties of the catalysts by a chemicalmixing procedure[J]. Stud Surf Sci Catal,1987,31:45-52.
    [100] Bu J, Liu J L, Chen X Y, et al. Ru/SBA-15catalysts for partial hydrogenation of benzene tocyclohexene: tuning the Ru crystallite size by Ba[J]. Catal Commun,2008,9(15):2612-2615.
    [101] Suryawanshi P T, Mahajani V V. Liquid-phase hydrogenation of benzene to cyclohexene usingruthenium-based heterogeneous catalyst[J]. J Chem Tech Biotech,1997,69(2):154-160.
    [102] Fan G Y, Jiang W D, Wang J B, et al. Selective hydrogenation of benzene to cyclohexene overRuCoB/γ-Al2O3without additive[J]. Catalysis Communications,2008,10(1):98-102.
    [103] J ger C, et al., Identification and spectral properties of PAHs in carbonaceous materialproduced by laser pyrolysis[J]. Carbon,2007,45(15):2981-2994.
    [104] Zonetti P da C, Landers R, Cobo A J G. Thermal treatment effects on the Ru/CeO2catalystsperformance for partial hydrogenation of benzene[J]. Applied Surface Science,2008,254(21):6849-6853.
    [105] Zanutelo C, Landers R, Carvalho W A, Cobo A J G. Carbon support treatment effect on Ru/Ccatalyst performance for benzene partial hydrogenation[J]. Applied Catalysis A: General,2011,409-410:174-180.
    [106] Xie S, Qiao M, Li H, et al. A novel Ru-B/SiO2amorphous catalyst used in benzene-selectivehydrogenation[J]. Applied Catalysis A: General,1999,176(1):129-134.
    [107]胡福田.微乳技术制备纳米催化剂的研究进展[J].广东化工,2007,34(012):59-62.
    [108] Milone C, Neri G, Donato A, Musolino M G. Selective hydrogenation of benzene tocyclohexene on Ru/γ-Al2O3[J]. J Catal,1996,195(2):253-258.
    [109] Mazzieri V A, Argentiere P C, Coloma-Pascual F, Figoli N S. Effect of Chlorine on theproperties of Ru/Al2O3[J]. Ind Eng Chem Res,2003,42:2269-2272.
    [110] Struijk J, d’Angremond M, Lucas-de Regt W J M., Scholten J J F. Partial liquid phasehydrogenation of benzene to cyclohexene over ruthenium catalysts in the ppresence of anaqueous salt solution: I. Preparation, characterization of the catalyst and study of a number ofprocess variables[J]. Appl Catal A Gen,1992,83:263-295.
    [111] Hronec M, Cvengro ová Z, Králik M, et al. Hydrogenation of benzene to cyclohexene overpolymer-supported ruthenium catalysts[J]. J Mol Catal A Chem,1996,105:25-30.
    [112] Liu Z, Xie S, Liu B, Deng J F. Benzene-selective hydrogenation to cyclohexene over supportedruthenium boride catalysts prepared by a novel method[J]. New J Chem,1999,23:1057-1058.
    [113] Abitz W, Morf D F, Brauns H A, et al. Selektive hydrierung von aromatischenkohlenwasserstoffen zu cycloolefinen: DE,2221137[P].1972-11-09.
    [114] Johnson M M, Nowack G P. Cyclic olefins by selective hydrogenation of aromatics[J]. J Catal,1975,38(1-3):518-521.
    [115] Ronchin L, Toniolo L. Selective hydrogenation of benzene to cyclohexene using a suspendedRu catalyst in a mechanically agitated tetraphase tetraphase reactor[J]. Catal Today,1999,48(1-4):255-264.
    [116] Zhao Y, Zhou J, Zhang J, Wang S. Preparation and characterization of Ru/Al2O3/cordieritemonolithic catalysts for selective hydrogenation of benzene to cyclohexene[J]. Catal Lett,2009,131:597-605.
    [117] Liu J L, Zhu Y, Liu J, et al. Discrimination of the roles of CdSO4and ZnSO4in liquid phasehydrogenation[J]. J Catal,2009,268(1):100–105.
    [118] Struijk J, Scholten J J F. Selectivity to cyclohexene in the liquid phase hydrogenation ofbenzene and toluene over Ru catalysts, as influenced by reaction modifier methanol[J]. ApplCatal A Gen,1992,82:277-287.
    [119] Odenbrand C U I. Lundin S T. Hydrogenation of benzene to cyclohexene on a rutheniumcatalyst: influenece of some reaction parameters[J]. J Chem Technol Biotech,1980,30:677-687.
    [120] Tsuto K, Harriott P, Bischoffl K. Intra particle mass tranfer and selectivity in the palladiumcatalyzed hydrogenation of methy linoleate[J]. Ind Eng Chem Fundam,1978,17:199-205.
    [121]刘寿长,罗鸽,王海荣.液相法Ru-M-B/ZrO2催化苯选择加氢制环己烯反应条件的研究[J].催化学报,2002,23(4):318-320.
    [122] Zhen M, Sheng D. Development of novel supported gold catalysts: a meterials perspective[J].Nano Res,2011,4(1):3-32.
    [123] Kloetstra K R, Zandbergen H W, Jansen J C, Bekkum H van. Overgrowth of mesoporousMCM-41on faujasite[J]. Microporous Materials,1996,6(5–6):287-293.
    [124] Landau M V, Varkey S P, Herskowitz M, et al. Wetting stability of Si-MCM-41mesoporousmaterial in neutral, acidic and basic aqueous solutions[J]. Microporous and MesoporousMaterials,1999,33(1–3):149-163.
    [125] Hansen E W, Courivaud F, Karlsson A, et al. Effect of pore dimension and pore surfacehydrophobicity on the investigation[J]. Microporous and Mesoporous Materials,1998,22(1–3):309-320.
    [126] Grün M, Unger K K, Matsumoto A, Tsutsumi K. Novel pathways for the preparation ofmesoporous MCM-41materials: control of porosity and morphology[J]. Microporous andMesoporous Materials,1999,27(2–3):207-216.
    [127]何春霞.氧化锆体系介孔材料的制备及其在丁烷异构化反应中的催化活性研究[D].上海:复旦大学,2008.
    [128] Meng F, Sun Z. A mechanism for enhanced hydrophilicity of silver nanoparticles modifiedTiO2thin films deposited by RF magnetron sputtering[J]. Applied Surface Science,2009,255(13-14):6715-6720.
    [129] Sietsma J R A. Ordered mesoporous materials as model supports to study catalystpreparation[D]. Utrecht: Utrecht University,2007.
    [130] Velu S, Kapoor M P, Inagaki S, Suzuki K. Vapor phase hydrogenation of phenol over palladiumsupported on mesoporous CeO2and ZrO2[J]. Applied Catalysis A: General,2003,245(2):317-331.
    [131] Hwang C C, Chen X R, Wong S T, et al. Enhanced catalytic activity for butane isomerizationwith alumina-promoted tungstated mesoporous zirconia[J]. Appl Catal A Gen,2007,323:9-17.
    [132] Ciesla U, Schacht S, Stucky G D, et al. Formation of a porous zirconium oxo phosphate with ahigh surface area by a surfactant-assisted synthesis[J]. Angew Chem Int Ed Engl,1996,35(5):541-543.
    [133] Suh Y W, Lee J W, Rhee H K. Synthesis and characterization of mesoporous zirconia[J].Studies in Surface Science and Catalysis,2003,146:235-238.
    [134] Lin F Q, Dong W S, Liu C L, et al. In situ source-template-interface reaction route to hollowZrO2micropheres with mesoporous shells[J]. Journal of Colloid and Interface Science,2008,323:365-371.
    [135] Tian B, Liu X, Solovyov L A, et al. Facile synthesis and characterization of novel mesoporousand mesorelief oxides with gyroidal structures[J]. J Am Chem Soc,2004,126(3):865-875.
    [136] Lawrence D, Andreas S, Kake Z, et al. Preparation of thermally stable high surface areamesoporou tetragonal ZrO2and Pt/ZrO2: an active hydrogenaton catalyst[J]. Microporous andMesoporous Materials,2006,88:22-30.
    [137] B nnemann H, Brijoux W, Brinkmann R, et al. Formation of colloidal transition metals inorganic phases and their application in catalysis[J]. Angew Chem Int Ed,1991,30(10):1312-1314.
    [138] Chuah G K. An investigation into the preparation of high surface area zirconia[J]. Catal Today,1999,49(1-3):131-139.
    [139]何静.介孔材料MCM-41的结构调控及应用性能研究[D].北京:北京化工大学,1999.
    [140]安群力.介孔分子筛MCM-41的合成及性能研究[D].西安:西安科技大学,2005.
    [141]吕彩霞.氧化锆晶化过程的研究[D].兰州:兰州理工大学,2010.
    [142] Kyeong T J, Alexis T B. The effects of synthesis and pretreatment conditons on the bulkstructure and surface porperties of zirconia[J]. J Mol Catal A Chem,2000,163:27-42.
    [143]马中义,徐润,杨成,等.不同形态ZrO2的制备及其表面性质研究[J].物理化学学报,2004,20:1221-1225.
    [144] Griselda A E, Sandra G C, Guillermo E G, et al. Synthesis, characterization and selectiveoxidation properties of Ti-containning mesoporous catalysts[J]. Appl Catal A Gen,2006,298:232-242.
    [145] Shi L, Chu S, Kong F, et al. Tailoring the nano-channel of ZrO2/SBA-15mesoporous materialsfor efficiently trapping and degradation volatile nitrosamines[J]. Solid State Sciences,2011,13(12):2105-2112.
    [146] Gracia M D, Balu A M, Campelo J M, et al. Evidences of the in situ generation of highly activeLewis acid species on Zr-SBA-15[J]. Applied Catalysis A: General,2009,371(1-2):85-91.
    [147] Garg S, Soni K, Kumaran G M, et al. Acidity and catalytic activities of sulfated zirconia insideSBA-15[J]. Catal Today,2009,141:125-129.
    [148]任铁强,孙君,孙悦.溶胶凝胶法制备TiO2实验条件的考察[J].技术交流,2012,35(3):76-79.
    [149]曹映玉. MCM-41基新型酸催化剂的合成、表征及催化性能研究[D].天津:天津大学,2010.
    [150]李祥.以全硅MCM-41作载体制备W系深度加氢脱硫催化剂[D].大连:大连理工大学,2003.
    [151]王莹.有机模板调控氧化锆的形貌控制合成[D].河北:河北师范大学,2009.
    [152]薛伟,王冬冬,王延吉,等.由苯一步制备环己醇的催化过程[J].石油学报,2008,24:73-78.
    [153] Lin S D, Vannice M A. Hydrogenation of aromatic hydrocarbons over supported Pt catalysts(III) reaction models for metal surfaces and acidic sites on oxide supports[J]. J Catal.,1993,143:563-572.
    [154] Simon L J, van Ommen J G, Jentys A, et al. Sulfur tolerance of Pt/mordenites for benzenehydorgenation Do Bronsted acid sites partcicipate in hydrogenation[J]. Catal Today,2002,73:110-112.
    [155] Wang J, Chen H Y, Li Q Z. Influence of the Bronsted and Lewis acid sites in Platinum/Solidacid catalysts on the hydrogenation of benzene and toluene[J]. React Kiner Catal Lett,2000,69:277-284.
    [156] Roland U, Roessner F. A new model on the nature of spilt-over hydrogen[J]. Stud Surf SciCatal,1997,112:191-196.
    [157]纪兵红,许建华,谢俊峰等.原位DRIFTS研究CH4部分氧化和CO2重整的耦合[J].光谱学与光谱分析,2008,28(6):1246-1250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700