用户名: 密码: 验证码:
MWD中泥浆脉冲信号辨识及地面适配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前石油钻井施工过程中,为了准确测量井眼参数、提高井眼轨迹控制力度、使钻头精确命中目标油层,钻井工艺中普遍采用了无线随钻测量(MWD,Measurement While Drilling)技术。无线随钻测量技术是在钻井过程中对井下信息进行实时测量和传输技术的简称:其特点是在不中断钻头正常钻进的情况下获得钻头附近的地质信息,并将这些信息以无线信号的方式传输到地面;地面系统再对这些信号进行分析与处理,按照井下仪器匹配的编码方式进行译码,获取施工所需要的定向数据、地层特性和钻井参数等各种信息。
     本文以提高无线随钻测量中泥浆脉冲信号的传输速率和解码的正确率为目的。因为泥浆脉冲信号在钻柱内的传输会受到现场各种条件的影响,所以安装在井口处的压力传感器检测到的泥浆脉冲信号的压力波中含有大量的噪声信号,这些噪声信号主要是由于井下各种机械的转动或者震动引起的,它们淹没了原始有用的脉冲信号;即使是没有经过噪声干扰的标准的泥浆脉冲波形,在经过长距离的传输或者由于泥浆本身的质量原因也会导致有用信号的大幅衰减。因此,如何从频率不固定的强噪声背景中检测出微弱的泥浆脉冲信号和提高泥浆脉冲信号的信噪比,就成为泥浆脉冲传输技术中的主要问题。本论文主要章节和内容安排如下:
     第一章绪论部分概述了无线随钻测量地面系统在石油钻井中的重要性,分析比较了各种无线传输方式的工作原理及其性能;介绍了关于采用泥浆脉冲信号作为传输介质的无线随钻测量最新国内外研究的进展。针对目前泥浆脉冲信号的准确提取和识别准确率高的问题,提出了高分辨率泥浆脉冲信号的提取和识别研究方法。
     第二章分析了泥浆脉冲信号传输特性机理,分析了泥浆脉冲信号粘频速度及钻井液在理想状态下传输速度的影响因素,分析了泥浆脉冲信号幅值沿着钻柱传播的衰减程度及其影响因素,并对其衰减模型的影响因素进行了详细的数学仿真,为下一步地面信号硬件电路的设计提供了依据。
     第三章分析了井下数据曼彻斯特编码和PLM(Pulse Location Manager)编码格式,对两种不同编码的传输格式以及传输格式中特殊信号的规定进行了分析。为无线随钻测量数据的编码方法和解码次序提供了一个理论基础。
     第四章对泥浆脉冲信号噪声的处理进行了研究,由于泥浆脉冲信号受到各种噪声的干扰,首先对原始泥浆脉冲信号进行了频谱特性的研究,分析出噪声和有用信号不同的频谱特性,分析出噪声信号的类型,建立比较完善的去噪算法和去噪流程,能对泥浆脉冲信号进行有效提取,为下一步的准确识别打下基础。
     第五章建立了泥浆脉冲信号识别模型,提出了泥浆脉冲信号识别算法的理论基础。针对曼彻斯特编码的泥浆脉冲信号提出了以下识别算法,单比特周期内曼彻斯特编码的识别算法有:局部特征识别算法、相位识别算法、相关识别算法;多比特周期内曼彻斯特编码的识别算法有:聚类识别算法、模糊聚类识别算法;对PLM编码规则的泥浆脉冲信号识别算法上提出了上升沿特征识别算法和波形相似特征识别算法。
     第六章对地面信号采集箱和地面解码软件进行了设计。在了解了泥浆脉冲信号传输特性的基础上,设计一套地面信号预处理电路和硬件滤波电路,对信号进行初步的预处理和滤除非同频信号对有用信号的干扰。地面解码软件采用USB接口对数据进行采集,采用VC++6.0开发了一套地面解码软件,软件的开发设计过程中:根据不同的需求实时选择不同的数字滤波器和相关的滤波参数;在泥浆脉冲信号的识别过程中加入了各种识别算法来实时对数据进行译码;实现了数据的多线程动态存储功能。软件设计界面友好,可操作性好。最后现场实验结果表明:地面系统达到了预期的设计功能,基本完成了设计目标。
     最后为本文的结论部分以及未来研究展望。
Presently, in the process of drilling the oil-wells, wireless MWD (measurementwhile drilling) technology has been widely used with purposes of measuring theborehole parameters accurately, improving the control to well trajectory, and guidingthe drill head to the target oil layer precisely. Wireless MWD is an abbreviation forthe measurement and transmission of the real-time underground information duringthe drilling process, with such characteristics: to obtain geological information nearthe drill head without interrupting its normal drilling process, and turn the informationinto wireless signals to transmit them up to the ground; next, these signals will beanalyzed and treated within ground system, by which the signals can be decoded in anencoding way that matches the underground apparatus, to get the orientation data,stratum features, drilling parameters and other information that are required in drillingprocess.
     The objective of this thesis is to improve the transmission speed and decodingaccuracy of MWD mud pulse signals. Signal transmission in drill string will beaffected by various site conditions. Consequently, pressure wave of mud pulse signal,detected by pressure sensor which is placed at the mouth of the well, contains a greatnumber of noise signals, which are generated due largely to the rotations or vibrationsof the underground machines. Such noise signals would dominate the original pulsesignals. Even that the mud pulse signals have not been disturbed by noises, theywould be attenuated sharply after a long way of transmission, or, due to the quality ofmud itself. Therefore, for the technology of transmitting the mud pulse signals, it is aprimary problem to detect the weak mud pulse signals out of those strong noiseswhich have unfixed frequencies. This paper was arranged with following mainchapters and content, as:
     Chapter I, introduction. This part summarized the importance of wireless MWDground system for oil-well drilling, analyzed and compared the working principlesand performances of many types of wireless transmission technologies, introducedlatest developments of China’s as well as foreign literatures which made researcheson the wireless MWD that takes the mud pulse signals as its transmission media, andpresented methods of extracting and identifying mud pulse signals with highresolution, for the accurate extraction and identification of mud pulse signals.
     In chapter II, characteristics of mud pulse signal transmission were analyzed;factors, which have impacts on the sticky speed of mud pulse signals as well as on thetransmission speed of drilling liquid under ideal conditions, were studied; attenuationand its influencing factors of the mud pulse signals when they run through the drillstring were researched, and a mathematical simulation model to attenuation’sinfluencing factors was built, to provide basis for the design of ground signals’hardware circuit.
     In chapter III, the Manchester Encoding and PLM Encoding for undergrounddata were described, Transmittal formats of these two encoding methods and theprovisions to special signals in transmission were taken into consideration, to offer atheoretical basis for wireless MWD data’s encoding mode and decoding order.
     In chapter IV, treatment to noises that mixed in mud pulse signals was studied.The mud pulse signals are disturbed by various noises, so, this part firstly researchedthe spectral characteristics of original mud pulse signals, figured out differentcharacteristics between noises and useful signals, analyzed the types of noise signals,and set up a relatively complete denoising algorithm and process which caneffectively extract the mud pulse signals, to lay a foundation for next accurateidentification.
     In chapter V, a model for identifying mud pulse signals was established topropose the theoretical basis of recognition algorithm for mud pulse signals. For thoseencoded by Manchester, the recognition algorithm ban be conducted within single-bitperiod, such as local feature recognition algorithm, phase recognition algorithm,correlation recognition algorithm, and within multi-bits period, such as clusteringrecognition algorithm, fuzzy clustering recognition algorithm; for those encoded byPLM, the rising edge feature recognition algorithm and waveform similarity featurerecognition algorithm were presented.
     In chapter VI, ground signal collection box and decoding software were designed.Based on knowing the transmission characteristics of mud pulse signals, this partdesigned for ground signals a set of preprocessing circuit and hardware filter circuit,by which the signals can be initially preprocessed and the signals of differentfrequencies can be filtered to eliminate the disturbance on useful signals. The grounddecoding software which was developed by using VC++6.0, includes a USB interfacewas employed to collect data. In the process of designing the software, differentdigital filters and relevant parameters were chosen in real time according to different needs. In the identification of mud pulse signals, the real time data were decoded bythose identification algorithms, realizing the multi-thread dynamic data storage. Thesoftware has friendly interface with good maneuverability. Finally, the experimentalresults showed that the ground system can reach the expected functions and thedesigned objectives had been achieved basically.
     The last part of this thesis is about the conclusions and prospects in futureresearches.
引文
[1]苏义脑,窦修荣.随钻测量、随钻测井与录井工具[J].石油钻采工艺,2005,27(1):74-78.
    [2]Wallace R G.High Data Rate MWD Mud Pulse Telemetry[Z].U.S.Department of EnergysNatural Gas Conference,Houston,Texas,1997.
    [3]贾朋.钻井液连续波发生器设计与信号传输特性实验研究[D].中国石油大学博士论文,2010.
    [4]丁水浩,李舟波,马宏宇.随钻测井技术的发展[J].世界地质,2004,23(3):270-274.
    [5]刘树坤,汪勤学,梁占良,等.国内外随钻测量技术简介及发展前景展望[J].录井工程,2008:32-41.
    [6]马哲,杨锦舟.无线随钻测量技术的应用现状与发展趋势[J].第六届石油钻井院所长会议论文集[C].北京:石油工业出版,2007.
    [7]潘宇,刘艳,周利军.2003年随钻测井(MWD)和地层评价新进展[J].国外油田工程,2004,20(3):15-19.
    [8]蔡文军.机械式无线随钻测斜仪系统研究[D].北京:中国石油大学机械学院,2006.
    [9]张贤辉.水平井钻井的测井地质导向方法及技术研究[D].西南石油学院硕士学位论文,2002.
    [10]刘玉霞.地质导向钻井随钻预测方法研究[D].中国石油大学硕士学位论文,2004.
    [11]候胜明.近钻头测量的超声波信号编码与MWD接口研究[D].中国石油大学硕士论文,2008.
    [12]张绍槐,张洁.21世纪中国钻井技术发展与创新[J].石油学报,2001,VOL.22(6):63-68.
    [13]D.C-K CHEN.New drilling optimization technologies make drilling more efficient[C].Thepetroleum society’s5thinternational petroleum conference,Calgary,Alberta,Canada,June8-10,2004:1-9.
    [14]桂德洙.浅谈钻井测斜仪[J].石油钻采工艺,1999,VOL.21(5):45-49.
    [15]王宁.水平井随钻测量技术[J].水平井配套技术专题调研报告集,1992:78-81.
    [16]王翔.钻井液连续脉冲信号产生及井筒内传输规律研究[D].中国石油大学博士论文.2008.
    [17]李闪.随钻泥浆脉冲信号检测与处理关键技术研究[D].中国石油大学硕士论文,2011,1-3
    [18]吕海川,窦修荣.CGMWD新型正脉冲无线随钻测量系统及应用[J].石油仪器,2006,20(6):33~34,37.
    [19]Michael J,Prideco G,David R H.Intelligent Drill Pipe Creates the Drilling Network[R].SPE80454.
    [20]Reeves M,Macpherson J,Zaeper R, et.High-Speed Drill string Telemetry Network EnablesNew Real-Time Drilling and Measurement Technologies[R].IADC/SPE99134.
    [21]Wolter H,Gjerding K,Reeves M,et.The First Offshore Use of an Ultrahigh-Speed Drillstring Telemetry Network Involving a Full LWD Logging Suite and Rotary-Steerable DrillingSystem[R].SPE110939.
    [22]Ali T H,Hood J A,Srinivasan A,et.High Speed Telemetry Drill Pipe Network OptimizesDrilling Dynamics and Wellbore Placement[R].IADC/SPE112636.
    [23]杨兴琴,姜虻,赵滨伟.随钻数据传输新技术[J].石油仪器,2004,18(6):26-27.
    [24]李俊波,贾振尧,朱红莲.实现井下网络的遥测钻杆技术[J].石油机械,2004,32(5):63-64.
    [25]石崇东,张绍槐.智能钻柱设计方案及其应用[J].石油钻探技术,2004,32(6):7-10.
    [26]肖仕红,梁政,任连城.智能钻杆电缆传输电接头设计[J].石油钻采工艺,2007,29(1):28-30.
    [27]吴仲华,孙浩玉,张世平,朱政.电磁感应式随钻数据传输系统的研究[J].石油机械,2009,37(7):58-60.
    [28]Shah Vimal,Gardner W,Johnson D H,Sinanovic S.Design Considerations for a New HighData LWD Acoustic Telemetry System[R].SPE88636.
    [29]Neff J M,Camwell P L.Field-Test Results of an Acoustic MWD System[R].SPE/IADC105021.
    [30]邵养涛,姚爱国,张明光.电磁波随钻遥测技术在钻井中的应用于发展[J].煤田地质与勘探,2007,35(3):77-80.
    [31]李田军,鄢泰宁.试论欠平衡钻井中应用电磁波随钻测量技术的若干问题[J].地质科技情报,2005,24(增刊):37-39.
    [32]张进双,赵小祥,刘修善.ZTS电磁波随钻测量系统及其现场试验[J].钻采工艺,2005,28(3):25-27.
    [33]刘新平.随钻测井数据传输技术应用现状及展望[J].测井技术,2008.6,32(3):249-253.
    [34]赵建辉.陀螺测斜仪随钻对准中的客观性研究[J].测井技术.2009,6,Vol.33(3):279-283.
    [35]赵堪.基于MEMS技术的PCR芯片的研究[D].中国科学院电子科学研究所博士学位论文,2003.
    [36]陈文渊.随钻测量系统信号测量的关键技术研究[D].重庆大学硕士学位论文,2011
    [37]刘新平.随钻测井数据传输技术应用现状及展望[J].测井技术,2008.6,VOL.32(3):249-253.
    [38]房军,苏义脑.液压信号发生器基本类型与信号产生的原理[J].石油钻探技术,2004,32(2):39-41.
    [39]CHUAN-WEI Li.Drilling mud signal processing based on wavelet[C].ICWAPR2007.Beijing,China,1545-1549.
    [40]马海.钻井模拟中测井信号去噪及低频信息提取技术研究[J].钻采工艺,2007,NO.1:18-20.
    [41]刘修善,岑章志,苏义脑.钻井液脉冲传输速度的影响因素分析[J].石油钻采工艺,1999,21(5):1-4,9.
    [42]刘修善,郭均.钻井液脉冲传输速度的分布规律研究[J].钻采工艺,2000,23(4):74-76.
    [43]Donoho D L.De-noising by soft-thresholding[J].IEEE Trans Infrom.Theory,1995,41(3):613-627.
    [44]石在虹,刘修善.井筒中钻井信息的传输动态分析[J].天然气工业,2002,22(5):68-71.
    [45]刘修善.钻井液脉冲沿井筒传输的多相流模拟技术[J].石油学报,2006,27(4):115-118.
    [46]王翔,王瑞和.钻井液连续脉冲信号频域传输速度影响因素[J].中国石油大学学报(自然科学版),2008,32(5):54-57,66.
    [47]王翔.钻井液连续脉冲信号频域传输速度计算模型[J].西南石油大学学报(自然科学版),2009,31(3):138-141.
    [48]Lee H Y.Drill string Axial Vibration and Wave Propagation in boreholes [D].Gambridge:Massachusetts Institute of Technology,1991.
    [49]Lea S H.A Propagation of Coupled Pressure Waves in Borehole with Drill string[C].SPE37156,1996:963-972.
    [50]Kytomaa H K.An Acoustic Model of Drilling Fluid Circuits for MWD Communication[R].SPE28015,1994.
    [51]张伟,师奕兵,卢涛.小波神经网络在无线随钻测量系统在泥浆信号检测中的应用研究[J].电子测量与仪器学报,2008,22(6):43-46
    [52]张伟,师奕兵,卢涛.无线随钻泥浆信号小波包去噪处理[J].电子测量与仪器学报,2010,24(1):80-84
    [53]李传伟,李安宗.一种小波变换信号处理方法[J].西安电子科技大学学报(自然科学版),2009,36(4):751-755
    [54]Zhao Jianhui,Wang Liyan,LiFan.An Effective Approach for the Noise Removal of MudPulse Telemetry System[C].ICEMI’2007,1:971-973
    [55]Xiaoyong Ni,Dapeng Luo, Yong Yang. Design of Pulse Detection System for MeasurementWhile Drilling Based on GRNN[C]. IEEE ICIA.2010,7,2182-2185
    [56]WenYuan Chen,Bin Fang,Yi Wang. MWD Drilling Mud Signal De-noising and SignalExtraction Research Based on The Pulse-Code Information[C]. IEEE,ICWAPR.2010,7,244-249
    [57]赵建辉,王丽艳,盛利民等去除随钻测量信号中噪声及干扰的新方法[J].石油学报,2008,29(4):596-600
    [58]涂兵,李德胜,林恩怀.基于聚类算法的MWD泥浆脉冲信号识别研究[J].传感技术学报,2012,25(8):1172-1176
    [59]Bing Tu, De sheng Li, En Huai LIN. Research on Mud Pulse Signal data Processing inMWD[J].EURASIP Journal on Adavances in Signal Proceesing,2012,8:182
    [60]苏义脑,盛利民,王家进等.一种接收和检测泥浆压力脉冲信号的方法及装置,中国,CN1657740A[P]
    [61]丁天怀,李成.钻井液与钻柱的耦合纵向振动分析[J].机械工程学报,2007,43(9):215-219
    [62]刘修善.钻井液脉冲沿井筒传输的多相流模拟技术[J].石油学报,2006,27(4):115-118
    [63]沈跃,朱军,苏义脑等.钻井液压力正交相移键控信号沿定向井筒的传输特性[J].石油学报.2011,32(2):340-345
    [64]沈跃,李翠,苏义脑等.钻井液压力多进制相移键控信号的数值建模及特性分析[J].中国石油大学学报(自然科学版).2010,34(5):77-83
    [65]边海龙,苏义脑,盛利民等.连续波随钻测量信号井下传输特性分析[J].仪器仪表学报.2011,32(5):983-988
    [66]李翠,高德利,沈跃.钻井液压力脉宽及脉位多进制相移键控信号分析[J].石油学报.2013,34(1):178-183
    [67]逢玉叶,付永生.无线随钻测量系统中信号处理[J].电子测量技术,2005,2,43-45
    [68]张恒,李安伟,李传伟,等.基于离散平稳小波变换的无线随钻系统测试信号处理[J].石油钻探技术,2007,35(2):49-51.
    [69]张恒,李安宗,李传伟,等.钻井液波信号处理方法比较[J].石油钻采工艺,2007,29(2):84-90.
    [70]张恒,李安宗,屈景辉.无线随钻测量系统信号处理的小波基选取[J].测井技术,2007,31(3):285-288.
    [71]童红雷,鞠开胜,陈纯杰.小波分析在无线随钻系统测试信号处理中的应用[J].承德石油高等专科学校学报.2005,7(2),40-43.
    [72]韩军,柴勤忠.泥浆信道无线随钻系统信号检测的数字信号处理方法[J].石油大学学报(自然科学版),1994,18(2):96-101.
    [73]涂兵,李德胜,林恩怀.MWD泥浆脉冲信号互相关滤波算法研究[J].仪器仪表学报(增刊),2010,31(8),43-46.
    [74]樊昌信.通信原理(第6版)[M].北京:国防工业出版社,2008:180-234.
    [75]杨西侠,柯晶.信号分析与处理[M].北京:机械工业出版社,2007:175-180.
    [76]刘聪锋.高效数字调制技术及其应用[M].北京:人民邮电出版社,2006:2-34.
    [77]王秉鈞,冯玉珉,田宝玉.通信原理[M].北京:清华大学出版社,2006:180-252.
    [78]李宗豪.基本通信原理[M].北京:北京邮电大学出版社,2005:296-305.
    [79]李文海.数字通信技术[M].北京:人民邮电出版社,1998:87-95.
    [80]沈海娟.现代通信原理[M].武汉:武汉理工大学出版社,2006:58-79.
    [81]王海燕.信号与线性系统分析基础[M].北京:北京邮电大学出版社,2005:55-58.
    [82]李宗豪.基本通信原理[M].北京:北京邮电大学出版社,2005:296-305.
    [83]李翠.基于脉宽及脉位调制的钻井液压力MPSK信号的数学模型及信号特性分析[D],中国石油大学硕士学位,2010.
    [84]杨谦.泥浆脉冲器脉冲发生机理研究[D].吉林大学硕士学位论文,2011.
    [85]Turner W E,Biglin Jr.D P.Method and Apparatus for Transmitting Information to TheSurface from A Drill String Down Hole in A Well[P].United States:US6714138B1,2004.
    [86]刘修善,苏义脑.地面信号下传系统的方案设计[J].石油学报,2000,21(6):88-90.
    [87]孙东奎,董韶华.钻井液正脉冲井底信号传输系统分析[J1.石油机械.2007,35(ll):49-51.
    [88]王智明,营志军,李相方,等.连续波钻井液脉冲发生器结构设计探讨[J].石油机械,2007,35(12):56-58.
    [89]Caruso,J,Application of magnetore sistive sensors in navigation systems.In sensors andactuators.1997,SEA SP-1210:15-21.
    [90]杨谦.泥浆脉冲器脉冲发生机理研究[D].吉林大学硕士学位论文,2011.
    [91]崔晓华,周学芹,李玉海.井下钻柱纵向振动特性分析[J].石油矿场机械,2009,38(11):12-15.
    [92]庄表中.结构随机振动[M].北京:国防工业出版社,1995.
    [93]朱焕刚,张宝.基于ANSYS软件的钻柱纵向振动分析[J].石油矿场机械,2008,37(10):56-58.
    [94]吴天新,陆鑫森.钻柱内外沿轴向流动的钻井液对钻柱横向振动的影响[J].振动与冲击,1995(2).
    [95]刘希圣.钻井工艺原理[M].石油工业出版社,1998.
    [96]王应珍.钻井液对钻柱横向振动和稳定性的影响[J],石油机械,1990,18(1).
    [97]李子车,李邦达.钻柱内钻井液流动对钻柱横向振动的影响[J].石油机械,1992,20(1).
    [98]吴天新,陆鑫森.钻柱外钻井液对钻柱横向振动的影响[J].石油机械,1995,23(1).
    [99]张焱,陈平,施太和.深井中钻柱动力学机理研究[J].石油机械,1998,26(7):17~20.
    [100]胡大梁,彭敬国,王希勇,朱礼平.钻井液对钻柱固有振动特性的影响[J].天然气技术,2008,2(4):37-39.
    [101]PLACIDO J C R,SANTOS H M R,GALEANO Y D.Drillstring vibration and wellboreinstability[J].Journal of Energy Resources Technology,2002,124(4):217-222.
    [102]ZHANG Q,MISKA S.Effecets of flow-pipe interaction on drill pipe buckling anddynamics[J].Journal of Pressure Vessel Technology,2005,127(2):129~136.
    [103]RICHTER U.EBERHAND B,ANDREAS B.Drilling dynamics in the presence of mudflow[C] SPE59236,2000.
    [104]MITCHELL R F.Dynamic surge/swab pressure predictions[J].SPE Drilling Engineering,1998:325~333.
    [105]LEE H Y.Drillstring axial vibration and wave propagation in boreholes[D]. Gambridge:Massachusetts Institute of Technology,1991.
    [106]屈展.钻井液液动压力对钻柱纵向振动的影响[J].石油机械,1993,21(6):21-24.
    [107]LEA S H,KYLLINGSTAD A. Progagation of coupled pressure waves in borehole withdrillstring[C]. SPE37156,1996:963-972.
    [108]李茂生,闫相祯,高德利.钻井液对钻柱横向振动固有频率的影响[J].石油大学学报(自然科学版),2004,28(6):68-71.
    [109]肖文生,王现峰,裴艳丽,王鸿雁.基于ANYSY的钻住纵向振动固有频率分析[J].钻采工艺,2011,34(5):93-96.
    [110]李子丰,李志刚.钻柱纵向振动分析[J].天然气工业,2006,24(6):70~74.
    [111]王翔.钻井液连续脉冲信号产生及井筒内传输规律研究[D].华东:中国石油大学石油学院,2008.
    [112]张也影.流体力学[M].北京:高等教育出版社,1985.
    [113]何树山,刘修善.钻井液正脉冲信号的衰减分析[J].钻床工艺,2001,24(6):1-12
    [114]刘修善,苏义脑.泥浆脉冲信号的传输速度研究[J].石油钻探科技术,2000,28(5):24-26.
    [115]Desbrandrs,R.,Bourgoyne,A.T.Jr.and Carter,J.A.MWD Transmission Data RatersCan Be Optimized.Petroleum Engineer International(June1987).
    [116]Desbrandrs,R:Status Report:MWD Techonolegy(Part1-Data Acquisition and DownholeRecording and Processing).Petroleum Engineer International(Sep1988).
    [117]Desbrandrs,R:Status Report:MWD Techonolegy(Part2-Data Transmission).PetroleumEngineer International(Oct1988).
    [118]Desbrandrs,R:Status Report:MWD Techonolegy(Part3-Processing,Display, andApplication).Petroleum Engineer International(Nov1988).
    [119]Montaron B A,Hache J. M D, Vosion B. Improvements in MWD telemetry:The rightdata at the right time[R]. SPE25356,1993.
    [120]Hutin R,Tennent R W,Kashikar S V.New mud pulse telemetry techniques for deep waterapplications and improved real-time data capalilities[R].SPE67762,2001.
    [121]Shen Yue,Su Yinao,Li Gensheng,et.Numerical modeling of DPSK pressure signals andtheir transmission characteristics in mud channels[J].Petroleum Science,2009,6(3):266-270.
    [122]刘修善,苏义脑.钻井液脉冲信号的传输特性分析.石油钻采工艺,2000,22(4):8-10.
    [123]Bing TU,Desheng LI,EnHuai Lin,Research on MWD mud pulse signal extraction andrecognition[C].IEEE International Conference on Mechatronics and Automation,Beijing,2011:807-811.
    [124]涂兵,李德胜,林恩怀.基于局部特征和相关系数的MWD泥浆脉冲信号识别研究[J].北京工业大学学报,2013,5.
    [125]曹志刚,钱亚生.现代通讯原理.北京:清华大学出版社,1992,1.
    [126]冯冬清,孙长峰,费敏锐.一种新的变步长LMS算法研究及其应用[J].自动化仪表.2007,28(8):67-69.
    [127]倪永州,田跃.一种快速模板匹配的波形识别算法[J].传感器世界.2006,4:31-34.
    [128]Hank S.Innovation Delivers Practieal solutions to Real world Drilling Challenges[J].TheAmeriean Oil Gas Reporter,2002,44(1):68-77.
    [129]Wllluan J,Medinal D.Lohhing while drilling:a survey of method and Priorities[C]·SPWLA17Annual Lohhing SymPosium,1976.
    [130]Michael JJ,David RH,Darrell CH,et al.Telemetry Drill Pipe:Enabling Teehnology forThe Downhole Intemet[C].SPE/ADC79885,2003.
    [131]Panl Lurie,Philip Head,Jaeke ES.Smart Drilling with Eleetrie Drill String[C].SPE79886,2003.
    [132]ShenYue,SuYinao,Li Gensheng,LiLin,Tianshoueeng. Numerieal modeling of DPSKPressure signals and their transmission charaeteristics in mud channels[J].Petsci,2009:266-270.
    [133]Klotz C,Hahn D.Highly Flexible Mud-Pulse Telemetry:A New System[J].SPE,113258.
    [134]Finnie I.The Mechanism of Erosion of Ductile Metals[C].Proceedings of3rd US NationalCongress of Applied Mechanics,1958:527-532.
    [135]Badr H M,Habib M A,Ben-Mansour R,Said S A M.Effect of Flow Velocity and ParticleSize on Erosion in A Pipe with Sudden Contraction[C].The6th Saudi EngineeringConference,2002,5:79-95.
    [136]Bitter J G A.A Study of Erosion Phenomenon:Part I[J].Wear,1963,6(1):5-21.
    [137]Bitter J G A.A Study of Erosion Phenomenon: Part I[J].Wear,1963,6(3):169-190.
    [138]Tilly G P.A Two Stage Mechanism of Ductile Erosion[J].Wear,1973,23(1):87-96.
    [139]Edwards J k,Jeremy K,McLaury B S,et.Supplementing a CFD Code with ErosionPrediction Capabilities[C].In Proceedings of ASME FEDSM’98:ASME1998FluidsEngineering Division Summer Meeting,1998.
    [140]Edwards J K,McLaury B S,Shirazi S A.Evaluation of Alternative Pipe Bend Fittings inErosive Service[C].In Proceedings of ASME FEDSM’00:ASME2000Fluids EngineeringDivision Summer Meeting,2000.
    [141]Haugen K,Kvernvold O,Ronold A,Sandberg R.Sand Erosion of Wear-Resistant Materials:Erosion in Choke Valves[J].Wear,1995,186-187:179-188.
    [142]Meng H, Ludema K. Wear Models and Predictive Equations: Their Form andContent[J].Wear,1995,181-183:443-457.
    [143]Zhang Yongli.Application and Improvement of Computational Fluid Dynamics (CFD) inSolid Particle Erosion Modeling[D].The University of TULSA,2006.
    [144]Zielke W.Frequency-Dependent Friction in Transient Pipe Flow [J].ASME J.Basic Eng,90(1):109-115.
    [145]Vardy A E,Brown J M B.Transient Turbulent Friction in Smooth Pipe Flows[J].Journal ofSound and Vibration,2003,259(5):1011-1036.
    [146]Lee H Y.Drillstring Axial Vibration and Wave Propagation in boreholes [D].Gambridge:Massachusetts Institute of Technology,1991.
    [147]Lea S H.A Propagation of Coupled Pressure Waves in Borehole with Drillstring[C].SPE37156,1996:963-972.
    [148]Wei WU.Improving wavelet de-noise by means of shifting-scale-method[C].Internationalcongress on image and signal processing, Tianjin, China,2009:1-4.
    [149]Wenhua Han.A modified wavelet transform domain adaptive FIR filtering algorithm forremoving the SPN contained in the MFL data[C].International conference on industrialtechnology, Hong Kong,2005:152-157.
    [150]Aboelmagd Noureldin. Accuracy limitations of fog-based continuous measurement-while-drilling surveying instruments for horizontal wells [J]. IEEE transactions oninstrumentation and measurement,2002.12, VOL.51(6):1177-1191.
    [151]王帅.FIR数字滤波器设计中各种窗函数的比较[J].工程技术科技创新导报,2009,NO.15:89-92.
    [152]鞠开胜.钻头测试信号的去噪分析及基于阀值自学习的信号去噪方法研究[D].西南石油学院硕士学位论文,2005.
    [153]Sylvain Durand,Artifact free signal denosing with wavelets[C].International conference onacoutstics speech,and signal processing.2001(CASSP’01).Salt Lake City,Utah.3685-3688
    [154]郑钧.小波去噪中小波基的选择[J].沈阳大学学报,2009.4,VOL.21(2):108-110.
    [155]李炜.小波阀值消噪算法中自适应确定分解层数研究[J].计算机仿真,2009.3,VOL.26(3):311-313.
    [156]王芳.小波软硬阀值去噪算法的研究及改进[J].信息技术,2008,VOL.6(2):124-131.
    [157]唐科狄.小波软阀值滤波在信号去噪中的有效性研究[J].舰船电子工程,2009,VOL.29(7):128-129.
    [158]邵钟武,邵京一.滤除泥浆信道干扰的设备;中国CN2089523U[P].
    [159]Ingolf Wassermann,Houston,TX;John D.Macpherson,Spring,TX. Mud ChannelCharacterization over depth,US,US2009251331A1[P].
    [160]Chen-Kang David Chen,Hounston,TX;Paul D.Beene,Kingwood,TX,Method andapparatus for detecting torsional vibration with a downhole pressure sensor, US,US20040206170A1.
    [161]Arnaud Jarrot, Chatillon;Benjamin Jeffryes, Cambridge;Wideband mud pump noisecancelation method for wellbore telemetry.US,US20100314169A1.
    [162]Louis H.Rorden,Los Altos,Calif. Combinatorial coded telemetry in MWD[P].US,US4908804.
    [163]孙志强,葛哲学.曼彻斯特编码技术在测井数据传输中的应用研究.计算机与数字工程.2007(21):67-71.
    [164]李建勋,王睿,柯熙政,等.随钻测量系统脉冲信号特征提取的多尺度方法.钻采工艺.2008,31(1):25-29.
    [165]Wang S. Detection of Narrow-Band Signals Through the FFT and Polyphase FFT FilterBanks[J].Nonco-herent Versus Coherent Integration,2010,59(5):1424-1438.
    [166]Pei S C,Wang P H.Design of equiripple FIR filters with constranit using a multipleexchange algorithm[J].IEEE Trans Circuits Syst I,Fundam Theory Appl,2002,49(1):113-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700