用户名: 密码: 验证码:
磁性纳米颗粒的靶向输运及其在肺靶向中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性载药颗粒的靶向治疗由于其非侵入性和高靶向性等特点而成为目前最具热点且大有前途的技术之一。磁性载药颗粒的靶向递送是将药物装载到高磁响应的磁性纳米颗粒上,利用外磁场使其移动并在靶部位聚焦的方法。它能提高靶部位药物的浓度,降低药物对正常组织的毒副作用,从而减少总用药量。磁性药物靶向治疗可以用来治疗各种疾病,特别是癌症。如果与吸入雾化剂相结合,可以治疗呼吸道和肺部的各种疾病,具有广泛的用途和潜在的巨大市场需求。
     本文以优化磁性载药颗粒在气道内的靶向输运行为为目的,首先采用以蒙特卡罗(Monte Carlo)为基础的Metropolis算法分析了磁性纳米颗粒在均匀磁场下的团聚行为。在外磁场作用下,磁性纳米颗粒会在外磁场的方向上形成一些团状、分叉状或链状的团簇结构;然后设计并构造了具有单边磁场特性的准Halbach永磁磁体阵列,然后使之作为引导磁性纳米颗粒在靶目标区域聚集的外磁场发生装置;然后以磁场—流体场耦合计算为基础研究了在不同外磁场应用环境下,Y形管道内磁性气雾颗粒流的定向流动和聚集情况,并且进行了相应的体外实验和动物实验来验证我们得到的结论。主要的研究工作包括:
     ①用蒙特卡罗方法模拟了纳米磁性粒子在均匀磁场下的团聚行为,得到了不同作用能量和浓度下的团聚外貌,粒子的团聚形貌由高能量的链状逐渐向低能量的分支状、圆团状形貌变化,并且在高浓度下形成大片团聚。还分析了粒子系统的总能量随蒙特卡罗步变化特点。
     ②准Halbach磁体阵列的提出和构造。准Halbach磁体阵列周围的磁场具有明显的单边特点,磁场大部分分布在磁体阵列的一侧而另一侧很少,这就大大提高了磁场能量的利用效率。我们考察了磁场力、磁场力效能参数和磁场力横向均匀度参数等三个评价参数,准Halbach磁体阵列比普通磁体均提高两个数量级以上。作为靶向磁体具有产生的磁场强度和磁场梯度高、对磁性纳米颗粒的有效作用距离长和聚集性好等特点,同时本文提出的三个评价参数,对于构造和评价一个磁靶向磁体的性能有一定指导作用。
     ③提出以稀疏固相气—固两相流为基础的磁场-流体场耦合计算模型。分析了流速和流量的关系、流速和压强的关系,得出如下结论:在靠近磁体的一侧,磁性气雾颗粒流体的轴向速度降低,并且径向速度加大,流量增大,从而提高了磁性气雾颗粒在靠近磁体侧的聚集浓度;随着目标距离的增加,磁性气雾流的定向性变差。然而,如果距离太近,反而由于目标以及周围大片区域的磁场都较大,而破坏定向性;体积分数的变化引起的相对流速差的变化不大,基本上在1左右,这说明相对差和距离参数关系更大;单个磁体和Halbach磁体阵列在使磁性气雾流定向流动上的差异明显,Halbach磁体对流体的加速作用是单个磁体的2-3倍。
     ④进行了相应的体外和动物实验。从体外实验的结果得出,在距离3.5cm时Halbach磁体阵列,可以提供2倍以上的聚集差异,而且随着雾化时间的增长,聚集差异更加明显。从对大鼠的吸入实验结果来看,加磁场组大鼠左右两侧肺组织内的铁含量比正常组和未加磁场组均高,组间铁含量有显著性差异(P<0.01),并且左右两侧差异明显,差值达2倍以上。从大鼠的肺部组织切片的分析,可以清楚的看到磁性纳米颗粒在左右两侧肺叶组织沉积的差异。
The magnetic targeted drug delivery system is one of the most attractive strategiesdue to its non-invasiveness, high targeting efficiency and minimizing the toxic sideeffects on healthy cells and tissues. Magnetic drug targeting therapy can be used for themedical treatment of various diseases, especially cancer. If combined with theinhalation aerosol, this technique can cure the diseases of the respiratory tract and lungs.It could result in wide range of uses and the huge potential market demand.
     The purpose of the dissertation is to optimize the targeting delivery of magneticdrug-loaded particles in respiratory tract. First, we used Metropolis Monte Carlo methodto simulate the magnetic nanoparticles aggregation in uniform magnetic field. Theparticles will form the chain-like clusters, branched clusters and looped clusters aligningin the orientation external magnetic field. Then the quasi-Halbach permanent magnetarray was designed and constructed, which used to magnetic particle aggregation asexternal magnetic field generation device. Based on the coupled physics field ofmagnetic field and fluid field, the motion of magnetic aerosol particles in Y-shape tubewas studied in different condition of external field.
     The main research works of the dissertation include:
     (1) We used Metropolis Monte Carlo method to simulate the magneticnanoparticles aggregation in uniform magnetic field. From small to large diameters thedistribution of orientations approach the orientation of magnetic field direction step bystep, the larger one forms chain-like clusters, smaller size forms clusters with branchedand looped shapes. An analysis of total particles system energy with Monte Carlo stepswas conducted.
     (2) The magnetic field distribution around Halbach magnet has single-sided feature,which could improve the utilization efficiency of magnetic field energy. We examinedthree evaluation factors,such as magnetic field strength, the effectiveness of magneticfield strength parameters and lateral uniformity of magnetic force parameters. Theresults demonstrate the Halbach magnet array than normal magnet is more than twoorders of magnitude improvement for the three factors. And, the three evaluation factorspresented in thesis can provide methods available for performance evaluation of a typetargeting delivery magnet system.
     (3) The calculation model of coupled magneto-fluid field was introduction based on based on gas-solid two-phase flow model with sparse solid-phase. The methodologyof our research is based on analysis of relationship of between flow velocity and flowrate, flow rate and pressure analysis. In summary, after imposing a magnetic field thevelocity decreases and the pressure drop increases at the target position as the magneticfield intensity increases. Thus concentration of magnetic aerosol particles near themagnet side has risen. The directed flow of magnetic aerosol particle flow is changedwith the distance with magnet. Volume fraction of different can also cause changes inthe velocity difference. After the comparisons of single magnet and Halbach magnetarray, the Halbach magnet is2-3times that of a single magnet about the capacity offluid acceleration.
     (4) Derived from3.5cm Halbach magnet array can provide a difference of morethan2times the aggregation, and along with the atomizing time of growth, aggregationdifference is more obvious from the results of in vitro experiments. Judging from theexperimental results on rat inhalation, add field group the iron content of the right andleft sides of the lungs than in the normal group and without magnetic field group, thegroups iron content was significant difference (P <0.01), and the left and rightsignificantly different on both sides, the difference is more than2times. From thehistology of rat lung lobe analysis, we can clearly see the difference of the magneticnanoparticles deposited on different the lung tissue.
引文
[1]杨智,魏旭斌,蔡荣,钱程.肿瘤靶向治疗的新型细胞载体.生物化学与生物物理进展[Jl2007.(10).1018-1024.
    [2]Dahl Alan R., Grossi Irma M., Houchens David P., Scovell Laurie J., Placke Michael E., Imondi Anthony R., Stoner Gary D., De Luca Luigi M., Wang Dali, Mulshine James L. Inhaled isotretinoin (13-cis retinoic acid) is an effective lung cancer chemopreventive agent in A/J mice at low doses:a pilot study. Clinical cancer research [J].2000.6(8).3015-3024.
    [3]Ehrlich Paul, Bolduan Charles. Collected studies on immunity. Wiley.1906.
    [4]Pankhurst Quentin A., Connolly J., Jones S. K., Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of physics D:Applied physics [J].2003.36(13). R167.
    [5]赵稳兴.细胞载体靶向治疗研究进展.中国新药与临床杂志[J]2011.(02).88-93.
    [6]Pouton Colin W., Wagstaff Kylie M., Roth Daniela M., Moseley Gregory W., Jans David A. Targeted delivery to the nucleus. Advanced drug delivery reviews [J].2007.59(8).698-717.
    [7]Gangopadhyay Palash, Gallet Sebastien, Franz Edith, Persoons Andre, Verbiest Thierry. Novel superparamagnetic core (shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment. Magnetics, IEEE Transactions on [J].2005.41(10).4194-4196.
    [8]Voltairas P. A., Fotiadis D. I., Michalis L. K. Hydrodynamics of magnetic drug targeting. Journal of Biomechanics [J].2002.35(6).813-821.
    [9]Dobson Jon. Magnetic nanoparticles for drug delivery. Drug development research [J].2006.67(1).55-60.
    [10]孙涛,王文宏.磁纳米粒子热疗在神经胶质瘤中的应用进展.临床神经外科杂志[J]2008.(04).222-224.
    [11]周恒,罗聪,黄华.医用磁性纳米粒的研究进展.中国医院药学杂志[J]2010.(08).689-692.
    [12]Plank Christian. Nanomagnetosols:magnetism opens up new perspectives for targeted aerosol delivery to the lung. Trends in biotechnology [J].2008.26(2).59-63.
    [13]邓嵘,陈济民,姚崇舜,许磊.长循环纳米粒的研究概况.中国药学杂志[J]2001.(08).9-11.
    [14]Hanes Justin, Cleland Jeffrey L., Langer Robert. New advances in microsphere-based single-dose vaccines. Advanced Drug Delivery Reviews [J].1997.28(1).97-119.
    [15]Mykhaylyk O., Cherchenko A., Ilkin A., Dudchenko N., Ruditsa V., Novoseletz M., Zozulya Yu. Glial brain tumor targeting of magnetite nanoparticles in rats. Journal of magnetism and magnetic materials [J].2001.225(1).241-247.
    [16]GKIOZOS IOANNIS, CHARPIDOU ANDRIANI, SYRIGOS KOSTAS. Developments in the treatment of non-small cell lung cancer. Anticancer research [J].2007.27(4C).2823-2827.
    [17]王燕,孙燕.靶向药物治疗晚期非小细胞肺癌的研究进展.中国新药杂志[J]2010.(17).1527-1530.
    [18]Hickey Anthony J., Concessio Neville M. Descriptors of irregular particle morphology and powder properties. Advanced drug delivery reviews [J].1997.26(1).29-40.
    [19]Garcia-Contreras Lucila, Hickey Anthony J. Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy. Advanced drug delivery reviews [J].2002.54(11).1491-1504.
    [20]Hiller F. Charles. Therapeutic aerosols:an overview from a clinical perspective. Drugs and the Pharmaceutical Sciences [J].2004.134.423-458.
    [21]靳京美.雾化吸入和气雾剂吸入两种方式对急性哮喘发作效果评价.中国现代药物应用[J]2009.(04).124-125.
    [22]Tartaj P., Morales M. P., Gonzalez-Carreno T., Veintemillas-Verdaguer S., Serna C. J. Advances in magnetic nanoparticles for biotechnology applications. Journal of magnetism and magnetic materials [J].2005.290.28-34.
    [23]Ally Javed, Martin Benjamin, Behrad Khamesee Mir, Roa Wilson, Amirfazli Alidad. Magnetic targeting of aerosol particles for cancer therapy. Journal of magnetism and magnetic materials [J].2005.293(1).442-449.
    [24]王思平,曹厚法.沙培林雾化吸入对肺癌患者T细胞亚群的影响.中国肿瘤临床与康复[J]2007.(02).101-102.
    [25]Byrne James D., Betancourt Tania, Brannon-Peppas Lisa. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews [J].2008.60(15).1615-1626.
    [26]Amirfazli Alidad. Nanomedicine:magnetic nanoparticles hit the target. Nature Nanotechnology [J].2007.2(8).467-468.
    [27]Dames Petra, Gleich Bernhard, Flemmer Andreas, Hajek Kerstin, Seidl Nicole, Wiekhorst Frank, Eberbeck Dietmar, Bittmann Iris, Bergemann Christian, Weyh Thomas. Targeted delivery of magnetic aerosol droplets to the lung. Nature Nanotechnology [J].2007.2(8).495-499.
    [28]Chen Haitao, Ebner Armin D., Rosengart Axel J., Kaminski Michael D., Ritter James A. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent:1. Parametric study with single wire correlation. Journal of magnetism and magnetic materials [J].2004.284.181-194.
    [29]Chen Haitao, Ebner Armin D., Kaminski Michael D., Rosengart Axel J., Ritter James A. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent-2: Parametric study with multi-wire two-dimensional model. Journal of magnetism and magnetic materials [J].2005.293(1).616-632.
    [30]Takeda Shin-ichi, Mishima Fumihito, Fujimoto Suketaka, Izumi Yoshinobu, Nishijima Shigehiro. Development of magnetically targeted drug delivery system using superconducting magnet. Journal of Magnetism and Magnetic Materials [J].2007.311(1).367-371.
    [31]Ally J., Amirfazli A., Roa W. Model studies of magnetic particle retention in the conducting airways.182-184.
    [32]Mathieu Jean Baptiste, Martel Sylvain. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner. Magnetic Resonance in Medicine [J].2010.63(5).1336-1345.
    [33]Asmatulu Ramazan, Zalich Michael A., Claus Richard O., Riffle Judy S. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. Journal of Magnetism and Magnetic Materials [J].2005.292.108-119.
    [34]Schenck John F. Physical interactions of static magnetic fields with living tissues. Progress in biophysics and molecular biology [J].2005.87(2).185-204.
    [35]Iacob Gh, Rotariu O., Strachan NJC, Hafeli U. O. Magnetizable needles and wires-modeling an efficient way to target magnetic microspheres in vivo. Biorheology [J].2004.41(5).599-612.
    [36]Ritter James A., Ebner Armin D., Daniel Karen D., Stewart Krystle L. Application of high gradient magnetic separation principles to magnetic drug targeting. Journal of Magnetism and Magnetic Materials [J].2004.280(2).184-201.
    [37]Forbes Zachary G., Yellen Benjamin B., Halverson Derek S., Fridman Gregory, Barbee Kenneth A., Friedman Gary. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. Biomedical Engineering, IEEE Transactions on [J].2008.55(2).643-649.
    [38]Aviles Misael O., Chen Haitao, Ebner Armin D., Rosengart Axel J., Kaminski Michael D., Ritter James A. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting. Journal of Magnetism and Magnetic Materials [J].2007.311(1).306-311.
    [39]Mangual Jan O., Li Shigeng, Ploehn Harry J., Ebner Armin D., Ritter James A. Biodegradable nanocomposite magnetite stent for implant-assisted magnetic drug targeting. Journal of Magnetism and Magnetic Materials [J].2010.322(20).3094-3100.
    [40]Takeda Shin-ichi, Mishima Fumihito, Fujimoto Suketaka, Izumi Yoshinobu, Nishijima Shigehiro. Development of magnetically targeted drug delivery system using superconducting magnet. Journal of Magnetism and Magnetic Materials [J].2007.311(1).367-371.
    [41]Fukui S., Abe R., Ogawa J., Oka T., Yamaguchi M., Sato T., Imaizumi H. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system. Physica C:Superconductivity [J].2007.463.1315-1318.
    [42]Rosengart Axel J., Kaminski Michael D., Chen Haitao, Caviness Patricia L., Ebner Armin D., Ritter James A. Magnetizable implants and functionalized magnetic carriers:a novel approach for noninvasive yet targeted drug delivery. Journal of magnetism and magnetic materials [J].2005.293(1).633-638.
    [43]Gallo J. M., Gupta P. K., Hung C. T., Perrier D. G. Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat. Journal of pharmaceutical sciences [J].1989.78(3).190-194.
    [44]Fundaro Anna, Cavalli Roberta, Bargoni Alessandro, Vighetto Daniela, Zara Gian Paolo, Gasco Maria Rosa. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin:pharmacokinetics and tissue distribution after iv administration to rats. Pharmacological Research [J].2000.42(4).337-343.
    [45]Kneuer Carsten, Sameti Mohammad, Bakowsky Udo, Schiestel Thomas, Schirra Hermann, Schmidt Helmut, Lehr Claus-Michael. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chemistry [J].2000.11(6).926-932.
    [46]Signore A., Annovazzi A., Chianelli M., Corsetti F., Van De Wiele Christophe, Watherhouse R., Scopinaro F. Peptide radiopharmaceuticals for diagnosis and therapy. European journal of nuclear medicine [J].2001.28(10).1555-1565.
    [47]Hofmann-Amtenbrink Margarethe, Von Rechenberg Brigitte, Hofmann Heinrich. Superparamagnetic nanoparticles for biomedical applications. Nanostructured Materials for Biomedical Applications [J].2009.119-143.
    [48]Neuberger Tobias, Schopf Bernhard, Hofmann Heinrich, Hofmann Margarete, von Rechenberg Brigitte. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials [J].2005.293(1).483-496.
    [49]Cheng Fong-Yu, Su Chia-Hao, Yang Yu-Sheng, Yeh Chen-Sheng, Tsai Chiau-Yuang, Wu Chao-Liang, Wu Ming-Ting, Shieh Dar-Bin. nanoparticles and their biomedical applications. Biomaterials [J].2005.26(7).729-738.
    [50]Jackson John David经典电动力学(影印版).2004.
    [51]Curie P. Magnetic Properties of Materials at Various Temperatures'. Ann. Chim. Phys [J].1895.
    [52]戴道生,廖绍彬,钟文定.铁磁学.科学出版社.1988.
    [53]Aharoni A.,杨正.铁磁性理论导论.兰州:兰州大学出版[J]2002.
    [54]Moghimi S. Moein, Hunter A. Christy, Murray J. Clifford. Long-circulating and target-specific nanoparticles:theory to practice. Pharmacological reviews [J].2001.53(2).283-318.
    [55]Panyam Jayanth, Labhasetwar Vinod. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews [J].2003.55(3).329-347.
    [56]Chatterjee Jhunu, Haik Yousef, Chen Ching-Jen. Size dependent magnetic properties of iron oxide nanoparticles. Journal of magnetism and magnetic materials [J].2003.257(1).113-118.
    [57]Bean C. P., Livingston J. D. Superparamagnetism. Journal of Applied Physics [J].1959.30(4). S120-S129.
    [58]Tartaj Pedro, Del Puerto Morales Maria, Veintemillas-Verdaguer Sabino, Gonzalez-Carreno Teresita, Serna Carlos J. The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D:Applied Physics [J].2003.36(13). R182.
    [59]Weiss Pierre. L'hypothese du champ moleculaire et la propriete ferromagnetique. J. Phys. Theor. Appl.[J].1907.6(1).661-690.
    [60]奥汉德利,周永洽,磁性材料.现代磁性材料原理和应用.化学工业出版社.2002.
    [61]Neel Louis. Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Ann. geophys [J].1949.5(2).99-136.
    [62]Brown Jr William Fuller. Thermal fluctuations of a single-domain particle. Physical Review [J].1963.130(5).1677.
    [63]Xiaotun Yang, Lingge Xu, Choon Ng Siu, Hardy Chan Sze On. Magnetic and electrical properties of polypyrrole-coated γ-Fe2O3nanocomposite particles. Nanotechnology [J].2003.14(6).624.
    [64]Leslie-Pelecky Diandra L., Rieke Reuben D. Magnetic properties of nanostructured materials. Chemistry of Materials [J].1996.8(8).1770-1783.
    [65]池长青.铁磁流体力学.北京航空航天大学出版社.1993.
    [66]Andersson J-O, Djurberg C., Jonsson T., Svedlindh P., Nordblad P. Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system. Physical Review B [J].1997.56(21).13983.
    [67]Kechrakos D., Trohidou K. N. Competition between dipolar and exchange interparticle interactions in magnetic nanoparticle films. Journal of magnetism and magnetic materials [J].2003.262(1).107-110.
    [68]Panczyk Tomasz, Warzocha Tomasz P., Camp Philip J. A Magnetically Controlled Molecular Nanocontainer as a Drug Delivery System:The Effects of Carbon Nanotube and Magnetic Nanoparticle Parameters from Monte Carlo Simulations. The Journal of Physical Chemistry C [J].2010.114(49).21299-21308.
    [69]Jonsson T., Svedlindh P., Hansen Mikkel Fougt. Static scaling on an interacting magnetic nanoparticle system. Physical review letters [J].1998.81(18).3976-3979.
    [70]Schaller Vincent, Wahnstrom Goran, Sanz-Velasco Anke, Enoksson Peter, Johansson Christer. Monte Carlo simulation of magnetic multi-core nanoparticles. Journal of Magnetism and Magnetic Materials [J].2009.321(10).1400-1403.
    [71]Baldomir D., Rivas J., Serantes D., Pereiro M., Arias J. E., Bujan-Nunez M. C. Vazquez-Vazquez C. Magnetic field dependence of the magnetocaloric effect in magnetic nanoparticle systems:A Monte Carlo simulation. Journal of Non-Crystalline Solids [J].2007.353(8).793-795.
    [72]陆传赉,随机过程.工程系统中的随机过程.电子工业出版社.2000.
    [73]Metropolis Nicholas, Rosenbluth Arianna W., Rosenbluth Marshall N., Teller Augusta H., Teller Edward. Equation of state calculations by fast computing machines. The journal of chemical physics [J].1953.21.1087.
    [74]ALEXIOU CHRISTOPH, JURGONS ROLAND, SELIGER CHRISTIAN, BRUNKE OLIVER, IRO HEINRICH, ODENBACH STEFAN. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer research [J].2007.27(4A).2019-2022.
    [75]Polyak Boris, Friedman Gary. Magnetic targeting for site-specific drug delivery:applications and clinical potential.[J].2009.
    [76]Chorny Michael, Fishbein Ilia, Forbes Scott, Alferiev Ivan. Magnetic nanoparticles for targeted vascular delivery. IUBMB life [J].2011.63(8).613-620.
    [77]Yang Yong, Jiang Ji-Sen, Du Bing, Gan Zhi-Feng, Qian Min, Zhang Ping. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. Journal of Materials Science:Materials in Medicine [J].2009.20(1).301-307.
    [78]Lohakan M., Junchaichanakun P., Boonsang S., Pintavirooj C. A computational model of magnetic drug targeting in blood vessel using finite element method.231-234.
    [79]Hafeli Urs O., Gilmour Kelly, Zhou Amy, Lee Stanley, Hayden Michael E. Modeling of magnetic bandages for drug targeting:Button vs. Halbach arrays. Journal of Magnetism and Magnetic Materials [J].2007.311(1).323-329.
    [80]Hayden M. E., Hafeli U.O.'Magnetic bandages' for targeted delivery of therapeutic agents. Journal of Physics:Condensed Matter [J].2006.18(38). S2877.
    [81]Lee Moon G., Lee Sung Q., Gweon Dae-Gab. Analysis of Halbach magnet array and its application to linear motor. Mechatronics [J].2004.14(1).115-128.
    [82]Meessen Koen J., Gysen B., Paulides J., Lomonova Elena A. Halbach permanent magnet shape selection for slotless tubular actuators. Magnetics, IEEE Transactions on [J].2008.44(11).4305-4308.
    [83]黄学良,张前,周赣.一种无铁Halbach型永磁直线电机.电工技术学报[J]2010.(06).1-6.
    [84]张一鸣,乔德治,高俊侠Halbach阵列永磁体的研究现状与应用.分析仪器[J]2010.(02).5-10.
    [85]Hills B. P., Wright K. M., Gillies D. G. A low-field, low-cost Halbach magnet array for open-access NMR. Journal of Magnetic Resonance [J].2005.175(2).336-339.
    [86]周赣,黄学良,周勤博,傅萌Halbach型永磁阵列的应用综述.微特电机[J]2008.(08).52-55.
    [87]王俊.霍尔传感器及其性能优化.电子产品可靠性与环境试验[J]2008.(02).10-14.
    [88]Shuai Wang, Yunchao Yang, Huilin Lu, Pengfei Xu, Liyan Sun. Computational Fluid Dynamic Simulation Based Cluster Structures-Dependent Drag Coefficient Model in Dual Circulating Fluidized Beds of Chemical Looping Combustion. Industrial&Engineering Chemistry Research [J].2012.51(3).1396-1412.
    [89]王丽珏,胡寿根,赵军,段广彬.Y型分支管内气固两相流动的数值模拟.力学季刊[J]2009.(01).55-61.
    [90]傅德薰,马延文.计算流体力学.高等教育出版社.2002.
    [91]陶文拴.数值传热学.2001.
    [92]Shih Tsan-Hsing, Liou William W., Shabbir Aamir, Yang Zhigang, Zhu Jiang. A new k-eddy viscosity model for high reynolds number turbulent flows. Computers&Fluids [J].1995.24(3).227-238.
    [93]Huang Wei, Wu W. B., Wang X. L. Tribological properties of magnetic surface lubricated by ferrofluids. Eur. Phys. J. Appl. Phys [J].2012.59.31301.
    [94]Brunke O., Odenbach S., Fritsche C., Hilger I., Kaiser W. A. Determination of magnetic particle distribution in biomedical applications by X-ray microtomography. Journal of magnetism and magnetic materials [J].2005.289.428-430.
    [95]庞小峰,张怀武,邓波,赵强,刘乐维,漆婷,曾宝清,胡文成.纳米尺度物质的生物效应和安全性.物理[J]2006.35(4).286-293.
    [96]Borm Paul JA, Kreyling Wolfgang. Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. Journal of nanoscience and nanotechnology [J].2004.4(5).521-531.
    [97]Zhu Mo-Tao, Feng Wei-Yue, Wang Bing, Wang Tian-Cheng, Gu Yi-Qun, Wang Meng, Wang Yun, Ouyang Hong, Zhao Yu-Liang, Chai Zhi-Fang. Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology [J].2008.247(2).102-111.
    [98]王国斌,夏泽锋,陶凯雄,周立国,刘敬伟,肖勇,李剑星.医用纳米级Fe_3O_4磁流体的急性毒理学实验研究.华中科技大学学报(医学版)[J]2004.(04).452-454.
    [99]韩瑜,尹龙萍,龙玲,刘睿,黄碧兰,袁正,刘士远.2种纳米材料在小鼠体内分布及毒性作用.中国公共卫生[J]2009.(07).835-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700