用户名: 密码: 验证码:
镍基高温合金GH4169高速切削相关技术与机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GH4169是以Ni-Cr固溶体为基体,Ni3Nb和Ni3(Al,Ti,Nb)为强化相组成的,属Ni基变形高温合金,其组织稳定、激活能大、有害相少,故其强度高、塑性与韧性好、抗高温、抗氧化、抗热腐蚀性好,能在高温、高频应力应变及腐蚀性气氛下长期稳定工作,已经成为航天、航空、能源等行业关键零部件不可或缺的重要结构材料。GH4169是最难加工的高温合金之一,切削加工性只有0.1左右,表现在切削力大、切削温度高、加工硬化严重、刀具使用寿命低,其常规切削速度只有10~15m/min,严重影响GH4169的切削加工效率,航空、航天、能源等行业的迅猛发展迫切要求解决GH4169难加工、切削速度低的问题。故GH4169的高速切削相关技术与机理的研究,具有重要的理论意义和广阔的应用价值。
     首先,在综述高速切削GH4169相关技术及机理的国内外研究现状的基础上,为达到高效切削的目的,进行了高效切削GH4169相关技术的的高速车削与铣削试验,研究了高速切削GH4169时,切削用量对切削力、切削温度、表面质量(粗糙度、加工硬化、残余应力)的影响规律与特点;对Salomon的高速切削时切削温度降低的假说进行了探讨;并用过热水蒸汽和磁化乳化液进行了切削时冷却润滑作用效果的研究;还进行了适合GH4169高速切削的TiAlN涂层硬质合金、细晶粒硬质合金、Si3N4+Al2O3+TiC复合陶瓷三种刀具材料的刀具磨损试验,研究了刀具磨损过程、使用寿命及刀具性能价格比。
     然后,对高速切削GH4169时形成的力-热耦合强应力场作用下的变形特点与本构关系建模进行了研究,以期获得材料力学性能实验法无法实现的符合高速切削力学特点的本构方程,提高高速切削GH4169有限元仿真的精度。在此用直角切削快速落刀试验法获取了切屑根,以直角切削绝热剪切力学模型为基础,研究了高速切削GH4169时的高温、大应变、高应变率的材料变形特点,探讨了基于切削试验法的材料本构关系模型的建模方法,构建了能较真实反映GH4169的高速切削力学特点的本构方程;并将其作为材料模型对GH4169高速切削进行了有限元仿真,切削试验证明基于切削试验法构建本构关系模型是准确的。
     再后,对高速切削GH4169中产生的强韧螺卷形切屑的卷曲过程进行了力学解析及有限元仿真,研究了从单一卷曲到复杂卷曲条件下切屑卷曲过程中的弹塑性力学行为,通过对切屑横截面上应力状态的分析,找出了单一及复杂卷曲条件下应力的分布规律。
     最后,研究了高速切削GH4169时切屑的锯齿和毛边的特征及毛边的生成机理。对车削试验获得的切屑及快速落刀试验获得的切屑根标本进行了显微观测,研究了第一变形区材料的变形与损伤的特点及规律,并基于微孔洞聚合与裂纹扩展理论,研究了高速切削GH4169的绝热剪切带微损伤的产生与两次演化的断裂力学行为与演化过程的规律特点,揭示了切屑毛边的生成机理。
GH4169is a kind of Ni-base superalloy which has Ni-Cr solid solution as matrix,Ni3Nb and Ni3(Al,Ti,Nb) as strengthening phase. Its stable tissue, great activationenergy and low detrimental phase contribute to its property of high strength, goodplasticity, antioxidation and good corrosion resistance. So it can work for a long timeunder high temperature and corrosive circumstances even the stress and strain changefrequently. It has been the indispensable material in aerospace, aviation and energyindustry etc. GH4169is one of the most difficult-to-cut materials, whose depth of cut isonly about0.1. The strong cutting force, high cutting temperature, severe phenomenonof work hardening, short life span of cutting tool and common cutting speed of10~15m/min greatly lower the processing efficiency. The low cutting speed is an urgentproblem to be solved in aerospace, aviation and energy industry which are enjoying fastdevelopment. So reserch on the correlation technique and mechanism of the high-speedcutting GH4169is of great significance both in theory and in practice.
     Firstly, after the summary of high speed cutting theories and techniques at homeand abroad, to reach the goal of high speed cutting, a test based on Salomon hypothesisis to be carried on. The cutting force, cutting temperature and the influencing factorsand regulations of surface quality (surface roughness, work hardening, residual stress)are to be researched through turning test, milling test and simulation on the system. Andthe method to improve the cooling lubrication effect during high speed cutting ofGH4169will also be studied.
     Secondly, the deformation feature and constitutive modeling of high speed cuttingGH4169under the influence of mechanical-thermo coupled strong stress field were tobe studied. In order to get the dynamical constitutive equation conformed to high-speedcutting GH4169, which is beyond mechanical testing. Meanwhile, improve the accuracyof FEM simulation of GH4169high speed cutting.Through the test of rapid tooldisengage during right angle cutting to obtain chip root on the basis of physical modelof two dimensions cutting. And during the research of high speed cutting, metal elasticand plastic deformation with high temperature, strong strain and great strain rate arenoticed. To probe the modeling method of material constitutive modeling on the basis ofright angle cutting test and build constitutive equation that can rightly explain themechanics feature of cutting difficult-to-cut materials with high speed. Then throughcomparing the result of FEM simulation of GH4169high speed cutting based on theequation with the test result to verify whether the modeling method is accurate orreliable.
     Thirdly, tough curl chips will be produced during most cuttings of GH4169. Through dynamical analysis and FEM simulation method, the elastic and plasticdynamic phenomenon under complicated conditions is studied while the chips arecurled. And through analyzing the force condition on the cross section of the chips, lawsof stress distribution are to be discovered.
     Lastly, mechanism of chips formation will be discussed via probing the chipfeature of cutting GH4169with high speed. Through micro-observing the chips fromturning test and chip roots from rapid tool disengage test, observing the features andlaws of the deformation and damage of materials in the first deforming zone with CCDobserving system and SEM,analyzing difficult-to-cut GH4169material with goodhardness, high strength and high toughness, showing the twice deformation(first in thefirst deforming zone and the second in the second deforming zone) and damage processon the influence of high temperature, great stress and high stress rate of high speedcutting, the mechanism of how chips are formed is revealed.
引文
1陈国良.高温合金学[M].北京:冶金工业出版社,1988:25-42.
    2庄景云.变形高温合金[M].北京:冶金工业出版社,2006:1-3.
    3U Zuperl,F Cus B,Mursec. A generalized neural network model of ball-endmilling force system[J]. Journal of Materials processing Technology,2005,4:203-222.
    4张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002:8-25.
    5D O Sullivan,M Cotterell. Workpiece temperature measurement machining[J].Journal of Engineering in Medicine,2002,216:135-139.
    6杨巧凤,张明贤,史兴宽.铝合金高速铣削温度变化规律的试验研究[J].西北工业大学学报,1999,17(3):439-443.
    7T Kitagawa,A Kubo,K Maekawa. Temperature and wear of cutting tools inhigh-speed machining of Incone1718and Ti-6A1-6V-2Sn[J]. wear,1997,202(2):142-148.
    8T I F, L-wardany. Cutting temperatures of ceramic tool in high speedmachining of difficult-to-cut materials[J]. Tools Manufact,1996,36:611-634.
    9X J Rena,Q X Yang. Cutting temperatures in hard turning chromium hardfacings with PCBN tooling[J]. Journal of Materials Processing Technology,2004,147:38-44.
    10D G Thakur,B Ramamoorthy. Study on the machinability characteristics ofsuperalloy Inconel718during high speed turning[J]. Materials and Design,2009,30:1718-1725.
    11C Courbon,V Sajn. Investigation of machining performance in high pressurejet assisted turning of Inconel718: A numerical model[J]. Journal ofMaterials Processing Technology,2011,211:1834-1851.
    12F J McGee. High speed machining-study: methods for aluminium workpieces[J]. American Machinist,1979,34:121-126
    13Dewes R. Temperature Measurement when High Speed Machining HardenedMould/Diesteel[J]. Journal of Materials Processing Technology,1999,9:293-301.
    14R I King,R.L. Vaughn. A synoptic review of high speed machining fromSalomon to the present[C]. The Winter Annual Meeting of ASME,NewOrleans,1984:1-13.
    15Schulz H. High Speed Machining[J]. Annals of the CIRP,1992,41(2):637-643.
    16《高温合金手册》编写组.高温合金手册[M].北京:冶金工业出版社,1972:32-35.
    17肖茂华.镍基高温合金高速切削刀具磨损机理研究[D].南京:南京航空航天大学机械制造及其自动化学科博士学位论文.2010:1-5.
    18黄传真,艾兴.加工镍基合金时切削力和切削温度的特点[J].工具技术,1995,5:35-37.
    19C Courbon,D Kramar,P Krajnik. Investigation of machining performance inhigh-pressure jet assisted turning of Inconel718: An experimental study[J].International Journal of Machine Tools and Manufacture.2009,49(14):1114-1125.
    20Y S Liao,H M Lin,J H Wang. Behaviors of end milling Inconel718superalloyby cemented carbide tools[J]. Journal of Materials Processing Technology,2008,201(1-3):460-465.
    21R S Pawade,S S Joshi,P K Brahmankar. An investigation of cutting forces andsurface damage in high-speed turning of Inconel718[J]. Journal of MaterialsProcessing Technology,2007,192-193:139-146.
    22D Dudzinski, A Devillez. A review of developments towards dry andhigh-speed machining of Inconel718alloy[J]. International Journal of MachineTools and Manufacture,2004,44(4):439-456.
    23L N López de lacalle,J Pérez. Advanced cutting conditions for the milling ofaeronautical alloys[J]. Journal of Materials Processing Technology,2000,100(1-3):1-11.
    24M Rahman,W K H. The machinability of Inconel718[J]. Journalof MaterialsProcessing Technology,1997,63:199-204.
    25M Alauddin,M A El-Baradie. Modelling of cutting force in end milling Inconel718[J]. Journal of Materials Processing Technology,1996,58(1):100-108.
    26I A Choudhury,M A EI-Baradie. Machinability of nickel-base superalloys: ageneral view[J]. Technology Journal of Materials Processing Technology,1998,77:278-284.
    27邵芳.难加工材料切削刀具磨损的热力学特性研究[D].济南:山东工业大学机械制造及其自动化学科博士学位论文,2010:8-13.
    28辛民,王西彬,康运江.高速干切削铁基粉末冶金零件时细品粒硬质合金刀具的切削性能研究[J].工具技术,2006,40(6):7-10.
    29韩立发,屈盛官.涂层刀具切削铁基粉末冶金复合材料时的磨损机理[J].机械制造,2007,45(509):42-44.
    30刘海滨.镍基高温合金高速车削研究[D].南京:南京航空航天大学机械制造学科硕士学位论文,2007:36-48.
    31邓建新,艾兴. Al2O3/TiB2/SiCw陶瓷刀具加工镍基合金时的磨损机理研究[J].硅酸盐学报,1997,25:192-197
    32康运江,王西彬.陶瓷刀具车削铬钥镍耐磨粉末冶金零件的研究[J].新技术新厂艺,2004,4:7-19.
    33Y S Liao,R H Shiue. Carbide tool wear mechanism in turning of Inconel718superalloy[J]. Wear,1996,193(1):16-24.
    34K Itakura,M Kuroda. Wear mechanism of coated cemented carbide tool incoated tool in cutting of Inconel718super-heat resisting alloy[J]. InternationalJournal of Japanese Society for Precision Engineering,1999,33(4):326-333.
    35M Rahman,W K H Seah. The machinability of Inconel718[J]. Journal ofMaterials Processing Technology,1997,63:199-204.
    36H G Prengel,P C Jindal. A new class of high performance PVD coatings forcarbide cutting tools[J]. Surface and Coatings Technology,2001(139),1:25-34.
    37N Narutaki,Y Yamane. High speed machining of Inconel718with ceramictools[J]. CIRP Annals-Manufacturing Technology,1993,42(1):103-106.
    38R M Arunachalam,M A Mannan. Residual stress and surface roughness whenfacing age hardened Inconel718with CBN and ceramic cutting tools[J].International Journal of Machine Tools&Manufacture,2004,44:879-88.
    39R M Arunachalam,M A Mannan. Surface integrity when machining agehardened Inconel718with coated carbide cutting tools[J]. International Journalof Machine Tools and Manufacture,2004,44(14):148-1491.
    40Lo Casto,S Lo Valvo. Ceramic Materials Wear Mechanisms When CuttingNickel-based Alloys[J]. Wear,1999,225-229:227-233.
    41肖茂华,何宁,李亮.镍基合金高速切削中锯齿状切屑毛边和刀具磨损研究[J].工具技术,2009,6:32-36
    42肖茂华,何宁,李亮.陶瓷刀具高速切削镍基高温合金沟槽磨损试验研究[J].中国机械工程,2008,19:1188-1192
    43XIAO Mao-hua,HE Ning,LI Liang. Wear Mechanisms of Ceramic Inserts inMachining Nickel-Based Superalloy[J]. Journal of Wuhan University ofTechnology(Materials Science Edition),2009,18(1):78-83
    44任敬心,吴小玲.立方氮化硼刀片车削粉末高温合金的刀具磨损.航空制造技术,2001,1:22-26.
    45C Schlauer,R L Peng. Residual stresses in a nickel-based superalloy introducedby turning[J]. Materials Science Forum,2002,404-407:173-178.
    46R.M.Arunachalam. M.A.Mannan. Residual stress and surface roughness whenfacing age hardened Inconel718with CBN and ceramic cutting tools[J].International Journal of Machine Tools&Manufacture.2004,44:879–887.
    47A Devillez,G Le Coz. Dry machining of Inconel718workpiece surfaceintegrity[J]. Journal of Materials Processing Technology,2011,211:1590-1598.
    48D Dudzinski,A Devillez. A review of developments towards dry and highspeed machining of Inconel718alloy[J]. International Journal of MachineTools&Manufacture,2004,44:439-456.
    49S W Kim,D W Lee. Evaluation of machinability by cutting environments inhigh-speed milling of difficult-to-cut materials[J]. Journal of ProcessingTechnology,2001,111:256-260.
    50E Brinksmeier,A Walter,R Janssen. Aspects of cooling lubrication reduction inmachining advanced materials[J]. Proceedings of the Institution of MechanicalEngineers,1999,213(Part B):769-778
    51韩荣第,刘俊岩.切削液渗透毛细管的动力学模型研究[J].润滑与密封.2005,1:31-34.
    52Han RD,Liu J Y,Zhang Y. Experimental study on green cutting with watervapor as coolant and lubricant[J]. Key Engineering Materials,2006,315-316:45-50
    53韩荣第,胡广义.用水蒸汽作冷却润滑介质的切削试验研究[J].现代制造工程,2003,25(2):12-13
    54李振加,吴雪松,杨永芝.切屑折断机理及其应用[M].大连:大连理工大学出版社,1990:34-39.
    55Nakayama K,Arai M. The breakability of chip in metal cutting[C]. Proceedingsof Intenational Conference On Manufacturing Engineering,1990:6-10
    56Nakayama K,Ogawa M. Basic Rules on the Form of Chip in Metal Cutting[C].CIRP Ann.1978:17-21.
    57Ning Fang. Kinematics Characterization of Chip Lateral-curl——the ThirdPattern of Chip Curl in Machining[J]. Tnars ASME,J Mnau Sci Eng.2002124:667-675.
    58Nakayama. K. Arai.M. Comprehensive Chip Form Classification Based on theCutting Mechanism[J]. CIRP Ann.1992:71-74.
    59张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002:10-12
    60Recht R F. A dynamic analysis of high-speed machining[J]. ASME Journal ofManufacturing Science and Engineering,1985,107(4):309-315
    61Turley D M,Doyle E D. Calculation of shear strains in chip formation oftitanium[J]. Materials Science and Engineering,1982,55(1):45-48
    62He N,Lee T C. Assessment of deformation of shear localized chip in highspeed machining[J]. Journal of Materials Processing Technology,2002,129(1-3):101-104.
    63Duan C Z,Wang M J. A calculational model of shear strain and strain ratewithin shear band in a serrated chip formed during high speed machining[J].Journal of Materials Processing Technology,2006,178(1-3):274-277.
    64杨奇彪,刘战强.高温合金高速切削锯齿形切屑应变与应变率研究[J].农业机械学报,2011,42:225-228.
    65郭晓东.剪切温度对车削加工GH4169镍基高温合金的影响[J].上海交通大学学报,2009,43:79-83.
    66徐芗明.镍基高温合金切削加工锯齿形切屑研究[J].机械制造,2008,6:38-40.
    67A Gatto,L Iuliano. Chip formation analysis in high speed machining of a nickelbase superalloy with silicon carbide whisker-reinforced alumina[J].International Journal of Machine Tools and Manufacture,1994,34-11:1147-1161.
    68S Ranganath. A finite element modeling approach to predicting white layerformation in nickel superalloys[J]. Manufacturing Technology,2009,58:77-80.
    69张悦.过热水蒸汽作冷却润滑剂的绿色切削相关技术研究[D].哈尔滨:哈尔滨工业大学机械制造及其自动化学科博士学位论文,2009:87-94
    70吴健.典型难加工材料钻削相关技术的基础研究[D].哈尔滨:哈尔滨工业大学械制造及其自动化学科博士学位论文,2010:14-39.
    71何宁.难加工材料高效切削理论与应用研究[D].南京:南京航空航天大学机械制造及其自动化学科博士学位论文,1996:34-56.
    72Y S Liao,H M Linb. Behaviors of end milling Inconel718superalloy bycemented carbide tools[C].10th International Conference on Advances inMaterials and Processing Technologies,2008,201:460-465.
    73D G Thakur. Study on the machinability characteristics of superalloyInconel718during high speed turning[J]. Materials and Design,2009,30(5):1718-1725.
    74刘培德.切削力学新篇[M].大连:大连理工出版社,1991:267-272
    75鲁世红.高速切削锯齿形切屑的实验研究与本构建模[D].南京:南京航空航天大学博士学位论文,2009:51-66.
    76杨树宝,徐九华.置氢处理对TC4钛合金流变行为的影响[J].航空学报,2011,30:1093-1098
    77夏开文,程经毅. SHPB装置应用于测量高温动态力学性能的研究[J].实验力学,1998,13:307-313
    78彭建祥,李英雷.纯担动态本构关系的实验研究[J].爆炸与冲击,2003,23:183-187
    79王敏杰.动态塑性试验技术[J].力学进展,1988,18(l):70-78,
    80A I Mousawi. Use of the split Hopkinson Pressure bar techniques in high ratematerial stesting[J]. Mechnaieal Engineering Science,1997,211(4):273-292.
    81刘瑞堂,姜风春.用于材料动态力学性能研究的测试装置[J].哈尔滨工程大学学报,1999,20(1):13-18.
    82Kececioglu D. Shear-strain rate in metal cutting and its effects on shear-flowstress[J]. Trans ASME,1985,(80):158-165.
    83Oxley P L,Steven M G. Measuring stress/strain properties at very high strainrate using a machining test[J]. J.Jnst.Metals,1967,95:308-313.
    84Steven M G,Oxley P L. An experimental investigation of the influence ofstrain-rate and temperature on the flow stress properties of a low carbon steelusing a machining test[J]. Proc. Instn Mech Engrs,1970,(185):741-754.
    85Steven M G,Oxley P L. High temperature stress-strain properties of a lowcarbon steel from hot machining tests[J]. Proc Instn Mech. Engrs,1973187:263-272.
    86Wright P K,Robinson J L. Material behavior in deformation zones ofmachining operation[J]. Met.Technol,1977,(394):240-248
    87王敏杰.金属动态力学性能与热塑性剪切失稳的正交切削方法研究[M].大连:大连理工大学博士学位论文,1988:48-59.
    88胡荣生,王敏杰.从正交切削试验获得低碳钢动态剪切流动应力特性[J].大连理工大学学报,1987,26(3):31-36.
    89付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究[D].济南:山东大学机械制造及其自动化博士学位论文,2007:59-82.
    90付秀丽,艾兴.铝合金7050高温流变应力特征及本构方程[J].武汉理工大学学报,2006,12:34-38.
    91郭乃成,罗子健.合金的本构关系研究[J].航空学报,1991,12:552-556.
    92T Kobayashi,J W Simons. Plastic flow behavior of Inconel718under dynamicshear loads[J]. International Journal of Impact Engineering,2008,56:389-396.
    93吴凯,刘国权.新型镍基粉末高温合金的高温变形行为[J].航空材料学报,2010,30:1-7.
    94Saiganesh K,Iyera Cliff J. Multiaxial constitutive model accounting for thestrength-differential in Inconel718[J]. International Journal of Plasticity,2003,63:2055-2081.
    95魏洪亮. GH4169合金高温力学行为本构建模及参数识别[J].材料工程,2005,4:42-45
    96郑文涛,乔兵.基于BP神经网络的GH648合金本构模型的建立[J].兵器材料科学与工程,2004,27:13-17.
    97丰建朋. GH141合金和GH907合金的本构关系[J].热加工工艺,1997,5:(21-23).
    98Yu Wang, D L Lin. A Correlation Bewteen Tensile Flow Stress andZener-Hollomon Factorin at High Tem Perautres[J]. Journal of MaterialsScience,2000,19:1185-1188.
    99刘东.以Zener-Hollomon参数表示的GH169合金的本构关系[J].塑性工程学报,1995,2(7):(16-21).
    100唐浩,罗子健.变形条件对GH4169合金流动应力和显微组织的影响[J].航空学报,1989,7:369-378.
    101王威.高速切削加工高温镍基合金GH4169的切削力和切削热的研究[D].青岛:青岛理工大学机械制造及其自动化专业硕士学位论文,2010:(52-63).
    102Merchant M E. Cutting-Fluid Action and the Wear of Cutting Tools[C].Conference of Lubrication and Wear,1959:556-574.
    103Подгорков. Влияние магнитных технологических жидгостей на силырезания и износ режущего инструмента[J].Трение и износ,1987,1:66-71.
    104韩荣第,刘俊岩.切削液渗透毛细管的动力学模型研究[J].润滑与密封,2005,1:31-34.
    105周泽华.金属切削原理[M].上海:上海科学技术出版社,1993:58-62.
    106J P Costes,Y Guillet. Tool-life and wear mechanisms of CBN tools inmachining of Inconel718[J]. International Journal of Machine Tools&Manufacture,2007,16:1081-1087.
    107E H迪尔.简单物质的本构方程[M].江苏:江苏科学技术出版社,1983:(1-3).
    108S.Ixi. Y.C. Shin.F. P.Incropera. Material constitutive modeling under high strainrates and temperatures through orthogonal machining tests[J]. Journal ofManufacturing Science and Engineering,1999,121(11):577-584.
    109Shatla.M. Kerk.C. Altan.T. Process modeling in machining (partⅠ):determination of flow stress data[J]. International Journal of MachineTools&Manufacture.,2001,41(9):1511-34.
    110杨奇彪.刘战强.高温合金高速切削锯齿形切屑应变与应变率研究[J].农业机械学报,2011,42:225-228.
    111袁哲俊.金属切削实验技术[M].北京:机械工业出版社,1988:(232-236).
    112蔡光仁,檀美穗.金属切削实验中快速落刀速度对切屑变形的影响[J].华侨大学学报自然科学版,1988,94:76-501.
    113潘良贤,吴殿宗,刘肇发.钛合金车削过程切屑形成的实验研究[J].南京航空学院学报,1981,4:96-113
    114赵亮.置氢钛合金切削变形的基础研究[D].南京:南京航空航天大学机械制造及其自动化学科硕士学位论文,2009:15-16.
    115国家标准GB/T4334.1-2000-GB/T4334.5-2000.
    116段春争.正交切削高强度钢绝热剪切行为的微观机理研究[D].大连:大连理工大学机械制造及其自动化学科博士学位论文,2004:12-35.
    117G R Johnson. W H Cook. A constitutive model and data for metals subjected tolarge strains, high rates and high temperatures[C]. Proceedings of the SeventhInternational Symposium on Ballistics. The Netherlands,1983:541-547
    118G R Johnson. T J Holmquist. Evaluation of cylinder-impact test data forconstitutive model constants[J]. Journal of Applied Physics.1988,64(8):3901-3910.
    119G R Johnson,W H Cook. Fracture characteristics of three metals subjected tovarious strains, strain rates, temperatures and pressures[J]. Eng Fract Mech,1985,21(1):31-48.
    120F J Zerilli. R W Armstron. Dislocation-mechanics-based constitutive relationsfor material dynamics calculations[J]. Journal of Applied Physics,1987,61(5):1816-1825.
    121F J Zerilli,R W Armstrong. Description of tantalum deformation behavior bydislocation mechanics based constitutive equations[J]. Journal of AppliedPhysics,1990,68(4):1580-1591114.
    122F J Zerilli,R W Armstrong. The effect of dislocation drag on the stress-strainbehavior of FCC metals[J]. Acta Metallurgicaet Material,1992,40(8):1803-1808.
    123D C Stouffer,S R Bodner. A constitutive model for the deformation inducedanisotropic plastic flow of metals[J]. International Journal of EngineeringScience.1979(17):757-764.
    124S R Bodner,Y Partom. A large deformation elastic-visco-plastic analysis ofthick-walled spherical shell[J]. ASME J.1972,39:751-757.
    125S R Bodner, Y Partom. Constitutive equations for elastic-visco-plasticstrain-harding materials[J]. ASME J,1975,(42):385-389.
    126E Uhlmann,M Graf von der Schulenburg,R Zettier. Finite Element Modelingand Cutting Simulation of Inconel718[J]. CIRP Annals-ManufacturingTechnology,2007,56:61-64.
    127Christian Horti,Bob Svendsen. Simulation of chip formation during high-speedcutting[J]. Journal of Materials Processing Technology,2007,186:(66–76).
    128程泽.单颗磨粒高速磨削镍基高温合金机理研究[D]南京:南京航空航天大学机械制造及其自动化学科硕士学位论,2011:36-52.
    129韩荣第,周明.金属切削原理与刀具[M].哈尔滨:哈尔滨工业大学出版社,2004:23-46.
    130Rubinstein C Pawe. Analysis of chip curvature [C].10th MTRR.conf,1969:30-34.
    131Chen Y J,Fang N. Three-Dimensional Chip Curl and Chip Flow[J]. Journal ofHuazhong University of Science and Technology in Chinese.1993,23:1-6.
    132Fang Y Basu. A3-D Kinematic Model of Complex Chip Curling with ChipBreaking Tools in Metal Cutting: Part I—Analytical Modeling[J]. ASMEBound Volume MED,1997,2:177-182.
    133Fang Y J. A3-D Kinematic Model of Complex Chip Curling with ChipBreaking Tools in Metal Cutting: Part II—Analysis and Discussion[J]. ASMEBound Volume MED,1997,2:183-191.
    134庄茁,由小川.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009:43-79.
    135Recht R.F A dynamic analysis of high speed machining[J]. J.of Eng. For Ind.1985(107):309-315
    136Timothy S P. Structure of adiabatic shear bands in a titanium alloy[J]. ActaMetal,1985,33(4):667-676.
    137Timothy S P. Structure of adiabatic shear bands in metals: a critical review[J].Acta Metall,1987,35(2):301-306.
    138Li Shaofan,Liu Wingkin. Analysis of the dynamic propagation of adiabaticshear bands[J]. International Journal of Solids and Structures,2002,39(5):1213-1240.
    139R W赫次伯格.工程材料的变形与断裂力学[M].北京:机械工业出版社,1982:46-63.
    140T M Maccagno,J F Knott. The mixed mode I/II fracture behaviour of lightlytempered HY130steel at room temperature[J]. Engineering FractureMechanics,1992,41(6):805-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700