用户名: 密码: 验证码:
面向绿色制造的钢铁制造系统辅料资源运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业是一个以生产钢材为主的原材料制造业,属国民经济的基础产业,也是能源消耗、资源消耗和污染物排放大户。近年来,我国钢铁工艺通过结构调整和技术进步,在节能降耗、减少环境排放方面取得了显著成效,但由于我国钢铁产量持续高速增长,资源消耗和环境排放总量仍呈增长趋势,钢铁工业的可持续发展面临资源、环境的严峻挑战。钢铁制造系统的每一单元过程都带有不同的资源消耗,在生成主副产品的同时产生各种环境排放和资源消耗,是钢铁制造系统资源消耗和环境影响的根源,它们之间的协同配合关系决定了钢铁制造系统主辅料资源的转化效率、能源消耗及其环境影响的程度。因此,正确认识和分析钢铁制造系统的资源流及其影响显得尤为重要。
     本文以国家自然科学基金“基于辅料资源运行特性的钢铁绿色制造系统集成运行模式研究(70971102)”为依托,以钢铁产品生命周期过程为主线,以绿色制造模式为支撑,研究钢铁制造系统辅料资源的运行特性,及对资源消耗和环境排放的影响机理,为钢铁企业实施绿色制造、资源优化利用及节能减排提供解决方案的参考。主要研究内容有:
     (1)在分析钢铁制造系统基本流程及特点的基础上,将资源流分为含铁主料资源和辅料资源,阐述了辅料资源的内涵和特点;系统分析了钢铁制造过程典型环节的主料资源的转换过程及辅料资源在此过程中对转换效率及环境排放的影响;构建了基于辅料资源运行特性的钢铁制造系统资源流运行规律研究体系结构。
     (2)建立了钢铁制造系统辅料资源运行特性的分析框架,综合考虑辅料资源在钢铁产品的生命周期主线上,配合主料资源的转换过程中形成的复杂时空特性,阐述各辅料资源在主线上加入时间、空间、方式等属性不一样形成的不同的主辅料资源转化效率,及对系统的资源消耗和环境排放的影响,系统分析了辅料资源的时空特性、输入输出特性、反馈特性和排放特性。
     (3)分析了钢铁制造系统单元过程中的输入、消耗、输出、反馈、排放之间的动态数学关系,建立了以综合考虑生产率、质量、成本、资源消耗、环境影响和职业健康与安全危害为目标,辅料资源运行特性为优化控制参数的钢铁制造系统资源优化运行理论模型,结合烧结、炼铁、炼钢等典型单元环节给出了应用框架模型,并以基于辅料资源运行特性的高炉焦比预测与优化为例进行了具体的分析与应用。
     (4)在以上理论和方法研究的基础上,研究并开发了基于辅料资源运行特性的钢铁制造系统资源优化原型支持系统,对系统的框架结构和工作流程进行了阐述,结合软件系统实现和实施案例对原型系统的主要模块进行了介绍。
Steel industry is the supporting industry in national economy; also it's an industry of denseresource, dense energy and of large amount of pollution letting. In recent years, based onstructure adjustment and technology progress, the national steel industry has reached remarkableachievement in energy-saving, material-saving and reducing of pollution letting. But due to thecontinuous rapidly increasing of steel yield; increasing amount of resource consumption andpollution letting, the development of steel industry in our country is facing the austere challengefrom resource and environment. The steel manufacturing system is an input/output system in thatthe main iron resources with the cooperation of limestone and other auxiliary resourcestransform into main products and by-products through a series of metallurgical units. In each unitprocess there are different resource consumption and kinds of emissions. The main iron materialresources and auxiliary resources is the root cause of the resource consumption andenvironmental impact in steel manufacturing system, the cooperate relationship among themdetermines the resource efficiency, energy consumption and environmental impact. Therefore, itis particularly important to analyze the flow of resources in iron and steel manufacturing system.
     With the steel life-cycle process of the steel products as the main line, as well as the supportof green-integrated manufacturing system, The projeet of this paper studied the runningcharacteristics of auxiliary resources and the influence mechanism to resource consumption andenvironmental emissions, which can provide solutions for reference to implement greenmanufacturing, optimize the utilization of resources and emissions reduction. The main contentsof this paper are sponsored by the Research Fund of National Natural ScienceFoundation(70971102). Main research contents are as follows:
     (1) Based of the analzing the process characteristics of manufacturing systems, the resourcesare divided into principal resources and auxiliary resources and State their meaning and features;the Iron element conversion process in typical steel manufacturing unit and the auxiliaryresources influencing to the conversion efficiency and environmental emission is dicussed, andthe research architecture on objective laws of the resources flow in steel manufacturing system isconstructed.
     (2) Complex spatial and temporal characteristics formed by the accessories resources incoping with principal materials resources during life cycle in iron and steel manufacturingsystem affect the conversion efficiency, resource consumption and emissions. The analysisframework to the running characteristics of accessories resources is established, and thespace-time characteristics, input and output feedback and emission characteristics are analyzed.
     (3) Presentate the general method on analysis the dynamic mathematical relations of theinput consumption, output, feedback and emissions. A resources flow optimization operationtheory model is presented which considerating of productivity, quality, cost, resourceconsumption, environmental impact and occupational health and safety hazards as the goal, andthe running characteristics of auxiliary resources as control parameters. On the application modelto sintering, ironmaking, steelmaking these typical unit, the blast furnace coke rate prediction and optimization based on running characteristic of auxiliary resources is taken as an example.
     (4) On the basis of the above research and conlusion, an application supporting prototypesystem of resource optimal operating based on auxiliary resources’ running characteristic havedeveloped and applied, and the frame structure and work flow of the system are analyzed. A caseis integrated to testify all above-mentioned research contents and better application results havemade.
引文
[1]王新纯,于渤.工业生态工程的分析方法研究[J].中国软科学,2005,(06):144-152
    [2]胡长庆,张春霞,齐渊洪,殷瑞钰.钢铁工业生态化研究进展与前景分析[J].钢铁,2004,(8):112-116
    [3]高璐.论钢铁工业的绿色化[J].科技信息,2008,(17):44-45
    [4]徐文青,李寅蛟,朱廷钰,曹万杰.中国钢铁工业CO_2排放现状与减排展望[J].过程工程学报,2013,(1):175-178.
    [5] A Jurgen. Present Status and future aspects of environmental protection in the European andGerman steel industry [M]. International symposium on global environment and steelindustry proceedings, Beijing: Chinese Society for Metals,2003.
    [6]钢铁行业清洁生产技术推行方案http://www.miit.gov.cn/n11293472/n11295091/13028487.html
    [7]钢铁工业“十二五”发展规划http://www.gov.cn/zwgk/2011-11/07/content_1987459.htm
    [8]国家中长期科学和技术发展规划纲要http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [9] Green Manufacturing Is A Strategic Priority. Manufacturing&Technology News,2000,7(16):1~3(http://www.manufacturingnews.com/news/00/0915/art1.html)
    [10]刘飞,曹华军,张华.绿色制造的理论与技术[M].科学技术出版社.2005.1
    [11]刘飞,张华,岳红辉.绿色制造—现代制造业的可持续发展模式[J].中国机械工程,1998,9(6):76~78
    [12] Melngk S A, Smith R T. Green Manufacturing. Dearborn[J], USA: Society ofmanufacturing Engineers,1996
    [13] J. Duflou, W. Dewulf, P. Sas, P. Vanherck. Pro-active Life Cycle Engineering SupportTools[J]. CIRP Annals-Manufacturing Technology,2003,52(1):29~35
    [14] Z.Chen, A.Atmadi, D.A. Stephenson, etc. Analysis of cutting fluid aerosol generation forenvironmentally responsible machining[J]. CIRP Annals-Manufacturing Technology,2000,49(1):53~65
    [15] Sheng P, Srinivasan M. Multi-Objective Process Planning in Environmentally ConsciousManufacturing: A Feature-Based Approach[J]. Annals of the CIRP,1995,44(1):433-437
    [16] Johnson M, WANG M. Environmental Conscious Manufacturing: A Life-CycleAnalysis[C].10th International Conference on CAD/CAM, Robotics and Factories of theFuture, August1994, Ottawa, Canada.(http://www.uwindsor.ca/main/imse/people/ecdminfo.html)
    [17]刘飞,徐宗俊,但斌,昝昕武.机械加工系统能量特性及其应用[M].北京:机械工业出版社,1995.
    [18] F. Liu, H. Zhang, P. Wu, H.J. Cao. A model for analyzing the consumption situation ofproduct material resources in manufacturing systems[J]. Journal of Materials ProcessingTechnology,2002,122(2-3):201~207.
    [19]曹华军,刘飞,何彦,张华.面向绿色制造的机床设备选择模型及其应用[J].机械工程学报,2004,40(3):6~10.
    [20]谭显春,刘飞,曹华军.面向绿色制造的刀具选择模型及应用研究[J].重庆大学学报,2003,26(3):117~121.
    [21]谭显春,刘飞,曹华军.面向绿色制造的切削液选择模型及其应用研究[J].工具技术,2002,910~114.
    [22]曹华军,刘飞,何彦,张华.基于模型集的面向绿色制造工艺规划策略研究[J].计算机集成制造系统.2002,18(12):978~982.
    [23]曹华军,刘飞,阎春平,李聪波.制造过程环境影响评价方法及其应用[J].机械工程学报,2005,41(6):163-167
    [24]何彦,刘飞,曹华军,张华.面向绿色制造的工艺规划支持系统及应用[J].计算机集成制造系统,2005,11(7):975~980.
    [25]何彦,刘飞,曹华军,刘纯.面向绿色制造的机械加工系统任务优化调度模型[J].机械工程学报,2007,43(4):27-33.
    [26] He Yan, Liu Fei, Cao Hua-jun, Li Cong-bo. A bi-objective model for the job-shopscheduling problem to minimize both energy consumption and makespan[J]. Journal ofCentral South University of Technology,2005,12(s2):167-171.
    [27] He Yan, Liu Fei, Shi Jinliang, Zhang Hua. A framework of scheduling models in machiningworkshop for green manufacturing[J]. Journal of Advanced Manufacturing Systems,2008,7(2):319-322.
    [28]刘飞,曹华军,杜彦斌.机床再制造技术框架及产业化策略研究[J].中国表面工程,2006,19(5):25-28.
    [29] Cao Huajun, Du Yanbin, Liu Fei. A disassembly capability planning model for themake-to-order remanufacturing system[J]. Journal of Advanced Manufacturing Systems,2008,7(2):329-332
    [30]殷瑞钰.绿色制造与钢铁工业[J].钢铁,2000,35(6):61-65.
    [31]殷瑞钰.钢厂模式与工业生态链—钢铁工业的未来发展模式[C].第二届地球环境与钢铁工业国际研讨会.中国冶金.2003,(12):18-25.
    [32]殷瑞钰.绿色制造与钢铁工业—钢铁工业的绿色化问题[J].科技和产业,2003,3(9):25-31.
    [33]谢企华.钢铁企业实现可持续发展的途径[J].中国工程科学,2005,7(5):9-15
    [34]殷瑞钰.绿色制造与钢铁工业[J].钢铁,2000,35(6):61-65.
    [35]雷小凤,陈共荣.钢铁企业绿色制造体系的构建[J].企业经济,2011,6:03-205
    [36] Peter Michael, Liingen Hans Bodo. Iron Making in Western Europe[C]. Proceeding of the5th International Congress on the Science and Technology of Iron making, October,2009,Shanghai, China,22-28
    [37] Al-Ansary, M.S. El-Haggar. Construction waste management: Using the7Rs golden rulefor industrial ecology[C]. International Conference on Achieving Sustainability inConstruction, Achieving Sustainability in Construction,2005:371-378.
    [38] Kenji Kato, Seiji Nomaura, Hiroshi Uematsu, Development of Waste Plastics RecyclingProcess Using Coke Oven[C],2002Ironmaking Conference Proceedings, Baltimore,Maryland, U.S.A,2002:633-642.
    [39] Nippon Steel Sustainability Report2008[R]. Nippon Steel Corporation,2008.
    [40]毛晓明,朱彤,李家富.宝钢烧结投产以来的技术进步[J].炼铁,2005,(24):99-103
    [41]方孺康.钢铁产业与循环经济[M].北京:中国轻工业出版社.2005.1
    [42] Sustainability Report of the World Steel Industry2004[R]. International Iron and SteelInstitute,2004
    [43] Sustainability Report of the World Steel Industry2005[R]. International Iron and SteelInstitute,2005
    [44] Sustainability Report of the World Steel Industry2008[R]. World Steel Association,2008
    [45] Creating Success Story POSCO Sustainability Report2007[R]. POSCO2007.
    [46] Yin R Y. Acta Metald Sin,1993;29: B289(殷瑞钰.金属学报,1993;29: B289)
    [47] Y in R Y. Iron, Steel,1997;32(Suppl.):16(殷瑞钰.钢铁,1997;32(增刊):16)
    [48]殷瑞钰.钢铁制造流程的多维物流控制系统[J].金属学报,1997,33(1):1~5
    [49]殷瑞钰.冶金流程工程学(第二版)[M].冶金工业出版社.2009.
    [50]殷瑞钰.钢铁制造流程的多维物流控制系统[J].金属学报.1997,33(1):1~5
    [51]田乃媛.全连铸物流管理系统工程的开发[J].连铸.1993,(3):13-15.
    [52]徐安军.炼钢一物流调度系统及其温度一时间流解析与应用研究[D].北京:北京科技大学,1996.
    [53]刘茂林.钢铁制造流程高炉一转炉区段物流过程解析[D].北京:北京科技大学,2001.
    [54]刘青.现代长材型转炉炼钢模式优化研究[D].北京:北京科技大学,2002.
    [55]唐洪华.薄板坯连铸连轧物流仿真系统[D].北京:北京科技大学,2002.
    [56]殷瑞钰.关于钢铁制造流程的研究[J].金属学报,2007,(11):1121-1128.
    [57]殷瑞钰.关于新一代钢铁制造流程的命题[J].上海金属,2006(4):1-5.
    [58]陆钟武.关于循环经济几个问题的分析研究[J].环境科学研究,2003,16(5):126.
    [59]陆钟武,岳强.物质流分析的两种方法及应用[J].有色金属再生与利用,2006,(2):27-28.
    [60]杜涛,蔡九菊.钢铁企业物质流、能量流和污染物流研究[J].钢铁,2006,41(4):82-87.
    [61]蔡九菊,王建军,陆钟武,殷瑞钰.钢铁企业物质流与能量流及其相互关系[J].东北大学学报(自然科学版).2006,27(9):979-982.
    [62]吴复忠,蔡九菊,张琦等.炼铁系统的物质流和能量流的火用分析[J].工业加热,2007,36(1):15-18.
    [63]胡长庆,张玉柱,张春霞.烧结过程物质流和能量流分析[J].烧结球团,2007,32(1):16-21.
    [64]胡长庆,张春霞张旭孝.钢铁联合企业炼焦过程物质与能量流分析[J].钢铁研究学报,2007,19(6):16-20.
    [65]陆钟武,戴铁军.钢铁生产流程中物流对能耗和铁耗的影响[J].钢铁.2005,(4):1-7.
    [66]卜庆才,陆钟武.钢铁工业水的资源效率研究[J].钢铁,2003,38(12):68-71
    [67]卜庆才,陆钟武.中水回用对钢铁工业水的资源效率的影响[J].冶金能源,2004.23(3):46-48.
    [68]杜涛,蔡九菊等.钢铁生产流程物流对大气环境负荷的影响[J].钢铁,2002,37(6):59-63.
    [69]陆钟武.钢铁产品生命周期的铁流分析—关于铁排放量源头指标等问题的基础研究[J].金属学报,2002,38(1):58-68.
    [70]蔡九菊,王建军,张琦.钢铁企业物质流、能量流及其对CO2排放的影响[J].环境科学研究,2008,21(1):196-200.
    [71]张春霞,上官方钦,胡长庆等.钢铁流程结构及对CO2排放的影响[J].钢铁2010,(05):1-6
    [72]殷瑞钰,蔡九菊.钢厂生产流程与大气排放[J].钢铁,1999,34(5):61-65.
    [73]蔡九菊,杜涛等.钢铁生产流程环境负荷评价方法[J].钢铁,2002,37(8):66-70.
    [74] Du Ta, Jiuju Cai. The influences of material flows in steel manufacturing process onatmosphere environmental load[C]. Energy and the Environment-Proceedings of theInternational Conference on Energy and the Environment,2004,11(2):39-42.
    [75] Chang-Qing HU, Chun-Xia ZHANG, Xiao-Wei HAN, Rui-Yu YIN. Sulfur Flow Analysisfor New Generation Steel Manufacturing Process[J]. International Journal of Iron and SteelResearch, July2008,15(4):12-15,37.
    [76]陆钟武.关于钢铁工业废钢资源的基础研究[J].金属学报,2000,36(7):728-734.
    [77]戴铁军,陆钟武.钢铁生产流程铁资源效率与工序铁资源效率关系的分析[J].金属学报2006,42(3):280-284.
    [78]戴铁军.论铁资源效率、环境效率和废钢指数间的关系[J].中国冶金,2008,18(7):40-44
    [79]陆钟武等.钢铁生产流程的物流对能耗的影响[J].金属学报,2000,36(4):370-378.
    [80]肖娅晰.浅谈钢铁工业粉尘的治理与回收利用[J].江西冶金,2007,27(5):28-31.
    [81]朗晓珍.冶金环境保护及三废治理技术[M].东北大学出版社,2009.
    [82]刘道清,季学李.钢铁企业典型污染源颗粒物污染特征研究[J].环境科学与管理,2006,31(4):53-55.
    [83]仇志军,王基庆.上海市钢铁工业尘单颗粒分析[J].核技术,2001,24(6):461-467.
    [84]冶金部钢铁司.冶金企业煤气的生产与利用[M].北京:冶金工业出版社,1987
    [85]饶文涛.钢铁厂节能温室气体减排现状及对策[J].宝钢技术,2008,3:16-20.
    [86]沙高原,刘颖昊,殷瑞钰等.钢铁工业节能与CO2排放现状及对策分析[J].冶金能源,2008,27(1):3-6.
    [87]冉锐,翁端.中国钢铁生产过程中的CO2排放现状及减排措施[J].科技导报,2006,24(10):53-56.
    [88] D Gielen, J Moriguchi. Environmental strategy design for the Japanese iron and steelindustry [J].National Institute for Environmental Studies,2001,(2):4-8.
    [89] E Worrell, N Martin, L Price. Energy efficiency and carbon dioxide emission reductionopportunities in the US[R]. Iron and Steel Sector, Berkeley:Lawrence Berkeley NationalLaboratory, Energy Analysis Department,1999.
    [90]0Leticia, S Claudia. Energy use and CO2emissions in Mexico’s iron and steel industry[J].Energy,2002,(27):225-239.
    [91] G Dolf, M Yuichi. CO2in the iron and steel industry:an analysis of Japanese emissionreduction potentials[J]. Energy Policy,2002,(30):849-838.
    [92] B. Wilson, B. Jones. The Phosphate Report: A Life Cvcle Study to Evaluate TheEnvironmental Impact of Phosphate and Zeolite A-PCA as Alternative Builders in U.K.Laundry Detergent Formulations. Landbank Environmental Research and Consulting,January, London,1994
    [93] R. Heijungs, et al.(Eds.), Environmental Life Cvcle Assessment of Products: Backgroundand Guide. Multi-Copy, Leiden,1992
    [94] F. Schmidt-Bleek. Wieviel Umwelt Braucht Der Mensch? MIPS-Das Mass fur OkologischesWirtschaften. Birlhauser Publikationnen, Berlin,1993
    [95] ISO/TC207/SCS/N112, ISO/DIS14042.3: Environmental Management-Life CycleAssessment-Part3: Life Cycle Impact Assessment. Committee Draft,1998
    [96]何维达,张凯.我国钢铁工业碳排放影响因素分解分析[J].工业技术经济,2013,(1):3-6.
    [97]李立.使用投入产出法分析中国的能源消费和环境问题[J].统计研究,1994,(5):56-61
    [98] Hayashi,Seiichi, Tamaki,Wakana, Tomota. Relationship between scrap mixing and steelproducts for electric furnace[J]. Journal of the Iron and Steel Institute of Japan,2005,91(1):147-149
    [99]赵贵清,吴铿.焦炭质量对大喷煤高炉冶炼过程的影响[J].金属世界,2008,(1):9-12
    [100] Dan Binbin. Research on multi-BP NN-based control model for molten irondesulfurization[C]. Proceedings of the World Congress on Intelligent Control andAutomation,2008June
    [101] MacPhee, J.A., Gransden, J.F., Giroux, L.,Price. Possible CO2mitigation via additionof charcoal to coking coal blends[J]. Fuel Processing Technology,2009,90(1):16-20.
    [102] Antrekowitsch,Helmut, Antrekowitsch,Jurgen, Gelder,Siegfried. Investigations indifferent reducing agents for the pyro-metallurgical treatment of steel mill dusts[C].Yazawa International Symposium: Metallurgical and Materials Processing: Principles andTechologies,2003,(1):539-549.
    [103]周和敏.钢铁材料生产过程环境协调性评价研究[D].北京:北京工业大学工学博士学位论文,2001
    [104]马京华.钢铁企业典型生产工艺颗粒物排放特征研究[D].重庆:西南大学2010
    [105]欧伏岭.莱钢集团煤气资源综合利用及效益分析研究[D].山东:山东大学,2007
    [106] Paul Konijn, Sake de Boer, Jan van Dalen. Input-Output Analysis of Material Flowswith Application to Iron, Steel and Zinc[J]. Structural Change and Economic Dynamics.1997,8(1):129-153.
    [107] Ana-Maria Iosif, Francois Hanrot, Denis Ablitzer. Process integrated modelling forsteelmaking Life Cycle Inventory analysis Original Research Article[J]. EnvironmentalImpact Assessment Review, October2008,28(7):429-438.
    [108] Matthias Ruth. Dematerialization in five US metals sectors: implications for energy useand CO2emissions[J]. Resources Policy,1998,24(1):1-18.
    [109] Jan Peter Andersen, Barry Hyman. Energy and material flow models for the US steelindustry[J]. Energy,2001,26:137-159.
    [110] Karen R. Polenske, Francis C. McMichael. A Chinese cokemaking process-flow modelfor energy and environmental analyses[J]. Energy Policy, August2002,30(10):865-883.
    [111] Mohan Yellishetty, Gavin M. Mudd, P.G. Ranjith. The steel industry, abiotic resourcedepletion and life cycle assessment: a real or perceived issue?[J]. Journal of CleanerProduction,2011,(19):78-90.
    [112] Mohan Yellishetty, Gavin M. Mudd, P.G. Ranjith, A. Tharumarajah. Environmentallife-cycle comparisons of steel production and recycling: sustainability issues, problems andprospects[J]. Environmental science&policy,2011,(14):650-663.
    [113] Mohan Yellishetty, Gavin M. Mudd, P.G. Ranjith, et al. Environmental life-cyclecomparisons of steel production and recycling: sustainability issues, problems andprospects[J]. Environmental Science&Policy, October2011,14(6):650-663.
    [114]杨建新,刘炳江.中国钢材生命周期清单分析[J].环境科学学报,2002,22(4):519-522.
    [115]王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究[D].湖南:中南大学,2001.
    [116]陈俊东,张彩军,冯聚和.转炉静态机理模型与节能降耗[J].河北理工学院学报,2007,29(1):32-35.
    [117]郜传厚,渐令,陈积明等.复杂高炉炼铁过程的数据驱动建模及预测算法[J].自动化学报,2009,35(6):725-730
    [118]王惠文,张志慧. Tenenhaus M.成分数据的多元回归建模方法研究[J].管理科学学报.2006,9(4):27-32.
    [119]郝晓静,杜钢,谢植等.模糊因果聚类模型在高炉焦比预测中的应用[J].东北大学学报,2005,26(4):363-366.
    [120]张琦,姚彤辉,蔡九菊等.高炉炼铁过程多目标优化模型的研究及应用[J].东北大学学报(自然科学版),2011,32(2):270-273.
    [121]江志刚,张华,但斌斌.钢铁企业实施绿色制造技术的策略研究[J].冶金设备,2005,(2):44-47.
    [122]杜涛,蔡九菊.钢铁企业物质流、能量流和污染物流研究[J].钢铁,2006,41(4):82-87.
    [123]李素芹,苍大强,李宏.工业生态学[M].冶金工业出版社.2007.
    [124]陆钟武.物质流分析的跟踪观察法[J].中国工程科学2006,8(1):18-20.
    [125]田乃媛.钢铁制造流程多维物流管制研究的进展[J].钢铁研究,2002,(5):1-4.
    [126] M. Shafiy, A.P. Daut, The development of spatio-temporal data model for dynamicvisualization of virtual geographical information system DEB/OLD. http://eprints.utm.my/4275/1/74260.pdf2006.
    [127]姜晓轶,基于Open GIS简单要素规范的面向对象时空数据模型研究[D].上海:华东师范大学,2006.
    [128]殷瑞钰.关于薄板坯连铸—连轧的工程分析[J].钢铁.1998,33(1):1-9.
    [129]唐洪华.广钢第一电炉炼钢分厂物流管制中时间因素解析及调控方案[D].北京:北京科技大学,1998.
    [130]唐洪华,田乃媛,刘青等.广钢第一电炉炼钢厂两炉连浇的时间因素解析[J].钢铁,1999,34(4):12-16.
    [131]田媛.基于时态约束的关联规则挖掘的研究[D].湖南:湘潭大学,2004
    [132]高金萍.基于时态GIS的森林资源基础空间数据更新管理技术的研究[D].北京:北京林业大学,2006.12.
    [133]邱剑,田乃媛,刘茂林,等.宝钢制造业流程铁钢界面物流参数的解析[J].北京科技大学学报,2004,26(2):197-203.
    [134]江志刚,张华,鄢威,赵刚,王艳红.钢铁绿色制造系统物料资源与环境影响关联模型研究[J].武汉科技大学学报,2011,(03):173-177
    [135]钢铁联合企业工序碳素流模型构建及CO2排放研究[J].中国冶金.2011,21(7):1-6
    [136]刘飞,张华,陈晓慧.绿色制造的决策框架模型及其应用[J].机械工程学报,1999,35(5):11-15.
    [137]冯朝辉,张华,王艳红等.烧结资源配比优化模型的研究与应用[J].山东冶金,2011,33(3):24-26.
    [138]张旭刚,张华,王艳红等.球团工艺资源配比优化模型的研究与应用[J].烧结球团,2011,36(3):28-33.
    [139]张瑞军,黄彦.基于专家系统的多角色烧结配矿决策支持系统[J].计算机工程,2011,37(19):233-236.
    [140]张华,黄昌先,赵刚.基于辅料资源运行特性的烧结矿质量预测模型[J].钢铁研究学报,2012,37(19):233-236.
    [141]孙玉琴,石琳.基于模糊控制系统的高炉焦比预报研究[J].冶金自动化2004年增刊,2004,28(Z1):1-4.
    [142]郝小红,谢安国.炼铁生产入炉焦化等指标的时间序列预测方法[J].鞍山钢铁学院学报,2002,25(4):283-287.
    [143]湛文龙,吴铿.焦比预测模型中的参数选择[J].中国稀土学报,2010,28(4):147-150.
    [144]范志刚,邱贵宝,贾娟鱼.基于BP神经网络的高炉焦比预测方法[J].重庆大学学报(自然科学版),2002,25(6):85-87.
    [145]周洋,余文武.基于聚类分析和神经网络的高炉焦比预测模型[J].辽宁科技大学学报,2010,33(3):245-247.
    [146]韩宏亮,阎小林.人工神经网络与遗传算法在高炉焦比预报中的应用[J].河北理工学院学报,2006,28(2):23-27.
    [147] Gore R G. Iterative Design of Neural Network Classifiers Through Regression[J].International Journal ofArtificial Intelligence Tools,2005,14(1):281-301
    [148] Alfares H K, Nazeeruddin M. Electric load forecasting: literature survey andclassification of methods[J]. International Journal of Systems Science,2002,33(1):23-34.
    [149]金菲.混合过程神经网络建模及应用研究[D].湖北:武汉科技大学,2012
    [150]周洋,余文武.基于聚类分析和神经网络的高炉焦比预测模型[J].辽宁科技大学学报,2010,33(3):245-247.
    [151]魏继中.高炉生产配煤配矿决策支持系统设计与实现[D].湖北:武汉科技大学.2009
    [152]韩伯棠,姜莹等.一种基于VB和Matlab开发运筹学软件的方法[J].武汉理工大学学报,2006,28(5):41-43.
    [153]吐尔逊,李江等. Matlab和VB混合编程在电流感器励磁特性曲线拟合中的应用[J].电测与仪表,2006,43:63-64.
    [154]白晨光,昌学伟等.基于遗传算法的烧结配料综合优化研究[J].钢铁,2007,42(4):12-15.
    [155]张凌燕,谭炎. MATLAB与VB混合编程技术研究[J].软件时空,2006,22:247-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700