用户名: 密码: 验证码:
碳纳米管/二氧化钛/壳聚糖薄膜的制备及降解室内苯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气污染已成为世界各国关注的环境问题,苯作为一种常见的室内空气污染物,已经被国际癌症研究机构确认为有毒的致癌物质,对其有效处理受到国内外的广泛关注。光催化技术利用光催化氧化生成的电子-空穴对及一系列的活性氧物质去除大部分难降解有机污染物,在去除气液相难降解的有机污染物领域受到重视。本文首先制备了一种具有光催化氧化活性的碳纳米管/二氧化钛/壳聚糖(CNTs/TiO2/CS)催化薄膜,然后针对室内污染物苯,研究催化薄膜对苯的光降解机理及其降解室内苯的数学模型,并通过实验研究验证模型的正确性,分析相对湿度、光强、气体流速及污染物的初始浓度对室内苯光降解的影响,最后结合室内空气品质(IAQ)模型和建材散发VOCs的模型,探讨家用净化空调的性能研究。本文研究内容及结论分述如下:
     采用溶胶-凝胶法制备了碳纳米管不同掺杂量的碳纳米管/二氧化钛复合材料,然后再加入交联剂-壳聚糖,获得了CNTs/TiO2/CS催化薄膜。表征结果表明,二氧化钛粒子包裹在碳纳米管壁上,碳纳米管/二氧化钛的复合材料分散在壳聚糖的矩阵中。以室内苯为污染气体,研究了CNTs/TiO2/CS催化薄膜的光催化活性,发现碳纳米管的掺杂量(质量比)为2%(CNTs(2%)/TiO2/CS时,其催化活性最佳。通过红外光谱与气-质联用分析了CNTs/TiO2/CS薄膜光催化氧化苯的机理,得出气相苯光催化氧化的中间产物为:丙烯醛、乙酸乙酯、十一烷烃、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二异丁基苯酚和二十一烷烃,主要的中间产物是乙酸乙酯和十一烷烃。
     根据苯的光催化氧化反应的基元反应,获得了苯光催化氧化的速率方程,并结合LSSE光辐射模型计算了催化剂表面的光照强度;以平板型反应器作为光催化氧化苯的反应器,依据质量守恒定律构建了气相苯在室内光催化氧化模型。模型中考虑了光强、气体流速、相对湿度及污染物的初始浓度这四个因素。
     采用单因素及多因素实验研究了污染物的初始浓度、光强、相对湿度、气体流速对CNTs/TiO2/CS薄膜光催化氧化苯的影响,并验证了前面建立的数学模型。通过多因素的分析,得到苯的降解效率与各个因素之间的相关性,浓度场、辐射场及流体的传质对苯的光催化氧化存在综合的协调作用。应用多元线性回归分析方法,对光强、气体流速、相对湿度、污染物的初始浓度建立了多元线性关系。通过对这四个因素的敏感性分析,研究了各因素的影响程度,得到了气体流速对CNTs/TiO2/CS薄膜光降解室内苯的影响显著。
     结合建材VOCs的散发模型与室内空气品质模型,分析了净化装置的去除效率对室内VOCs浓度的影响,并根据这些结果对建材的散发特性及净化空调的性能要求进行研究。研究表明:净化空调的净化效率大于40%后,净化效率对室内VOCs浓度分布影响较小;对于空调的回风量与风速,净化空调的净化效率与净化时间的对数成线性关系,且线性关系受回风量的影响较大。该研究为家用净化空调的设计提供理论参考。
At present, the pollution of indoor air has considerably been taken attention abroad as an important environmental problem. Benzene as ubiquitous pollution species in the air is considered to cause cancer by international agency for research on cancer. The effective treating process for decomposing benzene has been increasingly concerned. Photocatalysis as advanced oxidation technology, the use of photocatalytic oxidation of electron-hole pairs and a series of reactive oxygen species can remove most of refractory organic pollutants. It has proved very effective in environmental destruction of VOCs. Photocatalytic active catalyst of carbon nanotubes/TiO2/chitosan (CNTs/TiO2/CS) film was prepared. Degradation mechanism and kinetic model of CNTs/TiO2/CS film for indoor benzene were studied, and experimental study to verify the validity of the model. The influence of the indoor air conditions such as pollutant initial concentration, volumetric flow rate of the pollutant, relativity humidity and irradiance is considered in this model. It combines model of IAQ and model of building materials dissemination of VOCs, and performance of household cleaning air conditioning was studied. The main contents and results in this thesis can be summarized as follows:
     Different carbon nanotubes content of carbon nano-tube/TiO2(CNTs/TiO2) nanocomposites were prepared using a conventional sol-gel method. To further obtain a uniform catalyst film, chitosan (CS) was used as a crosslinker for the CNTs/TiO2composite. Characterization results show that TiO2particle covered carbon nanotubes surface and CNTs/TiO2composite dispersed in the chitosan matrix. The photocatalytic degaradation of benzene was chosen as a model reaction to evaluate the photocatalytic activities of the catalyst film. An optimum of the synergetic effect was found for a carbon nanotubes doped with2%(weight ratio)(CNTs(2%)/TiO2/CS). The intermediates of the photocatalytic degradation were investigated by FT-IR and GC/MS, of which ethyl acetate and hendecene were two major products and minor intermediate products were acrolein4-carbonyl-methyl-acetophenone,12-alkane,2,4di tert butylphenol and21-alkane. According to the analysis data of FT-IR and GC/MS, the photocatalytic degradation mechanism of the composite film was illuminated.
     The kinetic equation of photodegradation benzene was established based on elementary reactions of the reaction of the photocatalytic oxidation of benzene. The light intensity of the catalyst surface was calculated by the LSSE light radiation model. A model of photocatalytic oxidation of gas phase benzene was build together with the law of conservation of mass by a flat-plate reactor as photocatalytic oxidation reactor. The influence of the indoor conditions such as light intensities, relativity humidity, flow rates and initial concentrations is considered in this model.
     The influences of single factor and multi-factor were completed by experimental study on light intensities, relativity humidity, flow rates and pollution initial concentrations. The good agreement between the predictions from the model and the experimental results indicates the validity of the proposed kinetic model. A synergetic effect was found for photocatalytic oxidation benzene among the concentration field, radiation field and fluid mass transfer. Using multivariate analysis method, the relations of geological and influence factors of photodegradation of benzene are set up on light intensity, relativity humidty, flow rate and pollutant initial concentration. The degree effect of different factors is studied by multi-factor sensitivity analysis, and the influence of flow rate is more pronounced for photodegradation of indoor benzen.
     The effect of the efficiency of photocatalytic purifiers on concentration of VOCs· in indoor was investigated by considering the VOCs emission model of building materials and IAQ model. The results show that:When the purification efficiency of clean air conditioning is more than40%, it is small for influence degree of the purification efficiency on concentration distribution of indoor VOCs. For return air of air-conditioning and wind speed, it is linear relationship between the logarithm of purification time and purification efficiency. Compare to indoor wind speed, effect of return air is significant. These studies provide a theoretical reference design for household cleaning air-conditioning.
引文
[1]Noma E, Berglund B, Berglund U, et al. Jiont representation of physical locations and volatile organic compounds in indoor air from a healthy and a sick building. Atmospheric Environment,1967,1988,22(3):451-460
    [2]Crook B, Burton N C. Indoor moulds, Sick Building Syndrome and building related illness. Fungal Biology Reviews,2010,24(3-4):106-113
    [3]Wang B L, Takigawa T, Yamasaki Y, etal. Symptom definitions for SBS (sick building syndrome) in residential dwellings. International Journal of Hygiene Environmental Health,2011,211(1-2):114-120
    [4]Jones A P. Indoor air quality and health. Atmospheric Environment,1999, 33(28):4535-4564
    [5]Hodgson M, Storey E. Patient and the sick building syndrome. Journal of Allergy Clinical Immunology.1994,94(19):5223-5228
    [6]Harrison J, Pickering C A C, Faragher E B, et al. An investigation of the relationship between microbial and particulate indoor air pollution and the sick building syndrome. Respiratory Medicine,1992,86(3):225-235
    [7]宋广生.中国环境室内污染控制理论与实务.北京:化学工业出版,2006,1-4
    [8]陈学敏,吴德生.环境卫生学(第四版).北京:人民卫生出版社,2001,227
    [9]易新.深圳部分民用住宅室内空气品质检测与评价.制冷,2006,1(25):67-72
    [10]李奉翠.平顶山市建筑室内空气品质的检测与分析:[华中科技大学硕士学位论文].武汉:华中科技大学,2006
    [11]Bayer C W, Black M S. Building related illness involving formaldehyde and other volatile organic compounds. Experimental Pathology,1989,37(1-4): 147-149
    [12]Feron V J, Groten J P. Toxicological evalution of chemical mixture. Food and Chemical Toxicology,2002,40(6):825-839
    [13]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38
    [14]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environment Contamination and Toxicology,1976,16(6):697-701
    [15]Bard A J, Frank S N. Hererogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder. Journal of the American Chemical Society, 1977,99(1):303-304
    [16]Yang J J, Li D X, Zhang Z J, et al. A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2. Journal of Photochemistry and Photobiology A: Chemistry,2000,137(2-3):197-202
    [17]Liu H M, Lian Z W, Ye X J,et al. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide. Chemosphere,2005,60(5): 630-635
    [18]d'Hennezel O, Pichat P, Ollis D F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2:by-products and mechanisms. Journal of Photochemistry and Photobiology A:Chemistry,1998,118(3): 197-204
    [19]Doucet N, Zahraa O, Bouchy M. Kinetics of the photocatalytic degradation of benzene. Catalysis Today,2007,122 (1-2):168-177
    [20]Wu J F, Hung C H, Yuan C S. Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor. Journal of Photochemistry and Photobiology A:Chemistry,2005,170(3):299-306
    [21]Awate S V, Sahu R K, Kadgaonkar M D, et al. Photocatalytic mineralization of benzene over gold containing titania nanotubes:Role of adsorbed water and nanosize gold crystallites. Catalysis Today,2009,141(1-2):144-151
    [22]Chen L C, Pan G T, Thomas C K, et al. In situ DRIFT and kinetic studies of photocatalytic degradation on benzene vapor with visible-light-driven silver vanadates. Journal of Hazardous Materials,2010,178 (1-3):644-651
    [23]Zhong J B, Wang J 1, Tao L, et al. Photocatalytic degradation of gaseous benzene over TiOi/Sc2CeO4:Kinetic model and degradation mechism. Journal of Hazardous Materials,2007,139(2):323-331
    [24]Nimlos M R, Wolfrum E J, Brewer M L, et al. Gas-Phase Heterogeneous Photocatalytic Oxidation of Ethanol:Pathways and Kinetic Modeling. Environmental Science and Technology,1996,30(10):3102-3110
    [25]Vincent G, Marquaire P M, Zahraa O. Photocatalytic degradation of gaseous 1-propanol using an annular reactor:Kinetic modeling and pathways. Journal of Hazardous Materials,2009,161 (2-3):1173-1181
    [26]Florence B M, Uwe W, Valerie S,et al. VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst Part I:1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A:Chemistry,2000,132 (3): 225-232
    [27]Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A:Chemical,2006,244(1-2):25-32
    [28]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Sicence,2001,293(5528):269-271
    [29]Shi J W, Zheng J T. Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2. Materials Chemistry and Physics,2007,106(2-3):247-249
    [30]Shi J W. Preparation of Fe(Ⅲ) and Ho(Ⅲ) co-doped TiO2 films loaded on actived carbon fibers and their photocatalytic. Chemical Engineering Journal, 2009,151(1-3):241-246
    [31]Li D, Haneda H, Hishita S, et al. Visible-Light-Driven N-F-Codoped TiO2 photocatalysts. synthesis by spray pyrolysis and surface characterization. Chemistry of Materials,2005,17(10):2596-2602
    [32]Sclafani A, Herrmann J M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phase and in aqueous solution. The Journal of Physical Chemistry, 1996,100(32):13655-13661
    [33]Watson S S, Beydoun D, Scott J A, et al. The effect of preparation method on the photoactivity of crystalline titanium dioxide particales. Chemical Engineering Journal,2003,95(1-3):213-220
    [34]Habibi M H, Vosooghian H. Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension. Journal of Photochemistry and Photobiology A:Chemistry,2005,174(1):45-52
    [35]Jung K Y, Park S B, Jang H D. Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4. Catalysis Communication,2004,5(9):491-497
    [36]Ardizzone S, Bianchi C L, Cappelletti G, et al. Tailored anatase/brookite nanocrystalline TiO2 the optimal particle features for liquid and gas phase photcatalytic reactions. The Journal of Physical Chemistry C,2007,111(35): 13222-13231
    [37]Ozawa T, Iwasaki M, Tada H, et al. Low-temperature synthesis of anatase-brookite composition nanocrystals:the junction effect on photocatalytic activity. Colloid and Interface Science,2005,281(2):510-513
    [38]Xu H, Zhang L Z. Controllable one-pot synthesis and enhanced photocatalytic activity of mixedphase TiO2 nanocrystals with tunable brookite/rutile ratios. Journal of Physical Chemistry C,2009,113(5):1785-1790
    [39]Paola A D, Bellardita M, Ceccato R, et al. Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. Journal of Physical Chemistry C,2009,113(34):15166-15174
    [40]Yu J G, Xiong J F, Cheng B et al. Fabrication and characterization of Ag-TiO2 multphase nanocomposiite thin films with enhanced photocatalytic activity. Applied Catalysis B:Environmental,2005,60(3-4):211-221
    [41]Shi J Y, Chen J, Feng, Z C, et al. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. Journal of Physical Chemistry C,2007,111(2):693-699
    [42]Hidalgo M C, Maicu M, Navio J A, et al. Phgotocatalytic properties of surface modified platinesed TiO2:Effects of particle size and structural composition. Catal.Today,2007,129(1-2):43-49
    [43]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews,1995,95(1):69-96
    [44]Bouzaza A, Vallet C, Laplanche A. Photocatalytic degradation of some VOCs in the gas phase using an annular flow reaction. Journal of Photochemistry and Photobiology A:Chemistry,2006,177 (2-3):212-217
    [45]Serpone N, Sauve G, Koch R, et al. Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis:relative photonic efficiencies ζ r. Journal of Photochemistry and Photobiology A: Chemistry,1996,94(2-3):191-203
    [46]Imoberdorf G E, Cassano A E, Irazoqui H A,et al. Simulation of a multi-annular photocatalytic reaction for degradation of perchloroethylene in air:Parametric analysis of radiative energy efficiencies. Chemical Engineering Science,2007, 62(4):1138-1154
    [47]Coronado J M, Zorn M E, Isabel T T,et al. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin film:a kinetic study on the influence of water vapor. Applied Catalysis B:Environmental,2003,43(4):329-344
    [48]Biard P F, Rouzaza A, Wolbert D. Photocatalytic degradation of two volatile fatty acids in an annular plug-flow reactor:Kinetic modeling and contribution of mass transfer rate. Environment Science and Technology,2007,41(8): 2908-2941
    [49]Huang Y, Ho W K, Lee S C, et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir,2008,24(7):3510-3516
    [50]Sleiman M, Conchon P, Ferronato C, et al. Photocatalytic oxidation of toluene at indoor air levels (ppbv):towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B:Environmental,2009, 86(3-4):159-165
    [51]Chen D W, Li F M, Ray A K. Exzternal and internal mass transfer effect on photocatalytic degradation. Catalysis Today,2001,66(2-4):475-485
    [52]Lim T H, Jeong S M, Kim S D, et al. Photocatalytic decomposition of NO by TiO2 particles. Journal of Photochemistry and Photobiology A:Chemistry, 2000,134 (3):209-217
    [53]Obee T N, Hay S O, Effects of moisture and temperature on the photooxidation of ethylene on titania. Environment Science and Technology,1997,31(7): 2034-2038
    [54]Shie J L, Lee C H, Chiou C S, et al. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. Journal of Hazardous Materials,2008,155 (1-2):164-172
    [55]Obee T N. Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environmental Science and Technology,1996,30(12):3578-3584
    [56]Wang K H, Hsieh Y H, Lin, C H, et al. The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase. Chemosphere,1999, 39(9):1371-1384
    [57]Yu K P, Lee G W M, Huang W M,et al. The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmospheric Environment,2006,40(2):375-385
    [58]Yu H L, Zhang K L, Rossi C. Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst. Journal of Photochemistry and Photobiology A:Chemistry,2007,188(1):65-73
    [59]Ameen M M, Raupp G B, Reversible catalysis decactivation in the phocatalytic oxidation of dilute o-xylene in air. Catalysis,1999(1):112-122
    [60]曾志雄,徐玉党.纳米材料Ti02光催化技术在空气净化中的应用.制冷与空 调,2003,3(4):36-39
    [61]Guo T, Bai Z, Wu C, et al.. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers:PCO rate and intermediates accumulation. Applied Catalysis B:Environmental,2008, 79(2):171-178
    [62]张彭义,陈清,余刚,田地,梁夫艳,相对干燥条件下甲苯,苯和氯仿的光催化降解.中国环境科学,2003(2):139-143
    [63]Zhang L F, Anderson W A, Sawell S, et al.. Mechanistic analysis on the influence of humidity on photocatalytic decomposition of gas-phase chlorobenzene. Chemosphere,2007(68):546-553
    [64]Ao C H, Lee S C, Yu J Z,et al. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCs. Applied Catalysis B:Environmental,2004,54(1):41-50
    [65]Peral J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification:acetone,1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. Journal of Catalysis,1992,136(2):554-565
    [66]Sano T, Negishi N, Takeuchi K, et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Solar Energy, 2004,77(5):543-552
    [67]Hussain M, Russoa N, Saraccoa G. Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal,2011,166(1): 138-149
    [68]Hager S, Bauer R. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. Chemosphere,1999,38(7): 1549-1559
    [69]Sanchez B, Cardona A I, Romero M, et al. Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts. Catalysis Today,1999,54(2-3):369-377
    [70]Fu X Z, Clark L A, Zeltner W A. Et al. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Journal of Photochemistry and Photobiology A:Chemistry,1996,97(6): 181-186
    [71]Chen F Y, Pehkonen S O, Madhumita B R. Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase. Water research, 2002,36 (17):4203-4214
    [72]Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports,2008,63(12):515-582
    [73]Lichtin N N and Sadeghi M. Oxidative photocatalytic degradation of benzene vapor over TiO2. Journal of Photochemistry and Photobiology A: Chemistry,1998,113(1):81-88
    [74]Wekhof A. Treatment of Contaminated Water, Air and Soil with UV Flashlamps. Environmental Progress,1991.10(4):241-247
    [75]Lynette A. Dlbblet and Gregory B. Raupp. Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams. Environmental Science and Technology,1992,26(3):492-495
    [76]Nimlos M R, Jacoby W A, Blake D M, et al.. Direct Mass Spectrometric Studies of the Destruction of Hazardous Wastes.2.Gas-Phase Photocatalytic Oxidation of Trichloroethylene over TiOs:Products and Mechanisms. Environmental Science and Technology,1993,27(4):732-740
    [77]Jacoby W A, Nimlos M R, Blake D M, et al.. Products, Intermediates, Mass Balances, and Reaction Pathways for the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis. Environmental Science and Technology,1994,28(8):1661-1668
    [78]Obee T N and Brown R T. TiO2 Photocatalysis for Indoor Air Applications:Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environmental Science and Technology,1995,29(5):1223-1231
    [79]Alberici R M and Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B: Environmental,1997,14(1-2):55-68
    [80][80] Noguchi T, Fujishima A, Sawunyama P,et al.. Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environmental Science and Technology, 1998,32(23):3831-3833
    [81]Coronado J M, Zornl M E, Tejedor I, et al.. Anderson. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films:a kinetic study on the influence of water vapor. Applied Catalysis B:Environmental,2003,43 (4):329-344
    [82]Biard P F, Bouzaza A, Wolbert D. Photocatalytic degradation of two volatile fatty acides in an annular plug-flow reactor:kinetics modeling and contribution of mass transfer rate. Environmental Science and Technology,2007,41(8): 2908-2914
    [83]Luo Y, Ollis D F. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air:Kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis,1996,163(1):1-11
    [84]Ao C H, Lee S C, Yu J Z, Xu J H. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCs. Applied Catalysis B:Environmental,2004,54(1):41-50
    [85]Yoneyama H, Torimoto T. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catalysis Today, 2000,58(2-3):133-140
    [86]Ao C H, Lee S C, Yu J C. Photocatalyst T1O2 supported on glass fiber for indoor air purification:effect of NO on the photodegradation of CO and NO2. Journal of Photochemistry and Photobiology A:Chemistry,2003,156 (1-3):171-177
    [87]Ao C H, Lee S C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A:Chemistry,2004,161 (2-3):131-140
    [88]Li F B, Li X Z, Ao C H, et al.. Enhanced photocatalytic degradation of VOCs using Ln3+ - TiO2 catalysts for indoor air purification. Chemosphere,2005, 59(6):787-800
    [89]Dong F, Wang H Q, Sen G, et al.. Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air. Journal of Hazardous Materials,2011,187(1-3): 509-516
    [90]Jo W K, Kim J T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. Journal of Hazardous Materials,2009,164(1): 360-366
    [91]Ihara T, Miyoshi M, Iriyama Y, et al.. Visible-light titanium oxide photocatalyst realied by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B:Evironmental,2003,42(4):403-409
    [92]Mitoraj D, Kisch H. The nature of Nitrogen-modified titanium dioxide photocatalysts active in visible light. Angewandte Chemie International Edition, 2008,47(51):9975-9978
    [93]Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon,2011,49(3):741-772
    [94]国家质量监督检验检疫总局,卫生部,国家环境保护总局.中华人民共和国 国家标准室内空气质量标准(GB/T 18883-2002).北京:中国建筑工业出版社,2002
    [95]刘宗耀.Ti02光催化法去除室内空气中VOCs的研究:[湖南大学硕士学位论文].长沙:湖南大学,2007
    [96]丁鹏.氧化铋系纳米粒子对气相有机污染物光催化氧化性质研究:[吉林大学博士学位论文].吉林:吉林大学,2005
    [97]莫金汉.光催化降解室内有机化学污染物的若干重要机理问题研究:[清华大学博士学位论文].北京:清华大学,2009
    [98]钟俊波.Ti02基催化剂上气光催化降解苯的研究:[四川大学博士学位论文].成都:四川大学,2007
    [99]Zhan P I, Li C, Zhong J B, et al.. Gas-Phase Photocatalytic Oxidation of Benzene over TiO2 Supported on Ce0.5-xZr0.5-xBa2xO2. Chinese Journal of Catalysis,2008,29(5):453-457
    [100]Zhong J B, Wang J L, Tao L, et al.. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeCO4:Preparation and photocatalytic behavior of TiO2/Sr2CeO4. Journal of Hazardous Materials,2007,140(1-2):200-204
    [101]Zhong J B, Lua Y, Jiang W D, et al.. Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. Journal of Hazardous Materials,2009,168(2-3):1632-1635
    [102]Hou Y D, Wang X C, Wu L, et al.. Efficient decomposition of benzene over a β-Ga2O3 photocatalyst under ambient conditions. Environmental Science and Technology,2006,40(18):5799-5803
    [103]Chen X, Xue H, Li Z H, et al.. Ternary Wide Band Gap p-Block Metal Semiconductor ZnGa2O4 for Photocatalytic Benzene Degradation. The Journal of Physics Chemistry C,2008,112(51):20393-20397
    [104]余慧丽.超细新材料净化空气污染物的特性及其在IAQ技术中的应用研究:[同济大学博士学位论文].上海:同济大学,2004
    [105]齐虹.光催化氧化技术降解室内甲醛气体的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [106]李玉华.光催化氧化降解室内空气甲醛性能及数值模拟:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [107]Chen Y L, Cao X X, Kuang J D, et al.. The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres. Catalysis Communications,2010,12(4):247-250
    [108]Zhuang,Y B, Song H Y, Li G, et al.. Ti-HMS as a single-site photocatalyst for the gas-phase degradation of benzene. Materials Letters,2010,64(22): 2491-2493
    [109]Zhu Z, Li X Y, Zhao Q D, et al.. FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO2 nanoballs synthesized by hydrothermal treatment in alkaline solution. Materials Research Bulletin,2010, 45(12):1889-1893
    [110]Lin T, Pi Z, Gong M C, et al.. Gas-phase photocatalytic oxidation of benzene over titanium dioxide loaded on Bi12TiO20-Chinese Chemical Letters,2007, 18(2):241-243
    [111]Du J J, Chen W, Zhang C, et al.., Hydrothermal synthesis of porous TiO2 microspheres and their photocatalytic degradation of gaseous benzene. Chemical Engineering Journal,2011,170(1):53-58
    [112]Bouazza N, M.A.'denas L R, Linares A. Photocatalytic activity of TiO2-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Applied Catalysis B:Environmental,2008,84(3-4): 691-698
    [113]Wang W, Ku Y. Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor, Journal of Photochemistry and Photobiology A:Chemistry,2003,159(1):47-59
    [114]Fu X Z, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Applied Catalysis B:Environmental,1995,6(3):209-224
    [115]张前程,张凤宝,张国亮.苯在TiO2上的气相光催化氧化反应历程.催化学报,2004,25(1):39-43
    [116]郑艳.苯系物气相光催化降解动力学及机理分析:[山东大学硕士学位论文].济南:山东大学,2010
    [117]刘正锋TiO2/ACF复合材料的溶胶-凝胶法制备及其对苯的去除性能:[东北林业大学硕士学位论文].哈尔滨:东北林业大学,2010
    [118]雪松,朱宏伟.结构与表面特性对碳纳米管储氢性能的影响.科学通报,2001,46(9):785-787
    [119]秦学,高血平,吴峰,等.碳纳米管的电化学储氢性能研究.电化学,2000,6(4):388-392
    [120]Rao G P, Lu C Y, Su F S. Sorption of divalent metal ions from aqueous solution by carbon nanotubes:A review. Separation purification technology,2007,58(1): 224-231
    [121]Peng X J, Luan Z K, Ding J, et al. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials letters,2005,59(4): 399-403
    [122]Ie X F, Gao L, Sun J. Thermodynamic study on aniline adsorption on chemical modified ulti-walled carbon nanotubes. Colloids and surfaces,2007,308(1-3): 54-59
    [123]Lu C Y, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbon nanotubes. Water research,2005,39(6):1183-1189
    [124]Chin C M, Shih M, Tsai H. Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes. Applied Surface Science,2010,256(20): 6035-6039
    [125]Wang H, Wang H L, Jiang W F, et al.. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTS)/TiO2 composite in aqueous solution under solar irradiation. Water Research,2009, 43(1):204-210
    [126]Wang H, Quan X, Yu H T, et al.. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon,2008,46(8):1126-1132
    [127]Gao B, Chen G Z, Puma G L, Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Applied Catalysis B: Environmental,2009,89(3-4):503-509
    [128]Wang Q, Yang D, Chen D, et al.. Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process. Journal of Nanoparticle Research,2007,9 (6):1087-1096
    [129]Wang W D, Serp P, Kalck P, et al.. Visible light photodegradation of phenol on MWNT-TiO2 composite catalyst prepared by a modified sol-gel method. Journal of Molecular Catalysis A:Chemical,2005,235(1-2):194-199
    [130]Chen L C, Ho Y C, Guo W S, et al.. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochimica Acta,2009,54(15):3884-3891
    [131]Chen J Y, Zhou P J, Li J L, et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites actived by visible light. Carbohydrate Polymers,2008,72(1-3):128-132
    [132]Zainal Z, Hui L K, Hussein M Z, et al. Characterization of TiO2-Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. Journal of Hazardous Materials,2009, 164(1):138-145
    [133]Hsieh F M, Huang G C, Lin T F, et al. Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochemistry,2008,43(1):83-92
    [134]Wu S Z, Zeng F, Zhu H P, et al. Energy and electron transfers in photosensitive chitosan. Journal of the Ameican Chemical Society,2005,127(6):2048-2049
    [135]欧阳秀芳Fenton试剂法和TiO2-CS光催化法处理有机废水的研究:[中国海洋大学硕士学位论文].青岛:中国海洋大学,2005
    [136]彭湘红,杜金萍,程德翔等。纳米二氧化钛/壳聚糖复合膜的光催化性能。化学与生物工程,2008,25(5):13-19
    [137]Samuels R J. Solid state characterization of the structure of chitosan films. Journal of Polymer Sciences Polymer Physics Edition,1981,19(7):1081-1105
    [138]Hossain M M, Raupp G B, Hay S O et al. Three-dimensional developing flow model for photocatalytic monolith reactors. AIChE Journal,1999,45(6): 1309-1321
    [139]Zhang Y P, Yang R, Zhao R Y.A Model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment,2003,37(24):3395-3399
    [140]Yang R, Zhang Y P, Zhao R Y. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application. Air&WasteManage.Assoc,2004,54(7): 1516-1524
    [141]Mo J H, Zhang Y P, Yang R. Novel insight into VOC removal performance of photocatalytic oxidation reactors. Indoor Air,2005,15(4):291-300
    [142]Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical. Journal of Catalysis,1990,122(1): 178-192
    [143]B10β S P, Elfenthal, Proceedings of the International RILEM Symposium on Photocatalysis, Environmentand Construction Materials-TDP, RILEM Publications Bagneux, France,October 2007, pp:31-38
    [144]Anpo M, Shima T, Kubokawa Y. ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles. Chemistry Letters,1985,168(17):1799-1802
    [145]Rothenberger G, Moser J, Gratzel M, Serpone N, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles. Journal of American Chemistry Society,1985,107(26):8054-8059
    [146]Meng Y, Huang X, Wu Y, et al.. Kinetic study modeling on photocatalytic degradation of para-chlorobenzoate at different light intensities. Environmental Pollution,2002,117(2):307-313
    [147]Ignasi S E, Alberto B, Gianluca L P. Two-dimensional modeling of a flat-plat photocatalytic reactor for oxidation of indoor air pollutants. Industrial & Engineering Chemistry Ressearch,2007,46(23):7489-7496
    [148]Ignasi S E, David M H, Gianluca L P. Evaluation of the intrinsic photocatalytic oxidation kinetics of indoor air pollutants. Environmental Sciences and Technology,2007,41(6):2028-2035
    [149]Kima S B, Hong S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B:Environmental,2002,35(4):305-315
    [150]Coutts J L, Levine L H, Richards J T, et al.. The effect of photon source on heterogeneous photocatalytic oxidation of ethanol by a silica-titania composite. Journal of Photochemistry and Photobiology A:Chemistry,2011,225(1):58-64
    [151]Yang X, Chana Q, Zhang J S, et al. Numerical simulation of VOC emissions from dry materials. Building and Environment,2001,36(10):1099-1107
    [152]Chad B, Dorgan P E. Health and productivity benefits of improved indoor air quality. ASHRAE Transactions,1998104(1):658-665
    [153]White F M. Heat and mass transfer. Reading, MA:Addison-Wesley,1988: 268-269
    [154]周谟仁.流体力学泵与风机(第四版).北京:中国建筑工业出版社,2001,6
    [155]冯玉琪,白亚南.新编空调着冷设备安装使用维修手册.北京:宇航出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700