用户名: 密码: 验证码:
若尔盖高寒沼泽生态系统碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确探讨物种多样性和生产力之间的相关关系,将有利于认识生物多样性的维持机制;研究生物量大小及其影响因素,阐明地上生物量与地下生物量的分配机制,将有助于预测生态系统对全球气候变化的响应;准确估算土壤有机碳库,分析其影响因素,将有助于探索全球气候变化与陆地生态系统碳循环之间的相互影响和反馈机制。
     我们于2011-2012年在若尔盖高寒沼泽调查了32处样地,收集了植被样方数据、生物量数据、土壤碳氮等理化性质数据和水位等实测数据,结合研究区高程数据、同时期的TM遥感影像数据、以及若尔盖高寒沼泽分布区及其周边共12个气象站点1971-2000年共30年的年平均降水量和年平均温度数据,借助相关分析、方差分析、CCA分析、RDA分析和Ⅱ类回归等经典的统计方法和克里格插值等地学统计手段,研究了若尔盖高寒沼泽物种丰富度与生产力的相关关系、生物量大小分配机制及其影响因素、土壤碳库及其影响因素。主要结果如下:
     (1)若尔盖高寒沼泽中共有147个种植物,隶属于39科98属。随地表积水的减少,多样性指数基本呈增加趋势。水分和土壤养分条件是影响物种分布的主导因子,其次是裸斑面积及啮齿动物活动。在样地水平上,若尔盖高寒沼泽物种丰富度与地上生物量没有相关关系。
     (2)若尔盖高寒沼泽地上、地下和总生物量分别为367.05、3680.36和4048.01g/m2,若尔盖高寒沼泽地上、地下和总生物量由西北向东南递减,随着温度、降水的增加而减少,随水分含量和养分含量的增加而增加。地形因子对样地生物量的水平分布没有影响,但微地形能改变生物量的空间差异。地上—地下生物量之间存在显著的异速生长关系,支持相关生长假说。
     (3)若尔盖高寒沼泽土壤有机碳密度为140.67(76.89-275.75) kg/m2(2m),生态系统总碳储量(2m)为392.72Tg,其中,生物量碳库占总碳储量的1.3%。国家尺度上的研究过大估计了若尔盖高寒沼泽土壤有机碳库的大小,资料来源、样本容量、估算方法等因素的差异是造成碳储量估算不确定性的主要原因。
     (4)若尔盖高寒沼泽和北极苔原生态系统具有相似的浅植物根系垂直分布机制、相近的根冠比值和较大土壤碳密度大小,可能与较低的温度和降水和较强的紫外线有关。
Accurate investigating of spatial distributions and environmental controls of carbonstorage in Zoige marsh ecosystems is important for predicting the consequences of globalchange and designing sustainable rangeland management.
     In the current study, we collected datasets about vegetation quadrats, abovegroundbiomass and underground biomass, physicochemical properties of the soil and the waterelevation from32sites of the Zoige marsh during July and August2011-2012when thebiomass production approximately reached a pleatu. We collected the TM remote sensingimage data, the average annual precipitation and mean annual temperature data from1971to2000at the Zoige alpine swamp. Using the class II regression, analysis of variance, CCA, RDAanalysis, correlation analysis and other classic statistical methods and Kriging geostatisticalmethods, we examined the relationship between species richness and aboveground biomass.The biomass allocation in Zoige marsh and spatial distributions were estimated. Potentialenvironmental controls for the carbon storage in Zoige marsh were analyzed. The main resultsare as follows:
     (1)There are147species in Zoige marsh, belonging to39families and98genera.Environmental factors are important determinants of the distribution of native plant species inZoige marsh. We found no relationship between species richness and aboveground biomass,which was possibly due to their no variations along the environmental factor gradients.
     (2)The average aboveground biomass (AGB), belowground biomass (BGB) and totalbiomass (TB) for Zoige alpine marsh were367.05,3680.36and4048.01g·m-2, respectively.The micro-topography (hummock-hollow topography) can lead to the spatial variations ofbiomass in local scale. Biomass descends from north to south and increases from the center tothe edge of the swamp. Lake depression has a higher biomass than river gully. There were positively allometric relationship (p<0.05) between aboveground biomass components andbelowground biomass especially for sites with a low level of soil nutrients.
     (3)The average0-30cm、0-50cm、0-100cm、0-200cm soil organic carbon density for Zoigealpine marsh were19.48(9.72-44.65)、32.54(17.58-42.52)、77.97(44.06-127.77) and140.67(76.89-275.75), respectively. Zoige alpine swamp with a total area of2754.52km2mainlydistributed in Zoige County, Hongyuan County, Aba County and Maqu County. The total Cstock in Zoige alpine swamp (0-200cm) was392.72Tg,which is lower than the past research ofnational scale estimation. The main uncertainty factors in carbon stock estimation include thedifferences in data sources, samples and estimation methods.
     (4)Our results indicate that there are similarities in vertical distribution of the roots,R/S(BGB/AGB) ratio and soil organic carbon density between high altitude marsh ecosystems andhigh latitudes peatlands partly were due to the similarities of cold temperature and lowprecipitation.
引文
Abila, R., W. Salzburger, M. F. Ndonga, D. O. Owiti, M. Barluenga, and A. Meyer. The role of the Yalaswamp lakes in the conservation of Lake Victoria region haplochromine cichlids: evidence from geneticand trophic ecology studies. Lakes&Reservoirs: Research&Management.2008.13:95-104.
    Abrahamson, W. G. Patterns of resource allocation in wildflower populations of fields and woods. AmericanJournal of Botany1979.71-79.
    Adam, E., O. Mutanga, and D. Rugege. Multispectral and hyperspectral remote sensing for identification andmapping of wetland vegetation: a review. Wetlands Ecology and Management.2010.18:281-296.
    Adams, J., H. Faure, L. Faure-Denard, J. McGlade, and F. Woodward. Increases in terrestrial carbon storagefrom the Last Glacial Maximum to the present. Nature.1990.348:711-714.
    Adhikari, S., R. M. Bajracharaya, and B. K. Sitaula. A review of carbon dynamics and sequestration inwetlands. Journal of Wetlands Ecology.2009.2:42-46.
    Akin, S., K. Winemiller, and F. Gelwick. Seasonal and spatial variations in fish and macrocrustaceanassemblage structure in Mad Island Marsh estuary, Texas. Estuarine, Coastal and Shelf Science.2003.57:269-282.
    Alm, J., L. Schulman, J. Walden, H. Nyk nen, P. J. Martikainen, and J. Silvola. Carbon balance of a borealbog during a year with an exceptionally dry summer. Ecology.1999.80:161-174.
    Amorim, P. K. and M. A. Batalha. Soil chemical factors and grassland species density in Emas National Park(central Brazil). Brazilian Journal of Biology.2008.68:279-285.
    Anderson, G., J. Hanson, and R. Haas. Evaluating Landsat Thematic Mapper derived vegetation indices forestimating above-ground biomass on semiarid rangelands. Remote Sensing of Environment.1993.45:165-175.
    Armentano, T. and E. Menges. Patterns of change in the carbon balance of organic soil-wetlands of thetemperate zone. The Journal of Ecology.1986.755-774.
    Aselmann, I. and P. J. Crutzen. Global distribution of natural freshwater wetlands and rice paddies, their netprimary productivity, seasonality and possible methane emissions. Journal of Atmospheric chemistry.1989.8:307-358.
    Ashmun, J. W., R. L. Brown, and L. F. Pitelka. Biomass allocation in Aster acuminatus: variation within andamong populations over5years. Canadian journal of botany.1985.63:2035-2043.
    Badiou, P., R. McDougal, D. Pennock, and B. Clark. Greenhouse gas emissions and carbon sequestrationpotential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology andManagement.2011.1-20.
    Bai, J., H. Ouyang, R. Xiao, J. Gao, H. Gao, B. Cui, and L. Huang. Spatial variability of soil carbon,nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai–Tibet Plateau, China.Soil Research.2010.48:730-736.
    Ballhorn, U., J. Jubanski, and F. Siegert. ICESat/GLAS Data as a Measurement Tool for PeatlandTopography and Peat Swamp Forest Biomass in Kalimantan, Indonesia. Remote Sensing.2011.3:1957-1982.
    Bartlett, D. S. and V. Klemas. Quantitative assessment of tidal wetlands using remote sensing.Environmental Management.1980.4:337-345.
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. European journal of soil science.1996.47:151-163.
    Bayley, S. E. and J. K. Guimond. Aboveground biomass and nutrient limitation in relation to riverconnectivity in montane floodplain marshes. Wetlands.2009.29:1243-1254.
    Beach, T., S. Luzzadder-Beach, R. Terry, N. Dunning, S. Houston, and T. Garrison. Carbon isotopic ratios ofwetland and terrace soil sequences in the Maya Lowlands of Belize and Guatemala. Catena.2011.85:109-118.
    Bedford, B. L., M. R. Walbridge, and A. Aldous. Patterns in nutrient availability and plant diversity oftemperate North American wetlands. Ecology.1999.80:2151-2169.
    Bernal, B. and W. Mitsch. A comparison of soil carbon pools and profiles in wetlands in Costa Rica andOhio. Ecological Engineering.2008.34:311-323.
    Bian, J., A. Li, and W. Deng. Estimation and analysis of net primary Productivity of Ruoergai wetland inChina for the recent10years based on remote sensing. Procedia Environmental Sciences.2010.2:288-301.
    Bj rn, L. O., Callaghan, T. V., Gehrke, C., Johanson, U.,&Sonesson, M. Ozone depletion, ultravioletradiation and plant life. Chemosphere-Global Change Science.1999.1(4):449-454.
    Blodau, C. Carbon cycling in peatlands—A review of processes and controls. Environmental Reviews.2002.10:111–134.
    Botch, M., K. Kobak, T. Vinson, and T. Kolchugina. Carbon pools and accumulation in peatlands of theformer Soviet Union. Global Biogeochemical Cycles.1995.9:37-46.
    Bouillon, S. Storage beneath mangroves [News and Views section]. Nature Geoscience.2011.4.
    Bridgham, S. D. and C. J. Richardson. Hydrology and nutrient gradients in North Carolina peatlands.Wetlands.1993.13:207-218.
    Britton, A. J., R. C. Helliwell, A. Lilly, L. Dawson, J. M. Fisher, M. Coull, and J. Ross. An integratedassessment of ecosystem carbon pools and fluxes across an oceanic alpine toposequence. Plant and Soil.2011.1-16.
    Brown S, Pearson T, Sarah M, et al. Methods Manual for Measuring Terrestrial Carbon. WinrockInternational.2005.
    BUFFAM, I., M. G. TURNER, A. R. DESAI, P. C. HANSON, J. A. RUSAK, N. R. LOTTIG, E. H.STANLEY, and S. R. CARPENTER. Integrating aquatic and terrestrial components to construct acomplete carbon budget for a north temperate lake district. Global Change Biology.2011.17:1193-1211.
    Burke, I., C. Yonker, W. Parton, C. Cole, D. Schimel, and K. Flach. Texture, climate, and cultivation effectson soil organic matter content in US grassland soils. Soil Science Society of America Journal.1989.53:800-805.
    Byrd, K., S. Blanchard, L. Schile, S. Kolding, M. Kelly, L. Windham-Myers, and R. Miller. Advancedremote sensing to quantify temperate peatland capacity for belowground carbon capture. AGU FallMeeting Abstracts.2011.0611.
    Callesen, I., J. Liski, K. Raulund‐Rasmussen, M. Olsson, L. Tau‐Strand, L. Vesterdal, and C. Westman.Soil carbon stores in Nordic well‐d rained forest soils—relationships with climate and texture class.Global Change Biology.2003.9:358-370.
    Canoco. Canoco for Windows4.5中文简明教程.2009.
    http://wenku.baidu.com/view/3c82253f0912a216147929e2.html
    Casanova, M. T. and M. A. Brock. How do depth, duration and frequency of flooding influence theestablishment of wetland plant communities? Plant Ecology.2000.147:237-250.
    Chalcraft, D. R., J. W. Williams, M. D. Smith, and M. R. Willig. Scale dependence in thespecies-richness-productivity relationship: the role of species turnover. Ecology.2004.85:2701-2708.
    Chase, J. M. and M. A. Leibold. Spatial scale dictates the productivity–biodiversity relationship. Nature.2002.416:427-430.
    Chen, H., N. Wu, Y. Gao, Y. Wang, P. Luo, and J. Tian. Spatial variations on methane emissions from Zoigealpine wetlands of Southwest China. Science of The Total Environment.2009.407:1097-1104.
    Cheng, D. L. and K. J. Niklas. Above-and below-ground biomass relationships across1534forestedcommunities. Annals of Botany.2007.99:95-102.
    Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch. Global carbon sequestration in tidal, salinewetland soils. Global Biogeochemical Cycles.2003.17:1111.
    Cole, J., Y. Prairie, N. Caraco, W. McDowell, L. Tranvik, R. Striegl, C. Duarte, P. Kortelainen, J. Downing,and J. Middelburg. Plumbing the global carbon cycle: integrating inland waters into the terrestrialcarbon budget. Ecosystems.2007.10:172-185.
    Cole, T. G., K. C. Ewel, and N. N. Devoe. Structure of mangrove trees and forests in Micronesia. ForestEcology and Management.1999.117:95-109.
    Committee, O. D. A. Guidelines for aid agencies for improved conservation and sustainable use of tropicaland sub-tropical wetlands. Organisation for Economic Co-operation and Development.1996.
    Cornell, H. V. and J. H. Lawton. Species interactions, local and regional processes, and limits to the richnessof ecological communities: a theoretical perspective. Journal of animal ecology.1992.1-12.
    Cotrufo, M. F., R. T. Conant, and K. Paustian. Soil organic matter dynamics: land use, management andglobal change. Plant and Soil.2011.338:1-3.
    Courtwright, J. and S. E. G. Findlay. Effects of Microtopography on Hydrology, Physicochemistry, andVegetation in a Tidal Swamp of the Hudson River. Wetlands.2011.1-11.
    Craft, C., S. Broome, and E. Seneca. Nitrogen, phosphorus and organic carbon pools in natural andtransplanted marsh soils. Estuaries and Coasts.1988.11:272-280.
    Crist, J. W. and G. Stout. Relation between top and root size in herbaceous plants. Plant physiology.1929.4:63.
    Cui, J., C. Li, and C. Trettin. Analyzing the ecosystem carbon and hydrologic characteristics of forestedwetland using a biogeochemical process model. Global Change Biology.2005.11:278-289.
    Daoust, R. J. and D. L. Childers. Quantifying aboveground biomass and estimating net aboveground primaryproduction for wetland macrophytes using a non-destructive phenometric technique. Aquatic Botany.1998.62:115-133.
    Davidson, E. A. and I. A. Janssens. Temperature sensitivity of soil carbon decomposition and feedbacks toclimate change. Nature.2006.440:165-173.
    Davidson, R. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses andclover. Annals of Botany.1969.33:561-569.
    Dean, W. E. and E. Gorham. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands.Geology.1998.26:535.
    DeLaune, R. and J. White. Will coastal wetlands continue to sequester carbon in response to an increase inglobal sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Climatic change.2011.1-18.
    Dennis, J. G. and P. L. Johnson. Shoot and rhizome-root standing crops of tundra vegetation at Barrow,Alaska. Arctic and Alpine Research.1970.253-266.
    Ding, W. X. and Z. C. Cai. Methane Emission from Natural Wetlands in China: Summary of Years1995-2004Studies*. Pedosphere.2007.17:475-486.
    Dobben, H. F. and P. A. Slim. Past and future plant diversity of a coastal wetland driven by soil subsidenceand climate change. Climatic change.2012.110:597-618.
    Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen. Mangrovesamong the most carbon-rich forests in the tropics. Nature Geoscience.2011.4:293-297.
    Dorrepaal, E., J. H. C. Cornelissen, R. Aerts, B. Wallen, and R. S. P. Van Logtestijn. Are growth formsconsistent predictors of leaf litter quality and decomposability across peatlands along a latitudinalgradient? Journal of Ecology.2005.93:817-828.
    Du, J., Y. Wu, D. Huang, and J. Zhang. Use of7Be,210Pb and137Cs tracers to the transport of surfacesediments of the Changjiang Estuary, China. Journal of Marine Systems.2010.82:286-294.
    Eamus, D., X. Chen, G. Kelley, and L. Hutley. Root biomass and root fractal analyses of an open Eucalyptusforest in a savanna of north Australia. Australian Journal of Botany.2002.50:31-41.
    Enquist, B. J. and K. J. Niklas. Global allocation rules for patterns of biomass partitioning in seed plants.Science.2002.295:1517-1520.
    Estornell, J., L. A. Ruiz, B. Velázquez-Martí, and A. Fernández-Sarría. Estimation of shrub biomass byairborne LiDAR data in small forest stands. Forest Ecology and Management.2011.262:1697-1703.
    Eswaran, H., E. Van Den Berg, and P. Reich. Organic carbon in soils of the world. Soil Science Society ofAmerica Journal.1993.57:192-194.
    Euliss, N. H., R. Gleason, A. Olness, R. McDougal, H. Murkin, R. Robarts, R. Bourbonniere, and B. Warner.North American prairie wetlands are important nonforested land-based carbon storage sites. Science ofThe Total Environment.2006.361:179-188.
    Falster, D.S., Warton, D.I.&Wright, I.J. SMATR: Standardized Major Axis Tests&Routines. Version2.0.http://www.bio.mq.edu.au/ecology/SMATR.2003.2006.
    Feliciano, E., S. Wdowinski, M. Potts, S. Chin, and D. Phillips. Measuring Above Ground Biomass andVegetation Structure in the South Florida Everglades Wetland Ecosystem with X-, C-, and L-band SARdata and Ground-based LiDAR.2010.0388.
    Feng, S., H. Zhang, Y. Wang, Z. Bai, and G. Zhuang. Analysis of fungal community structure in the soil ofZoige Alpine Wetland. Acta Ecologica Sinica.2009.29:260-266.
    Finér, L. and J. Laine. The ingrowth bag method in measuring root production on peatland sites.Scandinavian Journal of Forest Research.2000.15:75-80.
    Fink, D. F. and W. J. Mitsch. Hydrology and nutrient biogeochemistry in a created river diversion oxbowwetland. Ecological Engineering.2007.30:93-102.
    Fisher, P. and P. Montagna. Evidence from chronosequence studies for a low carbon-storage potential of soils.Nature.1990.348:15.
    Flores, L. N. and R. Barone. Phytoplankton dynamics in two reservoirs with different trophic state (LakeRosamarina and Lake Arancio, Sicily, Italy). Hydrobiologia.1998.369:163-178.
    Frolking, S., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie, and S. D. Muller. Modeling northernpeatland decomposition and peat accumulation. Ecosystems.2001.4:479-498.
    Gale, M. and D. Grigal. Vertical root distributions of northern tree species in relation to successional status.Canadian Journal of Forest Research.1987.17:829-834.
    Gao, J., H. Ouyang, G. Wang, and X. XU. Recent Peat Accumulation Rates in Zoige Peatlands, Eastern Tibet,Inferred by210Pb and137Cs Radiometric Techniques. Procedia Environmental Sciences.2010.2:1927-1933.
    García, L. V., T. Mara ón, A. Moreno, and L. Clemente. Above‐ground biomass and species richness in aMediterranean salt marsh. Journal of Vegetation Science.2009.4:417-424.
    García, M. and A. Faz Cano. Soil organic matter stocks and quality at high altitude grasslands ofApolobamba, Bolivia. Catena.2012.94:26-35.
    Genet, A., H. Wernsd rfer, M. Jonard, H. Pretzsch, M. Rauch, Q. Ponette, C. Nys, A. Legout, J. Ranger, andP. Vallet. Ontogeny partly explains the apparent heterogeneity of published biomass equations forFagus sylvatica in central Europe. Forest Ecology and Management.2011.261:1188-1202.
    Giblin, A., K. Nadelhoffer, G. Shaver, J. Laundre, and A. McKerrow. Biogeochemical diversity along ariverside toposequence in arctic Alaska. Ecological Monographs.1991.61:415-435.
    Gill, R. A. and R. B. Jackson. Global patterns of root turnover for terrestrial ecosystems. New Phytologist.2000.147:13-31.
    Gilliam, F. S. and N. E. Saunders. Making more sense of the order: A review of Canoco for Windows4.5,PC‐O RD version4and SYN‐TAX2000. Journal of Vegetation Science.2003.14:297-304.
    Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming.Ecological Applications.1991.1:182-195.
    Gough, L., C. W. Osenberg, K. L. Gross, and S. L. Collins. Fertilization effects on species density andprimary productivity in herbaceous plant communities. Oikos.2000.89:428-439.
    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biological Reviews.1966.41:587-638.
    Grigal, D. F., P. C. Bates, and R. K. Kolka. Ecosystem Carbon Storage and Flux in UplandlPeatlandWatersheds in Northern Minnesota. Peatland Biogeochemistry and Watershed Hydrology at the MarcellExperimental Forest.2011.243.
    Grigal, D., C. Buttleman, and L. Kernik. Biomass and productivity of the woody strata of forested bogs innorthern Minnesota. Canadian journal of botany.1985.63:2416-2424.
    Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature.1973.242:344-347.
    Grime, J. P. Plant strategies, vegetation processes, and ecosystem properties. John Wiley&Sons.2002.
    Guo Q. and W. L. Berry. Species richness and biomass: dissection of the hump-shaped relationships. Ecology.1998.79:2555-2559.
    Güsewell, S., W. Koerselman, and J. T. A. Verhoeven. Biomass N: P ratios as indicators of nutrient limitationfor plant populations in wetlands. Ecological Applications.2003.13:372-384.
    H vemeyer, K. and J. Schauermann. Succession of Diptera on dead beech wood: A10-year study.Pedobiologia.2003.47:61-75.
    Hao, S., J. Xue, D. Guo, and D. Wang. Earliest rooting system and root: shoot ratio from a newZosterophyllum plant. New Phytologist.2010.185:217-225.
    Hardisky, M., M. Gross, and V. Klemas. Remote sensing of coastal wetlands. Bioscience.1986.36:453-460.
    Harvey, B. D., T. Nguyen-Xuan, Y. Bergeron, S. Gauthier, and A. Leduc. Forest management planning basedon natural disturbance and forest dynamics. Towards sustainable management of the boreal forest. NRCResearch Press, Ottawa.2003.395-432.
    Hauxwell, J., S. Knight, K. Wagner, A. Mikulyuk, M. Nault, M. Porzky, and S. Chase. Recommendedbaseline monitoring of aquatic plants in Wisconsin: sampling design, field and laboratory procedures,data entry and analysis, and applications. Available from Wisconsin Department of Natural Resources,Madison, Wisc. Miscellaneous publication.2010.1068.
    Heinemeyer, A., S. Croft, M. H. Garnett, E. Gloor, J. Holden, M. R. Lomas, and P. Ineson. The MILLENNIApeat cohort model: predicting past, present and future soil carbon budgets and fluxes under changingclimates in peatlands. Clim Res.2010.45:207-226.
    Hobbie, S. E., J. P. Schimel, S. E. Trumbore, and J. R. Randerson. Controls over carbon storage and turnoverin high‐l atitude soils. Global Change Biology.2000.6:196-210.
    Hooijer, A., S. Page, J. Canadell, M. Silvius, J. Kwadijk, H. W sten, and J. Jauhiainen. Current and futureCO2emissions from drained peatlands in Southeast Asia. Biogeosciences.2010.7:1505-1514.
    Hu, Z., G. Ge, C. Liu, F. Chen, and S. Li. Structure of Poyang lake wetland plants ecosystem and influenceof lake water level for the structure. Resources and Environment in the Yangtze Basin.2010.19:597-605.
    Hudon, C., S. Lalonde, and P. Gagnon. Ranking the effects of site exposure, plant growth form, water depth,and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences.2000.57:31-42.
    Hui, D. and R. B. Jackson. Geographical and interannual variability in biomass partitioning in grasslandecosystems: a synthesis of field data. New Phytologist.2006.169:85-93.
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecological Monographs.1984.54:187-211.
    Irving, A. D., S. D. Connell, and B. D. Russell. Restoring Coastal Plants to Improve Global Carbon Storage:Reaping What We Sow. PloS one.2011.6-18311.
    Jackson, R., J. Canadell, J. Ehleringer, H. Mooney, O. Sala, and E. Schulze. A global analysis of rootdistributions for terrestrial biomes. Oecologia.1996.108:389-411.
    Jobbagy, E. and R. Jackson. The vertical distribution of soil organic carbon and its relation to climate andvegetation. Ecological Applications.2000.10:423-436.
    Johnston, M., P. Homann, J. Engstrom, and D. Grigal. Changes in ecosystem carbon storage over40years onan old-field/forest landscape in east-central Minnesota. Forest Ecology and Management.1996.83:17-26.
    Joosten, H. The IMCG global peatland database. Hans Joosten (Greifswald University, Germany).2004.
    Ju, W., J. M. Chen, T. A. Black, A. G. Barr, and H. McCAUGHEY. Spatially simulating changes of soilwater content and their effects on carbon sequestration in Canada's forests and wetlands. Tellus B.2010.62:140-159.
    Kane DL, Hinzman LD, Woo M, Everett KR. Arctic hydrology and climate change. In: III Chapin FS,Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate.Academic Press, San Diego,1992.35-51
    Kastowski, M., M. Hinderer, and A. Vecsei. Long-term carbon burial in European lakes: Analysis andestimate. Global Biogeochemical Cycles.2011.25:3019.
    Kauffman, J. B. and T. G. Cole. Micronesian mangrove forest structure and tree responses to a severetyphoon. Wetlands.2010.1-8.
    Kauffman, J. B., C. Heider, T. G. Cole, K. A. Dwire, and D. C. Donato. Ecosystem carbon stocks ofMicronesian mangrove forests. Wetlands.2011.1-10.
    Kirkby, M., P. Kneale, S. Lewis, and R. Smith. Modelling the form and distribution of peat mires. Hydrologyand hydrochemistry of British wetlands.1995.83-93.
    Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect ofglobal warming on soil organic C storage. Soil Biology and Biochemistry.1995.27:753-760.
    Klaus, V. H., T. Kleinebecker, N. H lzel, N. Blüthgen, S. Boch, J. Müller, S. A. Socher, D. Prati, and M.Fischer. Nutrient concentrations and fibre contents of plant community biomass reflect species richnesspatterns along a broad range of land-use intensities among agricultural grasslands. Perspectives in PlantEcology, Evolution and Systematics.2011.
    Kleinen, T. and V. Brovkin. The role of peatlands in interglacial Carbon cycle dynamics-a modellingperspective. EGU General Assembly. Vienna, Austria,2010.12:11531.
    Klemas, V. Remote Sensing of Coastal Wetland Biomass: An Overview. Journal of Coastal Research.2013.
    Kneitel, J. and C. Lessin. Ecosystem-phase interactions: aquatic eutrophication decreases terrestrial plantdiversity in California vernal pools. Oecologia.2010.163:461-469.
    Knievel, D. P. Procedure for estimating ratio of live to dead root dry matter in root core samples. CropScience.1973.13:124-126.
    Kobe, R. K., M. Iyer, and M. B. Walters. Optimal partitioning theory revisited: Nonstructural carbohydratesdominate root mass responses to nitrogen. Ecology.2010.91:166-179.
    KOEHLER, A. N. N. K., M. SOTTOCORNOLA, and G. KIELY. How strong is the current carbonsequestration of an Atlantic blanket bog? Global Change Biology.2011.17:309-319.
    LADIGES, P. Y., P. C. FOORD, and R. Willis. Salinity and waterlogging tolerance of some populations ofMelaleuca ericifolia Smith. Australian Journal of Ecology.1981.6:203-215.
    Laffoley, D, and Grimsditch, G.(Eds.). The management of natural coastal carbon sinks. Iucn.2009.
    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma.2004.123:1-22.
    Lappalainen, E. Global peat resources. International Peat Society.1996.
    Le Roux, G. and W. Marshall. Constructing recent peat accumulation chronologies using atmosphericfall-out radionuclides. Mires and Peat.2011.7:1-14.
    Leonard, C. A. and D. Birch. Above-and below-ground vegetative responses to prescribed fire regimes in aChesapeake Bay tidal brackish marsh. Journal of Ecology and field biology.2010.33:351-361.
    Leuschner, C., G. Moser, C. Bertsch, M. R derstein, and D. Hertel. Large altitudinal increase in treeroot/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology.2007.8:219-230.
    Lipson, D., D. Zona, T. Raab, F. Bozzolo, M. Mauritz, and W. Oechel. Water table height andmicrotopography control biogeochemical cycling in an Arctic coastal tundra ecosystem. BiogeosciencesDiscussions.2011.8:6345-6382.
    Liu, W., S. Chen, X. Qin, F. Baumann, T. Scholten, Z. Zhou, W. Sun, T. Zhang, J. Ren, and D. Qin. Storage,patterns, and control of soil organic carbon and nitrogen in the northeastern margin of theQinghai–Tibetan Plateau. Environmental Research Letters.2012.7:035401.
    Liu, Z., S. Pan, X. Liu, and J. Gao. Distribution of137Cs and210Pb in sediments of tidal flats in northJiangsu Province. Journal of Geographical Sciences.2010.20:91-108.
    Lucchese, M., J. M. Waddington, M. Poulin, R. Pouliot, L. Rochefort, and M. Strack. Organic matteraccumulation in a restored peatland: Evaluating restoration success. Ecological Engineering.2010.36:482-488.
    Mander, ü., K. L hmus, S. Teiter, T. Mauring, K. Nurk, and J. Augustin. Gaseous fluxes in the nitrogen andcarbon budgets of subsurface flow constructed wetlands. Science of The Total Environment.2008.404:343-353.
    Marklund, L. G. Biomass functions for pine, spruce and birch in Sweden. Rapport-SverigesLantbruksuniversitet, Institutionen foer Skogstaxering.1988.
    Matisoff, G. and P. J. Whiting. Measuring Soil Erosion Rates Using Natural (7Be,210Pb) andAnthropogenic (137Cs,239,240Pu) Radionuclides. Handbook of Environmental Isotope Geochemistry.2011.487-519.
    Matthews, E. and I. Fung. Methane emission from natural wetlands: global distribution, area, andenvironmental characteristics of sources. Global Biogeochemical Cycles.1987.1:61-86.
    Maynard, J., R. Dahlgren, and A. O’Geen. Soil carbon cycling and sequestration in a seasonally saturatedwetland receiving agricultural runoff. Biogeosciences.2011.8:3391-3406.
    McCarthy, M. and B. Enquist. Consistency between an allometric approach and optimal partitioning theoryin global patterns of plant biomass allocation. Functional Ecology.2007.21:713-720.
    McConnaughay, K. and J. Coleman. Biomass allocation in plants: ontogeny or optimality? A test along threeresource gradients. Ecology.1999.80:2581-2593.
    McCrea, A., I. Trueman, M. Fullen, M. Atkinson, and L. Besenyei. Relationships between soil characteristicsand species richness in two botanically heterogeneous created meadows in the urban English WestMidlands. Biological Conservation.2001.97:171-180.
    McFarlane, N., T. Ciavarella, and K. F. Smith. The effects of waterlogging on growth, photosynthesis andbiomass allocation in perennial ryegrass (Lolium perenne L.) genotypes with contrasting rootdevelopment. Journal of Agricultural Science.2003.141:241-248.
    Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore, C. J. Vorosmarty, and A. L. Schloss. Globalclimate change and terrestrial net primary production. Nature.1993.363:234-240.
    Michaelson, G. J., C. Ping, and J. Kimble. Carbon storage and distribution in tundra soils of Arctic Alaska,USA. Arctic and Alpine Research.1996.414-424.
    Mikan, C. J., J. P. Schimel, and A. P. Doyle. Temperature controls of microbial respiration in arctic tundrasoils above and below freezing. Soil Biology and Biochemistry.2002.34:1785-1795.
    Miller, C. A. The Effect of Long-Term Drainage on Plant Community Composition, Biomass, andProductivity in Boreal Continental Peatlands.2011.
    Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine. Carbon balance and radiative forcing of Finnishpeatlands1900–2100–the impact of forestry drainage. Global Change Biology.2002.8:785-799.
    Mitsch, W. J., A. Nahlik, P. Wolski, B. Bernal, L. Zhang, and L. Ramberg. Tropical wetlands: seasonalhydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecology and Management.2010.18:573-586.
    Mokany, K., R. Raison, and A. S. Prokushkin. Critical analysis of root: shoot ratios in terrestrial biomes.Global Change Biology.2006.12:84-96.
    Molot, L. A. and P. J. Dillon. Storage of terrestrial carbon in boreal lake sediments and evasion to theatmosphere. Global Biogeochemical Cycles.1996.10:483-492.
    Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur, and N. T. Roulet. Plant biomass and production andCO2exchange in an ombrotrophic bog. Journal of Ecology.2002.90:25-36.
    Moreau, S., R. Bosseno, X. F. Gu, and F. Baret. Assessing the biomass dynamics of Andean bofedal andtotora high-protein wetland grasses from NOAA/AVHRR. Remote Sensing of Environment.2003.85:516-529.
    Morris, J. T. and W. B. BowDEN. A mechanistic, numerical model of sedimentation, mineralization, anddecomposition for marsh sediments. Soil Science Society of America Journal.1986.50:96-105.
    Murphy, M. T. and T. R. Moore. Linking root production to aboveground plant characteristics and watertable in a temperate bog. Plant and Soil.2010a.336:219-231.
    Murphy, M. T. and T. R. Moore. Linking root production to aboveground plant characteristics and watertable in a temperate bog. Plant and Soil.2010b.336:219-231.
    Murphy, M. T. M. M., A. M. K. A. McKinley, and T. R. M. T. Moore. Variations in above-and below-groundvascular plant biomass and water table on a temperate ombrotrophic peatland. Botany.2009b.87:845-853.
    Murphy, M., R. Laiho, and T. R. Moore. Effects of water table drawdown on root production andaboveground biomass in a boreal bog. Ecosystems.2009a.12:1268-1282.
    O’Driscoll, C., M. Rodgers, M. O’Connor, Z. Z. Asam, E. de Eyto, R. Poole, and L. Xiao. A potentialsolution to mitigate phosphorus release following clearfelling in peatland forest catchments. Water, Air,&Soil Pollution.2011.221:1-11.
    Olsrud, M.,&Christensen, T. R. Carbon partitioning in a wet and a semiwet subarctic mire ecosystem basedon in situ14 C pulse-labelling. Soil Biology and Biochemistry.2011.43(2),231-239.
    Paavilainen, E. and J. P iv nen. Peatland forestry: ecology and principles.1995.
    Page, K. and R. Dalal. Contribution of natural and drained wetland systems to carbon stocks, CO2, N2O, andCH4fluxes: an Australian perspective. Soil Research.2011.49:377-388.
    Page, S. E., J. O. Rieley, and C. J. Banks. Global and regional importance of the tropical peatland carbonpool. Global Change Biology.2011.17:798-818.
    Penman, J., C. K. S. K. Kikan, and I. P. o. C. C. N. G. G. I. Programme. Good practice guidance for land use,land-use change and forestry. Published by the Institute for Global Environmental Strategies for theIPCC.2003.
    Pe uelas, J., J. A. Gamon, K. L. Griffin, and C. B. Field. Assessing community type, plant biomass, pigmentcomposition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. RemoteSensing of Environment.1993.46:110-118.
    Picek, T., H. í ková, and J. Du ek. Greenhouse gas emissions from a constructed wetland—plants asimportant sources of carbon. Ecological Engineering.2007.31:98-106.
    Pollock, M. M., R. J. Naiman, and T. A. Hanley. Plant species richness in riparian wetlands-a test ofbiodiversity theory. Ecology.1998.79:94-105.
    Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger. Soil carbon pools and world life zones.1982.156-159.
    Pouyat, R. V., I. D. Yesilonis, and D. J. Nowak. Carbon Storage by Urban Soils in the United States. Journalof Environment Quality.2006.35:1566.
    Quillet, A., M. Garneau, S. Frolking, N. Roulet, and C. Peng. Exploring the limits of knowledge on borealpeatland development using a new model: the Holocene Peatland Model. EGU General Assembly2010,held2-7May,2010in Vienna, Austria.2010.12:10931.
    Reich, P. B., Y. Weisel, A. Eshel, and U. Kafkafi. Root-shoot relations: optimality in acclimation andadaptation or the ‘Emperor’s New Clothes’. Plant roots: The hidden half.2002.205-220.
    Rey Benayas, J. M. and S. M. Scheiner. Diversity patterns of wet meadows along geochemical gradients incentral Spain. Journal of Vegetation Science.1993.4:103-108.
    Rochefort, L., F. Quinty, S. Campeau, K. Johnson, and T. Malterer. North American approach to therestoration of Sphagnum dominated peatlands. Wetlands Ecology and Management.2003.11:3-20.
    Sammul, M., L. Oksanen, and M. M gi. Regional effects on competition–productivity relationship: a set offield experiments in two distant regions. Oikos.2006.112:138-148.
    Schenk, H. J. and R. B. Jackson. The global biogeography of roots. Ecological Monographs.2002.72:311-328.
    Schimel, D. S., B. Braswell, E. A. Holland, R. McKeown, D. Ojima, T. H. Painter, W. J. Parton, and A. R.Townsend. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. GlobalBiogeochemical Cycles.1994.8:279-293.
    Schlesinger, W. H. Soil organic matter: A source of atmospheric CO2. The role of terrestrial vegetation in theglobal carbon cycle.1984.111-127.
    Schlesinger, W. H. Biogeochemistry: an analysis of global change. Geochimica et Cosmochimica Acta56.1997.
    Shipley, B. and D. Meziane. The balanced-growth hypothesis and the allometry of leaf and root biomassallocation. Functional Ecology.2002.16:326-331.
    Shoch, D. T., G. Kaster, A. Hohl, and R. Souter. Carbon storage of bottomland hardwood afforestation in theLower Mississippi Valley, USA. Wetlands.2009.29:535-542.
    Shofiyati, R., I. Las, and F. Agus. Indonesian Soil Data Base and Predicted Stock of Soil Carbon.2010.ímová, I., Y. M. Li, and D. Storch. Relationship between species richness and productivity in plants: therole of sampling effect, heterogeneity and species pool. Journal of Ecology.2013.101:161-170.
    Simpson, W. a. The relationship between aboveground and belowground biomass of freshwater tidal wetlandmacrophytes. Aquatic Botany.1978.5:355-364.
    Sitch, S., A. D. McGuire, J. Kimball, N. Gedney, J. Gamon, R. Engstrom, A. Wolf, Q. Zhuang, J. Clein, andK. C. McDonald. Assessing the carbon balance of circumpolar Arctic tundra using remote sensing andprocess modeling. Ecological Applications.2007.17:213-234.
    Smith, C., R. DeLaune, and W. Patrick. Carbon dioxide emission and carbon accumulation in coastalwetlands. Estuarine, Coastal and Shelf Science.1983.17:21-29.
    Snowdon, P., D. Eamus, P. Gibbons, P. Khanna, H. Keith, J. Raison, and M. Kirschbaum. Synthesis ofallometrics, review of root biomass and design of future woody biomass sampling strategies. AustralianGreenhouse Office Canberra, AU.2000.
    St-Hilaire, F., J. Wu, N. Roulet, S. Frolking, P. Lafleur, E. Humphreys, and V. Arora. McGill Wetland Model:evaluation of a peatland carbon simulator developed for global assessments. BiogeosciencesDiscussions.2008.5:1689-1725.
    Stine, M. B., L. M. Resler, and J. B. Campbell. Ecotone characteristics of a southern Appalachian Mountainwetland. Catena.2011.
    Stolbovoi, V. Carbon in Russian soils. Climatic change.2002.55:131-156.
    Tarnocai, C. The amount of organic carbon in various soil orders and ecological provinces in Canada. Soilprocesses and the carbon cycle.1998.2:81-92.
    Tarnocai, C., J. Canadell, E. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. Soil organic carbon pools in thenorthern circumpolar permafrost region. Global Biogeochemical Cycles.2009.23.
    Thursby, G. B., M. M. Chintala, D. Stetson, C. Wigand, and D. M. Champlin. A rapid, non-destructivemethod for estimating aboveground biomass of salt marsh grasses. Wetlands.2002.22:626-630.
    Tian, H., G. Chen, M. Liu, C. Zhang, G. Sun, C. Lu, X. Xu, W. Ren, S. Pan, and A. Chappelka. Modelestimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrialecosystems of the southern United States during1895-2007. Forest Ecology and Management.2010.259:1311-1327.
    Tian, J., H. Chen, Y. Wang, and X. Zhou. Methane production in relation with temperature, substrate and soildepth in Zoige wetlands on Tibetan Plateau. Acta Ecologica Sinica.2011.31:121-125.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology.1996.77:350-363.
    Tilman, D., D. Wedin, and J. Knops. Productivity and sustainability influenced by biodiversity in grasslandecosystems. Nature.1996.379:718-720.
    Turner, R. E., E. M. Swenson, C. S. Milan, J. M. Lee, and T. A. Oswald. Below-ground biomass in healthyand impaired salt marshes. Ecological Research.2004.19:29-35.
    Twilley, R., R. Chen, and T. Hargis. Carbon sinks in mangroves and their implications to carbon budget oftropical coastal ecosystems. Water, Air,&Soil Pollution.1992.64:265-288.
    Verhoeven, J. T. A. and T. L. Setter. Agricultural use of wetlands: opportunities and limitations. Annals ofBotany.2010.105:155-163.
    Vermeer, J. and F. Berendse. The relationship between nutrient availability, shoot biomass and speciesrichness in grassland and wetland communities. Plant Ecology.1983.53:121-126.
    Vitt, D. H., L. A. Halsey, I. E. Bauer, and C. Campbell. Spatial and temporal trends in carbon storage ofpeatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences.2000.37:683-693.
    Vitt, D. H., R. K. Wieder, K. D. Scott, and S. Faller. Decomposition and peat accumulation in rich fens ofboreal Alberta, Canada. Ecosystems.2009.12:360-373.
    Vymazal, J. and L. Kr pfelov¨¢. Nutrient Accumulation by Phragmites australis and Phalaris arundinaceaGrowing in Two Constructed Wetlands for Wastewater Treatment. Water and Nutrient Management inNatural and Constructed Wetlands.2011.133-149.
    Wang, D., X. Lu, W. Ding, Z. Cai, J. Gao, and F. Yang. Methane emission from marshes in Zoige Plateau.Adv. Earth Sci.2002.17:877-880.
    Wang, H., Z. X. Chen, X. Y. Zhang, S. X. Zhu, Y. Ge, S. X. Chang, C. B. Zhang, C. C. Huang, and J. Chang.Plant Species Richness Increased Belowground Plant Biomass and Substrate Nitrogen Removal in aConstructed Wetland. CLEAN–Soil, Air, Water.2013.
    Wang, S., H. Tian, J. Liu, and S. Pan. Pattern and change of soil organic carbon storage in China:1960s–1980s. Tellus B.2003.55:416-427.
    Weiner, J., D. B. Wright, and S. Castro. Symmetry of below-ground competition between Kochia scopariaindividuals. Oikos.1997.85-91.
    Wheeler, B. and S. Shaw. Above-ground crop mass and species richness of the principal types of herbaceousrich-fen vegetation of lowland England and Wales. The Journal of Ecology1991.285-301.
    Whigham, D. and J. T. Verhoeven. Wetlands of the World: the next installment. Wetlands Ecology andManagement.2009.17:167-167.
    Whittaker, R. H. and P. L. Marks. Methods of assessing terrestrial productivity. Primary productivity of thebiosphere.1975.14:55-18.
    Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J.,&Zhu, B. Storage, patterns and controls of soil organiccarbon in the Tibetan grasslands. Global Change Biology.2008.14(7),1592-1599.
    Yang, Y., J. Fang, C. Ji, and W. Han. Above-belowground biomass allocation in Tibetan grasslands. Journalof Vegetation Science.2009.20:177-184.
    Yao, L., Y. Zhao, S. Gao, J. Sun, and F. Li. The peatland area change in past20years in the Zoige Basin,eastern Tibetan Plateau. Frontiers of Earth Science.2011.5:271-275.
    Ye, Y., C. Zhou, Y. Sun, and D. Zhou. Estimation of wetland aboveground biomass based on SAR image: Acase study of Honghe National Natural Reserve in Heilongjiang, China.2010.1-6.
    Yu, Z., J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt. Global peatland dynamics since the LastGlacial Maximum. Geophysical Research Letters.2010.37:13402.
    Zedler, J. B. Progress in wetland restoration ecology. Nature.2000.402:523-526.
    Zeng, F. W., C. A. Masiello, and W. C. Hockaday. Controls on the origin and cycling of riverine dissolvedinorganic carbon in the Brazos River, Texas. Biogeochemistry.2011.1-17.
    Zhang, G., J. Tian, N. Jiang, X. Guo, Y. Wang, and X. Dong. Methanogen community in Zoige wetland ofTibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC‐I.Environmental microbiology.2008a.10:1850-1860.
    Zhang, W. J., H. A. Xiao, C. L. Tong, Y. R. Su, W. Xiang, D. Y. Huang, J. K. Syers, and J. Wu. Estimatingorganic carbon storage in temperate wetland profiles in Northeast China. Geoderma.2008b.146:311-316.
    Zheng, Z., G. Hu, R. Yu, and X. Chen. Sedimentation rate and flux in the intertidal wetlands of LuoyangRiver and Jinjiang River.2011.1552-1555.
    Zhong, B. and Y. J. Xu. Risk of Inundation to Coastal Wetlands and Soil Organic Carbon and OrganicNitrogen Accounting in Louisiana, USA. Environmental Science&Technology.2011.
    Zhong, L. and Z. Qiguo. Organic carbon content and distribution in soils under different land uses in tropicaland subtropical China. Plant and Soil.2001.231:175-185.
    Zhou, W., X. Lu, Z. Wu, L. Deng, A. Jull, D. Donahue, and W. Beck. Peat record reflecting Holoceneclimatic change in the Zoige Plateau and AMS radiocarbon dating. Chinese Science Bulletin.2002.47:66-70.
    Zhu, S. X., H. L. Ge, Y. Ge, H. Q. Cao, D. Liu, J. Chang, C. B. Zhang, B. J. Gu, and S. X. Chang. Effects ofplant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructedwetland. Ecological Engineering.2010.36:1307-1313.
    Zobel, K. and J. Liira. A scale-independent approach to the richness vs biomass relationship in ground-layerplant communities. Oikos.1997.325-332.
    Zobel, M. and M. P rtel. What determines the relationship between plant diversity and habitat productivity?Global Ecology and Biogeography.2008.17:679-684.
    白军红,欧阳华,崔保山,王庆改,陈辉.近40年来若尔盖高原高寒湿地景观格局变化.生态学报.2008.28.
    曹庆先,徐大平,鞠洪波.北部湾沿海5种红树林群落生物量的遥感估算.广西科学.2011.18:289-293.
    曹庆先.北部湾沿海红树林生物量和碳贮量的遥感估算.北京:中国林业科学研究院.2010.
    柴岫,金树仁.若尔盖高原沼泽的类型及其发生与发展.地理学报.1963.9:219-235.
    陈楚群,施平.应用水色卫星遥感技术估算珠江口海域溶解有机碳浓度.环境科学学报.2001.21:715-719.
    崔丽娟,马琼芳,宋洪涛,栾军伟.湿地生态系统碳储量估算方法综述.生态学杂志.2012.31:2673-2680.
    邓茂林,田昆,段宗亮,周耀华,杨佼,王进琼.高原湿地若尔盖国家级自然保护区景观变化.山地学报.2010.240-246.
    董洪芳,于君宝,孙志高,牟晓杰,陈小兵,毛培利,吴春发,管博.黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征.2009.
    杜国祯,覃光莲,李自珍,刘正恒,董高生.高寒草甸植物群落中物种丰富度与生产力的关系研究.植物生态学报.2003.27:125-132.
    段晓男,王效科,逯非,欧阳志云.中国湿地生态系统固碳现状和潜力.生态学报.2008.28:463-469.
    傅伯杰.景观生态学原理及应用.科学出版社.2011.
    高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征.水土保持学报.2006.
    高俊琴,欧阳华,张锋,王春梅.若尔盖高寒湿地表层土壤有机碳空间分布特征.生态环境.2007.16:1723-1727.
    韩大勇,杨永兴,杨杨.若尔盖高原退化沼泽群落植物多样性及种间相关性沿排水梯度的变化.植物生态学报.2012.36:411-419.
    韩大勇,杨永兴,杨杨,李珂.放牧干扰下若尔盖高原沼泽湿地植被种类组成及演替模式.生态学报.2011.31:5946-5955.
    郝云庆,王新,刘少英,谢大军,赵杰,李华.若尔盖湿地保护区生物多样性评价.中国水土保持科学.2008.6:35-340.
    何池全,赵魁义,赵志春.若尔盖高原湿地草场退化成因分析及其保护利用.中国草地.2000.6:11-16.
    贾瑞霞仝川王维奇曾从盛.闽江河口盐沼湿地沉积物有机碳含量及储量特征.湿地科学.2008.6(4):492-499.
    蒋志刚,马克平,韩兴国.保护生物学.浙江科学技朮出版社.1997.
    李仁东,刘纪远.鄱阳湖湿生植被生物量.地理学报.2001.56.
    梁二,蔡典雄,张丁辰,代快,冯宗会,刘爽,王燕,王小彬.中国陆地土壤有机碳储量估算及其不确定性分析.中国土壤与肥料.2010.75-79.
    刘维暐,王杰,王勇,杨帆.三峡水库消落区不同海拔高度的植物群落多样性差异.生态学报.2012.32:5454-5466.
    刘兴土,邓伟,刘景双.沼泽学概论.长春:吉林科学技术出版社.2005.
    刘子刚张坤民.黑龙江省三江平原湿地土壤碳储量变化.清华大学学报:自然科学版.2005.45(6):788-791.
    刘子刚,王铭,马学慧.中国泥炭地有机碳储量与储存特征分析.中国环境科学.2012.32:1814-1819.
    牛志春,倪绍祥.环青海湖地区草地植被生物量遥感监测模型.地图学与GIS学术讨论会论文集.2002.
    潘文斌蔡庆华.保安湖大型水生植物在碳循环中的作用.水生生物学报.2000.24(5):418-425.
    彭亿,李裕元,李忠武,叶芳毅,潘春翔,谢小立.亚热带稻田弃耕湿地土壤因子对植物群落结构的影响.应用生态学报.2009.20:1543-1550.
    宋长春.湿地生态系统碳循环研究进展.地理科学.2003.23:622-628.
    宋巍巍,管东生,王刚.地形对植被生物量遥感反演的影响——以广州市为例.生态学报.2012.32:7440-7451.
    宋永昌.植被生态学.华东师范大学出版社.2001.
    孙广友.横断山区沼泽和泥炭.北京:科学出版社.1998.
    孙儒泳,李庆芬,牛翠娟.基础生态学.高等教育出版社.2002.
    孙向阳.土壤学.中国林业出版社.2005.
    覃光莲,杜国祯,李自珍,杨广运,马建云,娘毛加.高寒草甸植物群落中物种多样性与生产力关系研究.植物生态学报.2002.57-62.
    谭向峰,杜宁,葛秀丽,王炜,王仁卿,蔡云飞,王越,王成栋,卢鹏林,刘月良.黄河三角洲滨海草甸与土壤因子的关系.生态学报.2012.32:5998-6005.
    田应兵,熊明彪,熊晓山,宋光煜.若尔盖高原湿地土壤-植物系统有机碳的分布与流动.植物生态学报.2003.27:490-495.
    田应兵,熊明标,宋光煜.若尔盖高原湿地土壤的恢复演替及其水分与养分变化.生态学杂志.2005.24:21-25.
    王长科,张安定.若尔盖高湿地资源及其保护对策.水土保持通报.2001.21:20-22.
    王丹张银龙庞博徐明喜苏莹莹.苏州太湖湿地芦苇生物量与水深的动态特征研究.环境污染与防治.2010.(7):49-54.
    王国宏.祁连山北坡中段植物群落多样性的垂直分布格局.生物多样性.2002.10:7-14.
    王慧萍.川中丘陵地区农田土壤有机碳氮储量及动态变化.2008.四川师范大学.
    王建超,朱波,汪涛.三峡库区典型消落带淹水后草本植被的自然恢复特征.长江流域资源与环境.2011.20:603-610.
    王丽丽宋长春葛瑞娟宋艳宇刘德燕.三江平原湿地不同土地利用方式下土壤有机碳储量研究.中国环境科学.2009.(6):656-660.
    王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析.地理学报.2000.55:533-544.
    吴鹏飞,陈智华.若尔盖草地生态系统研究.西南民族大学学报:自然科学版.2008.34:482-486.
    吴涛,赵冬至,康建成,张丰收,程璐.辽东湾双台子河口湿地翅碱蓬(Suaeda salsa)生物量遥感反演研究.生态环境学报.2011.20.
    吴天君,张曦文,赫晓慧.基于CBERS的黄河湿地生物量反演研究.测绘与空间地理信息.2012.35:18-19.
    伍业钢,邬建国,李百炼.缀块性与缀块动态,生态与进化效应.生态学杂志.1992.34-41.
    郗敏吕宪国.三江平原湿地多级沟渠系统底泥可溶性有机碳的分布特征.生态学报.2007.27(4):1434-1441.
    杨福明,董昭林.若尔盖高原沼泽草地环境生态研究.四川草原.1993.3:1-7.
    杨钙仁,张文菊,童成立,昊金水.2005.温度对湿地沉积物有机碳矿化的影响.生态学报.25.
    杨永兴.若尔盖高原生态环境恶化与沼泽退化.1999.
    杨元合.青藏高原高寒草地生态系统碳储量.北京大学博士学位论文,2008.
    叶宇,刘高焕,黄翀,宁吉才,李亚飞.若尔盖高原湿地景观与环境要素的DCCA多元相关分析.地球信息科学学报.2011.13:313-322.
    尹善春.中国泥炭资源.地学前缘.1999.6:116-124.
    于泉洲张祖陆袁怡.山东省南四湖湿地植被碳储量初步研究.云南地理环境研究.2010.22(5):88-93.
    宇万太.植物地下生物量研究进展.应用生态学报.2001.
    张金屯.植被数量生态学方法.中国科学技术出版社.1995.
    张文菊,童成立,杨钙仁,吴金水.水分对湿地沉积物有机碳矿化的影响.生态学报.2005.25:249-253.
    赵魁义.中国沼泽志.科学出版社.1999.
    周刚.滆湖水生植生物量,演替规律及合理利用.湖泊科学.1997.9(2):175-182.
    周宇庭,付刚,沈振西,张宪洲,武建双,李云龙,&杨鹏万.藏北典型高寒草甸地上生物量的遥感估算模型.草业学报.2013.120-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700