用户名: 密码: 验证码:
低温条件下燃用乙醇汽油对汽车使用性能及城市交通的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇汽油作为主要的可再生清洁替代能源之一,现已被多个国家广泛使用,我国自2001年起已在9个省份开始车用乙醇汽油的推广试点工作。但是,黑龙江省从2004年11月1日起才开始全封闭推广使用乙醇汽油且工作开展以来,其一直备受争议。特别是在冬季低温季节,部分使用者反映使用乙醇汽油后的汽车的动力性能差、油耗高,排气管排出水量剧增,导致城市道路结冰,以致在坡路、交叉口路段造成严重的交通拥堵,有时会使整条城市r干道或局部城区交通陷于瘫痪,甚至导致交通事故频发。因此,在寒区冬季的低温条件下,燃用乙醇汽油的汽车的动力性与燃料经济性、汽车的排放性及汽车排气凝结滴水与城市道路路面结冰的关系、以及其对城市交通拥堵的影响等,成为近年亟需进行深入而系统的探讨、分析及论证的问题。
     本文围绕着低温条件下,对乙醇汽油的燃烧、使用性能、排气凝结滴水、排气凝结滴水与道路结冰的关系及其对城市道路交通的影响和交通控制策略进行了全面系统的研究,其主要内容概述如下:
     (1)乙醇汽油燃烧模型的建立。在分别探讨汽油和乙醇的燃烧机理的基础上,建立了乙醇汽油的混合燃烧模型。同时,对混合模型进行了简化处理,以达到减少计算运行时间的效果,从而为较客观地分析乙醇汽油的燃烧过程奠定了理论基础。
     (2)乙醇汽油的燃烧过程分析。借助CHEMKIN软件模拟分析了不同温度条件下,较低进气温度对乙醇汽油燃烧过程的影响,并对比分析了不同乙醇含量的乙醇汽油对进气温度的敏感程度。模拟仿真结果表明,在低温条件下点火滞燃期随着进气温度降低而延长,且气缸内所能达到的最大压力和温度也随之降低。
     (3)低温条件下乙醇汽油汽车使用性能评价。选择典型的低温条件,分别进行了燃用乙醇汽油和汽油的汽车低温起动试验、加速性能试验、等速燃油消耗量试验及排放试验。试验结果表明,汽车燃用乙醇汽油和汽油的使用性能存在差异。使用两种燃料的动力性和燃料经济性的优劣表现呈区间性,存在“拐点车速”,且随着温度的降低“拐点车速”也随之下降。低温起动性能在-15℃以上无明显差别,低于-15℃时乙醇汽油汽车低温起动较困难,当温度降至-25℃时,乙醇汽油汽车低温起动非常困难。
     (4)乙醇汽油汽车排气凝结滴水的机理分析。以汽车排气凝结滴水机理为基础,采用CFD方法建立汽车排气凝结数值模拟模型,分别分析了排气温度、大气风速、大气环境温度及排气管壁导热对排气冷凝滴水的影响。模拟分析结果表明,随着排气温度的提高,冷凝水的体积百分含量呈现降低趋势;风速变化对汽车排气冷凝水产生较大影响,较高的大气流速使冷凝水含量有升高趋势;较低的环境温度使排气管冷却强度增强,使排气管内尾气中水蒸气易于发生相变,冷凝水具有较高的体积含量;降低排气管材料的导热系数,可以减少汽车排气在管内生成冷凝水。
     (5)乙醇汽油汽车排气凝结滴水的控制策略研究及试验验证。设计了使用乙醇汽油的汽车排气凝结滴水检测方案,并与燃用汽油的汽车进行了比较。同时,提出了使用乙醇汽油的汽车排气凝结滴水控制方法,分析了汽车排气凝结滴水控制方法的可行性并进行了试验验证。基于低温条件下发动机怠速工况时燃烧等量燃油的排气滴水试验结果表明,E10乙醇汽油排气管滴水量低于93号汽油排气管滴水量。另外,随环境温度升高,燃烧时间呈现多项式趋势线的上升趋势,而排气管滴水量随着环境温度的上升呈现先降低后升高趋势。
     (6)寒地城市冬季路面结冰现象分析。从理论上评价了燃用乙醇汽油汽车在道路上行驶排气凝结滴水对路面结冰的影响程度,重点对交叉口、坡道及弯道等易于出现路面结冰现象的典型路段进行了分析,对降雪与路面结冰的关系进行了理论论证。另外,以哈尔滨市的城市主干道为例,探究了路面结冰对城市交通的影响,并针对此提出了相应的应对策略。基于汽车在低温条件下排气凝结滴水与路面结冰关系的理论分析及其对城市交通的影响的调查结果可知,城市汽车保有量增长所导致的汽车排气凝结滴水总量的增加,是冬季寒地城市道路交叉口、坡道及弯道路段易于出现路面结冰现象的主要因素之一,且降雪进一步加剧了此类现象的产生。
Gasohol is one of renewable clean alternative energies, which is widely used around the world. Gasohol had been raised to use Gasohol in9provinces of China since2001. However, it was merely promoted the closed use in Heilongjiang Province since November1,2004. Moreover, this issue aroused the extensive discussion and controversy. Especially in the cold winter, some users reflect that the power performance becomes worse, fuel needs increase and exhaust condensation dripping from exhaust pipe is sharp increased of gasohol vehicles. And as a result, city roads appear the freezing phenomenon, sloping roads and sections of the intersection suffer form the serious traffic congestion, and sometimes the whole city roads or local areas emerge the traffic standstill, even appear frequent traffic accidents. Therefore, in the low-temperature conditions of winter for cold regions, the car's power, economy, emissions performances with gasohol, the relationship between exhaust condensation dripping and icy road in the city and its effects on the traffic congestion and the list goes on. These issues need to be discussed, analyzed and illustrated systematically.
     Around the special conditions of low temperature, this paper presents a series of issues on gasohol, i.e., the combustion of gasohol, its using performance, its condensation dripping, and how the dripping impact on traffic and traffic control strategies. The main contents are presented as follows:
     (1) Establishment of the combustion model for gasohol. Based on the discussion of the combustion mechanism of gasoline and ethanol, a hybrid combustion model is established. In addition, it is simplified to reduce the computation runing time. These works lay the foundation for a more objective analysis of gasohol combustion process.
     (2) Analysis of combustion process of the gasohol. Based on the CHEMKIN software, the impact of lower intake air temperature on the combustion process of gasohol with different low temperatures is simulated. In addition, the comparative analysis of the degree of sensitivity of different ethanol content gasohol on the intake air temperature is analyzed. The simulation results show that ignition delay extends as the lower intake air temperature decreases at low temperatures. What's more, the achieved maximal pressure and temperature in the cylinder decrease.
     (3) Evaluation of the gasohol vehicle performance at low-temperature experimental conditions:In typical low-temperature conditions, the cold-start test, the accelerate performance test, the fuel consumption test at constant speed and emission test for gasoline and gasohol are implemented, respectively. Through their comparative analysis, the comprehensive operating performance of gasohol is evaluated. The results show that there are differences in car'using performance between gasoline and gasohol. The pros and cons of their power and fuel economy show range features and "inflection point speed",what' more, the "inflection point speed" decreases as temperature decreases. Cold starting performance has no significant difference above-15℃, vehicle's cold starting with gasohol is more difficult under-15℃, This phenomenon is even more serious under-25℃.
     (4) Analysis of the mechanism of exhaust condensation dripping of gasohol. Based on the mechanism of vehicle exhaust condensation dripping, the numerical simulation model for vehicle condensation dripping is established via the CFD method. In addition, the influence of exhaust gas temperature, atmospheric wind speed, atmospheric ambient temperature and the thermal conductivity of exhaust pipe on condensation dripping is analyzed. The simulation results show that the volume fraction of the condensation dripping shows the decreasing trend as the exhaust temperature increases. In addition, the variation of wind speed has a significant impact on automobile exhaust condensation dripping. The higher atmospheric flow rate causes the increase of condensation dripping. Finnaly, the lower ambient temperature increases the exhaust pipe cooling intensity, thus exhaust water vapor within the exhaust pipe tends to produce phase transition, and as a relut, the condensating dripping has a higher volume. What' more, the reduction of thermal conductivity of exhaust pipe materials can reduce the generation of automobile exhaust condensation dripping in the tube.
     (5) Control strategy analysis and experimental validation of exhaust condensation dripping. First, this work designs a program to detect the exhaust condensation dripping of gasohol, and then compare with the general gasoline. In addition, the control method to reduce exhaust condensation dripping is designed and its experimental verification and feasibility are analyzed. According to exhaust dripping test results of burning the same amount of fuel at low temperature and in the idling condition of engine, the follwing conclusion is obtained. The exhaust pipe dripping of the gasohol is less than that of the gasoline. What's more, burning time shows an upward trend of the polynomial trend line, while the amount of exhaust pipe dripping shows the trend of "first reduction and then decreasion"as the temperature increases.
     (6) Analysis of phenomenon of icy road for cold regions in winter:Theoretically, this work evaluates the impact of the vehicles'exhaust condensation dripping on the icy road, especially some typical road sections, i.e., the intersection, ramps and corners. In addition, taking the main road of Harbin City as an example, combined with the impact mechanism of icy road on urban traffic, its appropriate coping strategies are proposed. Based on the theoretical analysis of relationship between exhaust condensation dripping and the icy road and its impact on urban traffic at low temperatue, the following conclusion is obtained. The increased condensation dripping of automobile exhaust caused by the growth of urban car ownership is one of the main factors of icy road at the intersection, the ramp and corners in cold winter. What's more, the snowfall further exacerbates this phenomenon.
引文
[1]刘铁男.中国燃料乙醇产业发展[J].中国能源,2002,(3):6-10.
    [2]欧阳明高.汽车新型能源动力系统技术战略与研发进展[J].内燃机学报,2008,26(增刊):107-114.
    [3]推广车用乙醇汽油[C].中国工业发展报告,2005:8-10.
    [4]我国加快推广乙醇汽油[Z].中国轻工业年鉴,2004:613-614.
    [5]国家发展改革委能源研究所课题组.”十二五”时期能源发展问题研究[J].宏观经济研究,2010,(3):3-17.
    [6]黄志甲,张旭,余卓平,万钢.汽车替代燃料发展战略的探讨[J].中国能源,2001,(8):30-33.
    [7]娄志刚.乙醇汽油及其应用性能研究[D].重庆:重庆大学,2008.
    [8]胡志远,张成,浦耿强,王成焘.木薯乙醇汽油生命周期能源、环境及经济性评价[J].内燃机工程,2004,25(1):]3-16.
    [9]黄志甲,张旭.汽车燃料的生命周期评价模型[J].同济大学学报,2003,31(12):1472-1476.
    [10]刘圣华,魏衍举,吕胜春,等.乙醇汽油发动机排放特性研究[J].西安交通大学学报,2006,40(7):475-477.
    [11]王强.绿色汽车燃料—液化天然气冷量回收汽车空调系统研究[D].西安:西安交通大学,2003.
    [12]盛新堂,高广新,吴国伟,刘圣华.二甲醚发动机燃料喷射过程及其影响因素研究[J].西安交通大学学报,2012,46(1):y1-y5.
    [13]林漫群.小型汽油机乙醇汽油适用性与排放研究[D].天津:天津大学,2007.
    [14]R.Cipollone, C.Villanie.Model-based A/F control for LPG liquid-Phase injected SIEs [C].USA:Society of Automotive Engineers,2004-01-2958.
    [15]郭昌伦,金先扬,宋金环.甲醇汽车燃料消耗量的当量比和替代比[J].汽车技术,2011,(11):31-33.
    [16]章克昌.发展“燃料酒精”的建议[J].中国工程科学,2000,2(6):89-93.
    [17]李恒宾,靳生盛,郭文彬.高原环境汽油机燃用乙醇汽油的适应性研究[J].车用发动机,2011,195(4):71-77.
    [18]原满江.车用动力使用甲醇燃料的可行性分析[J].车用发动机,2002,(4):38-40.
    [19]Lester B Lave, Heather Maelean. A life cycle comparison of alternative transportation fuels[C].USA:Society of Automotive Engineers,2000-01-1516.
    [20]祁东辉.刘圣华.李晖等.电喷汽油机燃用醇汽油混合燃烧的试验研究[J].内燃机工程,2007,28(2):27-30.
    [21]丁焰,葛蕴珊,王军方,等.生物柴油发动机PM排放的理化特性研究[J].内燃机工程,2010,31(3):39-43.
    [22]于冲,吴永志,夏海华,曲晓军.巴西、美国汽油醇产业的发展简况及对我国的启示[J].酿酒,2005,32(3):11-12.
    [23]陈进富,陆绍信.吸附法储存天然气汽车燃料技术的研究[J].天然气工业,1999,19(4):81-84.
    [24]郭英男,李君.醇类燃料汽车技术发展现状与发展[C].昆明:中国清洁汽车与清洁燃料国际研讨会论文集.2002:89-101.
    [25]江清阳,孙平.生物柴油对能源和环境影响的研究[J].江苏大学学报,2002,23(4):8-11.
    [26]孙剑萍,汤兆平.生物柴油的发展及其在发动机中的应用[J].小型内燃机与摩托车,2009,38(1):91-93.
    [27]方显忠.柴油机掺烧含经基液体或燃料的研究[D].长春:吉林大学,2006.
    [28]崔心存.车用替代燃料与生物质能[M].北京:中国石化出版社,2007.
    [29]边耀璋.汽车新能源技术[M].北京:人民交通出版社,2003.
    [30]王革华,田雅林,袁蜻婷.能源与可持续发展[M].北京:化学工业出版社,2005.
    [31]王振锁,肖宗成,王惠萍,等.LPG与汽油燃料微粒排放的时效特性研究[J].内燃机学报,2004,22(1):56-62.
    [32]WESTPORT. Direct injection natural gas demonstration project [EB/OL]. (2010-03-01).
    [33]王强,历彦忠,张哲,焦安军.LNG在汽车工业中的发展优势[J].天然气工业,2002,22(5):93-97.
    [34]李君,朱昌吉,工立军.柴油机新技术应用二甲醚发动机性能试验研究[J].汽车工程,2003,25(2):128-130.
    [35]张翠平,杨庆佛,胡真.ZS195柴油机燃用二甲醚(DME)一柴油混合燃料的试验研究[J].内燃机学报,2004,22(4):305-309.
    [36]吴海燕.清洁替代燃料二甲醚的环境效益及产业化分析[J].工业技术经济,2006,25(6):130-133.
    [37]侯明,俞红梅,衣宝廉.车用燃料电池技术的现状与研究热点[J].化学进展,2009,21(11):2319-2330.
    [38]姚栋伟.汽油机燃用乙醇汽油混合燃料的空燃比控制技术研究[D].杭州:浙江大学,2010.
    [39]张以祥,曹湘洪,史济春.燃料乙醇与车用乙醇汽油[M].北京:中国石化出版社,2004.
    [40]刘生全,马志义,王平福,等.车用甲醇汽油燃料技术性能[J].长安大学学报(自然科学版),2007,27(4):88-91.
    [41]姚春德,王艳霞,段峰,等.柴油/甲醇组合燃烧在增压柴油机上的应用[J].车用发动机,2005,(4):6-9.
    [42]穆仕芳,尚如静,魏灵朝.我国甲醇汽油的研究与应用现状及前景分析[J].天然气化工,2012,37(1):62-66.
    [43]朱清江.甲醇汽油使用性能与技术研究[D].西安:长安大学,2006.
    [44]曹湘洪.我国发展燃料乙醇和乙醇汽油应注意的若干问题[J].天然气化工,2001,32(6):7-10.
    [45]陈绍刚,赵蜀蓉.我国乙醇汽油发展的制约因素及经济前景评价[J].天然气工业,2003,23(5):124-126.
    [46]戴颂.含水乙醇汽油对电喷汽油机性能及燃烧特性的影响[D].昆明:昆明理工大学,2009.
    [47]王春杰,王玮,汤大钢,崔平.车用乙醇汽油和无铅汽油对电喷汽车排放性能的影响[J].环 境科学,2004,25(4):113-116.
    [48]杨小龙,杨靖,林铁平.丁醇汽油对发动机性能影响的实验研究[J].湖南大学学报(自然科学版),2010,37(2):32-35.
    [49]陈振斌,倪计民,张惜辉,等.乙醇-丁醇-柴油混合燃料的车辆排放性和经济性[J].农业工程学报,2012,28(7):62-66.
    [50]Yacoub.Y, Bata.R, Gautam.M, performance and Emission Characteristics of C1-C5 Alcohol-gasoline Blends with Matched Oxygen Content in a Single-cylinder Spark Ignition Engine[J],Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy v 212 n 5 1998 Prof Publ Ltd.
    [51]黄佐华,苗海燕,周龙保,等.汽油机燃用汽油-含氧化合物混合燃料时的燃烧特性研究[J].西安交通大学学报,1999,(9):43-46.
    [52]何邦全,闫小光等.电喷汽油机燃用乙醇—汽油燃料的排放性能研究[J].内燃机学报,2002,(5):107-112.
    [53]S.Maji, M.K.Gajendra Babu, Nakul Gupta A Single-Cylinder Engine Study of Power, Fuel Consumption and Exhaust Emissions With Ethanol.SAE 2001-28-0029.
    [54]Poulopoulos S G, Samaras D P, Philippopoulos C J. Regulated and unregulated emissions from an internal combustion engine.operating on ethanol.containing fuels [J].Atmospheric Environment,2001,35:4399-4406.
    [55]AI-Hasan M. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission [J].Energy Conversion and Management,2003,44:1547-1561.
    [56]叶燕帅.E10含水乙醇汽油的稳定性及其对发动机燃烧特性影响研究[D].昆明:昆明理工大学,2010.
    [57]朱斌,许敏,张玉银,张高明.乙醇汽油喷雾特性研究及低压直喷喷嘴优化[J].车用发动机,2011,192(1):79-84.
    [58]Shing Tet Leonga, S Muttamara, Preecha Laortanakul. Applicability of gasoline containing ethanol as Brazil's alternative fuel to curb toxic VOC pollutants from automobile emission [J].Atmospheric Environment,2002,36:3495-3503.
    [59]Frederic L. Pryor. The economics of gasohol [J]. Contemporary Economic Policy,2009,27(4):523
    [60]Das, A. K. Gasohol for sustainable development [J]. Chemical Business,2000,14:11~ 13
    [61]BRAZIL:-Gasohol seen as a possible sugar market stabilizer [J]. Latin American Weekly Report,2011.3:29
    [62]Mohammad Ameri;Barat Ghobadian;Iman Baratian. Technical comparison of a CHP using various blends of gasohol in an IC engine [J]. Renewable Energy,2008,33:7
    [63]Nunes, Cristina Cardoso;Corseuil, Henry Xavier. Importance of ethanol on natural attenuation of groundwater impacted by gasohol [J]. Engenharia Sanitaria e Ambiental,2007,12:259
    [64]Meekhof, Ronald L.;Tyner, Wallace E.;Holland, Forrest D. U.S. Agricultural Policy and Gasohol:A Policy Simulation [J]. American Journal of Agricultural Economics,1980,62:408
    [65]Government team to visit Brazil to study gasohol program [J] CHEMICAL WEEKLY-BOMBAY-,2001,46:82-83
    [66]钱叶剑,谈建,左承基,滕勤[J].内燃机学报,2004,24(4):320-325.
    [67]Koichi Nakata, Shintaro Utssumi, the Effect of Ethanol Fuel on a Spark Ignition Engine. SAE 2006-01-3380.
    [68]Sriram S.S.Popuri, Reda M. Bata, A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine. SAE 932953.
    [69]李正西.对使用乙醇汽油若干问题的探讨[J].现代化工,2002,22(4):1-4.
    [70]崔淑华.醇类混合燃料发动机性能应用试验研究[D].哈尔滨:哈尔滨工程大学,2010.
    [71]杜宝杰.电喷汽油机燃用乙醇汽油混合燃料的性能研究[D].长沙:长沙理工大学,2009.
    [72]李昕光.汽车代用燃料在电喷发动机上的应用研究[D].东北林业大学,2005.
    [73]张辉.甲醇汽油燃烧过程及排放特性研究[D].吉林大学,2006.
    [74]祁东辉,陈昊,任学成.电喷汽油机燃用甲醇/汽油混合燃料的燃烧特性[J].交通运输工程学报,2008,8(4):20-23.
    [75]CHEMKIN软件[R/OL].http://bbs.mahoupao. com/thread-2920-1-1.html.
    [76]Chemkin_chemkin简介[R/OL].http://www.baikedq.com/qita/20457.html.
    [77]吕昊CHEMKIN软件在均质压燃及燃料改质数值模拟中的应用[D].西安:长安大学.2010.
    [78]宋景景.柴油机燃烧过程中多环芳香烃生成机理的研究[D].天津:天津大学.2007.
    [79]陈志方,常耀红.基于Chemkin的甲烷HCCI燃烧模拟研究[J].北京汽车,2011,10:13.
    [80]林灵.二甲醚HCCI燃烧及排放特性研究[D].成都:西华大学.2008.
    [81]樊融.加压条件下甲烷_空气层流预混火焰可燃极限的研究[D].北京:清华大学.2008.
    [82]黄露.甲醇汽油机冷起动混合气形成与燃烧的三维瞬态数值模拟[D].北京:清华大学,2008.
    [83]田国弘.缸内直喷汽油机HCCI燃烧瞬态过程的研究[D].北京:清华大学,2007.
    [84]刘玉静.富氧燃烧方式下NOx生成的化学动力学模拟[D].保定:华北电力大学,2008
    [85]贾明.均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究[D].大连:大连理工大学,2006.
    [86]刘发发.乙醇燃料均质压燃发动机的模拟研究[D].长春:吉林大学,2007.
    [87]郑朝蕾,尧命发.正庚烷均质压燃燃烧反应化学动力学数值模拟研究[J].内燃机学报,2004,5(25).
    [88]黄豪中.柴油均质压燃(HCCI)发动机燃烧过程数值模拟和实验研究[D].天津:天津大学,2007.
    [89]彭亚平.基于进气温度控制的乙醇燃料SI/HCCI复合燃烧模式发动机研究[D].长春:吉 林大学,2008.
    [90]侯玉春.燃料设计控制HCCI燃烧与排放的试验研究[D].上海:上海交通大学,2007.
    [91]张素英.乙醇HCCI发动机燃烧与排放物生成机理的研究[D].武汉:武汉理工大学,2010.
    [92]顾洁.汽油机燃用乙醇汽油混合燃料的模型及试验研究[D].杭州:浙江大学,2003.
    [93]NICK M. MARINOV.A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550.1998.8
    [94]Egolfopolous, F. N.; Du, D. X.; Law, C. K. Twenty-Fourth Symposium (International) on Combustion; The Combustion Institute,1992; p 833.
    [95]Borisov, A. A.; Zamanskii, V. M.; Konnov, A. A.; Lisyanskii,V. V.; Rusakov, S. A.; Skachov, G. I. Soviet J Chemical Physics 1991,8,121-141; and 1992,9,2527-2537.
    [96]Curran, H. J.; Dunphy, M. P.; Simmie, J. M.; Westbrook,C. K.; Pitz, W. J. Twenty-Fourth Symposium (International) on Combustion; The Combustion Institute,1992; p 769; also Curran, H. J. personal communication,1997.
    [97]Held,T.J.Dryer,F.L.,Int J Chem Kinet.1988,30,805-830
    [98]Natarajan K.Bhaskaran,K.A. Thirteenth International Shock Tube Symposium;Niagara Falls,1981;p834.
    [99]刘家利.乙醇均质压燃及燃料改制的模拟研究[D],西安:长安大学,2009.
    [100]蒋德明,黄左华.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007.
    [101]苏万华,赵华,王建昕等.均值压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010.
    [102]H.J.Curran, P.Gaffuri, W.J.Pitz and C.K.Westbrook. A Comprehensive Modeling Study of iso-Octane Oxidation. Lawrence Livermore National Laboratory, Livermore, CA 94551.2004.5.
    [103]Zheng,J.,Yang,W.,Miller,D.L.,andCernansky,N.P.,(2001).Publ.SAE-011025,Society of Automotive Engineers.
    [104]Kong,S-C.,Marriott,C, and Reitz,R.D,(2001).Publ.SAE-011026,Society of Automotive Engineers.
    [105]Agarwal,A.,Lavoie,G.A,and Easley,W,(2001).Publ.SAE-011029,Society of Automotive Engineers.
    [106]Olsson,J-O.,and Johansson,B.,(2001).Publ.SAE-011031,Society of Automotive Engineers.
    [107]姚春玲.汽油机进气混合O2/CO2的燃烧机理与性能研究[D].哈尔滨:东北林业大学,2011.
    [108]张霞.甲醇汽油排放建模与预测[D].北京:清华大学,2009.
    [109]魏志鹏,谢辉,何邦全,赵华.甲醇/乙醇/汽油HCCI燃烧和排放特性对比[J].内燃机学 报,2007,25(3):223-228.
    [110]王运生.基于KIVA-3V的乙醇汽油燃烧过程仿真研究[D].重庆:重庆大学,2008.
    [111]Piotr Bielaczyc, Jerzy Merkisz, EuroIII/Euro IV Emissions-A Study of Clod Start and Warm Up Phases with a SI (Spark Ignition) Engine,SAE paper 1999-01-1073.
    [112]王建昕,闫小光,程勇等.乙醇-柴油混合燃料的燃烧与排放特性[J].内燃机学报,2002,20(3):225-229.
    [113]刘德新,刘斌.二次喷油优化直喷汽油机冷启动排放特性的研究[J].西安交通大学学报,2012,46(1):13-18.
    [114]沈义涛.汽油品质对发动机性能影响的试验研究与数值模拟[D].北京:清华大学,2009.
    [115]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.汽车加速性能试验方法,GB/T 12543-2009.
    [116]王建昕,帅石金.汽车发动机原理[M].北京:清华大学出版社,2011.
    [117]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.汽车燃料消耗量试验方法.GB/T12545.1-2008
    [118]刁洪军.乙醉汽油成分测试及其对电喷汽油机性能影响实验研究[D].重庆:吉林大学,2007.
    [119]国家环境保护总局,国家质量监督检验检疫总局.GB18285-2005点燃式发动机汽车排气污染物排放限值及测量方法(双怠速法及简易工况法)[S].北京:中国标准出版社,2005.
    [120]熊孟清,刘咸定,林宗虎.含不凝气体的蒸汽冷凝换热系数的关联式[J].热能动力工程,1997,12(5):377-380.
    [121]张本华,任文涛,咚玲等.液压式万能试验机计算机接口设计[J].沈阳农业大学学报,2001,32(2):134-136.
    [122]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学,2004.
    [123]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [124]刘儒勋,舒其望.计算流体力学的若干新方法.[M]北京:科学出版社,2003.
    [125]帕坦卡(Patanker S V)传热和流体流动的数值方法[M].安徽:科学技术出版社,1984.
    [126]黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [127]臧杰.乙醇汽油车冬季滴水问题研究[J].内燃机,2010(3):16-18.
    [128]贾元华.高速公路交通事件自动检测系统结构框架[J].佳木斯大学学报,2005,24(24):242-246.
    [129]杨佩昆,张树升.交通管理与控制[M].北京:人民交通出版社,1999:160-162.
    [130]戴巍.汽车上坡曲线行驶弊病安全带意识[J].汽车运用,2007(2):34-35
    [131]刘文顺,王德章.关于汽车弯路事故的儿种受力分析[J].辽宁警专学报,2007(5):51-55.
    [132]冯莉,李美华,李佳.冬季环境下道路交通安全影响因素分析[J].科技向导,2010(33):67-68.
    [133]相文森.城市冰雪道路交通事故成因及发生机理研究[D].哈尔滨工程大学.2010:53-60.
    [134]Grosch K A. Relation between the friction and visco-elastic properties of rubber [J]. Proc Roy Soc London,1963, A 274:21-39.
    [135]Gnorich W, Grosch K A. The friction of polymers on ice [J].Rubber Chemistry and Techno-logy (RCT),1975,48 (4):527-537.
    [136]Grosch K A. Determ ination of friction and wear resistance of tread compounds [J]. K G K,1997,49 (6):432-441.
    [137]彭旭东,孟祥凯,卢荡,郭孔辉,谢友柏.冰雪路面汽车轮胎摩擦特性研究进展.摩擦学学报,2003(5)451-454.
    [138]任园园.冰雪条件下城市道路交通流特性及管理对策研究[D].长春:吉林大学,2008.
    [139]张亚平,裴玉龙.道路通行能力研究现状及发展综述[J].交通运输工程学报:2002,2(2).
    [140]陈宽民,严宝杰主编.道路通行能力分析[M].北京:人民交通出版社,2008,117-122.
    [141]王纬.公路交通流车速-流量实用关系模型[J].东南大学学报:2003,33(4).
    [142]罗丽君,高晗,裴玉龙.冰雪道路条件下最小安全行车间距的确定[J].黑龙江交通科技,1999,38:33-34.
    [143]严敏琳.西安市交通新能源中长期发展规划[D].西安:长安大学,2008.5.
    [144]李立春,王举鹏,韩晓东.黑龙江省交通运输行业管理存在的问题及对策研究[J],黑龙江交通科技,1999(3):50-52.
    [145]城市道路冬季除雪系统[J].商用汽车,2001,(11):30-31.
    [146]精巧的秀灵R-600扬雪车[J].商用汽车,2002,(3):56-57.
    [147]胡天明.俄罗斯清雪车的性能分析与探讨[J].交通科技与经经,2008,46(2):66-67.
    [148]杜宏云,施红星.浅议加快我国交通事故人工智能处理系统的建设[J].公路运输文摘,2003(1):33-35.
    [149]王晓娟,李德才.应对交通应急事件编制应急预案的必要性分析[J].黑龙江交通科技,2005,28(6):94.
    [150]陈建军.应急指挥系统建设方案设计与研究[J].武汉理工大学学报,2004,27(2):122-126.
    [151]高朝晖,黄卫.高速公路交通管理系统的应用研究[J].公路交通科技,2000,17(4):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700