用户名: 密码: 验证码:
高温条件下抑烟改性沥青开发及混合料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面以其良好的路用性能被交通行业广泛应用。但高温状态下,热拌沥青混合料产生和聚集的沥青烟会危害施工人员身心健康、造成环境污染。本文依托国家自然科学基金研究课题“高温条件下改性沥青烟雾产生机理与抑制技术研究”,开发抑烟复合改性沥青,揭示其在高温条件下对沥青烟的抑制机理,系统研究抑烟复合改性沥青及沥青混合料性能,在确保路用性能的前提下,在生产过程中最大限度地减少沥青烟的释放,实现沥青路面生产全过程的污染控制,为建设资源节约型、环境友好型交通提供技术支撑。研究工作取得以下主要成果:
     1、系统介绍了目前国内外沥青烟释放危害、沥青烟治理技术和沥青烟测定装置研究现状;基于重量法,提出了一个简单、实用的高温条件下评价抑烟效果的方法;根据物理吸附原理,优选纯净聚丙烯纤维棉作为高性能吸附介质,结合冻干技术,研发了一套集沥青烟产生、收集、排空装置于一体的沥青烟测定装置,试验证明该装置简单,稳定、高效、可靠;
     2、对影响沥青烟释放关键因素的研究表明,拌合速度、加热温度,加热时间是导致沥青烟释放量发生变化的主要因素,是否搅拌沥青、油源和种类的差异、沥青和空气载体的含水量也对沥青烟释放量产生影响;
     3、按照沥青阻燃、有机物非极性吸附、物理吸附和有机物非极性同时吸附等原理,针对性的选择了不同类别,可能具有抑烟效果的十一种材料,配制抑烟沥青,根据沥青烟释放量和路用性能,优选出膨胀石墨作为抑烟剂,开发抑烟复合改性沥青。
     4、红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和综合热分析(TG-DSC)试验研究证实可膨胀石墨掺入沥青,在高温条件和长时间热拌过程中,产生部分膨胀,石墨层片主要被沥青轻质组分溶胀,轻质组份和多环芳烃吸附于膨胀石墨表面或部分插入膨胀石墨层片间并形核结晶长大,范德华力和晶格能的束缚有效抑制了其在热拌过程中的逸出释放;膨胀石墨中的氧化性膨胀剂在拌合过程中会扩散进入沥青,使沥青一定程度被氧化(老化),导致改性沥青的塑性减弱,表现为改性沥青延度降低,并影响改性沥青软化点,使其有所升高。
     5、提出制备抑烟复合改性沥青的详细方法;采用“均匀设计”为基础的科学实验设计方法,以控制沥青烟释放量和保证胶结料路用性能为目标,开发基于膨胀石墨、SBS和环氧大豆油的抑烟复合改性沥青,研究和提出了材料最佳组成比例;证明抑烟复合改性沥青抑烟率达到了60%,抑烟性能优良。
     6、常规沥青试验、RTFOT老化性能试验、Brookfield黏度试验与动态流变试验证明抑烟复合改性沥青感温性小、高温稳定性、低温抗裂性、抗水损性好,优于基质沥青,与SBS改性沥青相当,路用性能良好;
     7、沥青混合料试验分析证明抑烟复合改性沥青混合料具有较好的高温稳定性,良好的抗水损害性能和较好的抗疲劳性能,满足低温性能使用要求(冬温区、冬冷区);揭示了抑烟复合改性沥青混合料的黏弹性变化规律,分别建立了轴向应变(轴向应变速率)与加载时间的回归方程,加载蠕变方程、动态模量(相位角)主曲线和主曲线回归方程;
     8、氧浓度燃烧试验、烟密度试验和混合料无约束、约束燃烧试验分析证明,发生火灾时,抑烟复合改性沥青路面能够发挥阻断沥青路面燃烧的作用;掌握了抑烟复合改性沥青的阻燃机理。
     9、提出了抑烟复合改性沥青和抑烟复合改性沥青混合料的参考技术指标。
     本文的系统研究表明,抑烟复合改性沥青及沥青混合料可以大幅降低热拌沥青混合料的沥青烟释放量,路用性能良好,为降低沥青烟的危害提供了一条新的技术途径。
Asphalt pavement is widely used throughout the transportation industry for its fine pavement performance. However under the elevated temperature condition, asphalt fume which comes from the HMA harms construction personnel's physical health and causes environmental pollution. Subject research of nation national natural science fund that is "study on generation mechanism and suppression technique of modified asphalt fume under high temperature" is based on by this paper to exploit composite modified asphalt of fume suppression and reveal mechanism of asphalt fume suppression under the elevated temperature conditions and study the performance of composite modified asphalt and asphalt mixture of fume suppression systematically. Under the precondition the pavement performance is ensured, the aim is to minimize the release of asphalt smoke, to control the pollution during the entire production of asphalt pavement. It provides technical support to build a resource-conserving and environment-friendly traffic construction. Main research results in this paper are obtained as follows.
     1. The present situation at home and abroad research on the harm of asphalt fume releasing and the technology of asphalt fume suppression and measurement equipment of asphalt fume was introduced. At the base of the gravimetric method, a simple and practical evaluation method on effect of fume suppression was put forward; according to the principle of physical adsorption, pure polypropylene fiber cotton was preferred as superior performance adsorption material. By freeze-drying technology, a measurement equipment which combines generation device of asphalt fume, collection device of asphalt fume with emptier of asphalt fume was researched and developed. The experimental results prove the equipment is uncomplicated, stable, efficient and reliable.
     2. The systematic research on the key factors which influence the release of asphalt fume shows that mixing speed and the heating temperature and heating time are the main factor that leads to the change of the release amount of asphalt fume; Mixing or not, the different oil source and types of asphalt, the water content in asphalt and water content on the air all influence the release of asphalt fume.
     3. According to the smoke suppression principle of the asphalt flame-retardant, the nonpolar adsorption principle of organic compounds, the physical adsorption and nonpolar adsorption principle of organic compounds, eleven kinds of material which belong different category and maybe have fume suppression performance were chosen pertinently to be prepared modified asphalt of fume suppression. Expanded graphite (EG) as the best fume suppressant was selected according to the release amount of asphalt fume and road performance, then composite modified asphalt of fume suppression was developed.
     4. The infrared spectrum test (FT-IR), X-ray diffraction test (XRD), scanning electron microscopy (SEM) test and comprehensive thermal analysis (TG-DSC) test Confirm that after expandable graphite was incorporated into asphalt, in elevated temperature conditions and hot mix process for a long time, the part of EG expand, graphite layer is swelled by light asphalt component. Light asphalt component and polycyclic aromatic hydrocarbon are adsorbed on the expansion graphite surface or part of them insert expansion graphite layer and crystal nucleation is grown up. The van der Waals force and lattice energy can effectively restrain escape and release in the hot mix process.In mixing process oxidative expansion agent of expandable graphite can spread into asphalt, so asphalt is oxidized (aging) in certain extent. These make the modified asphalt plastic abate, the performance is that ductility is reduced, softening point of the modified asphalt may be affected and risen.
     5. The detailed method to prepare the composite modified asphalt of fume suppression was determined; The "uniform design" as the foundation, method of scientific experimental design was utilized. To control the release amount of asphalt fume and ensure road performance of cementing material as the goal, composite modified asphalt of fume suppression was developed which is based on the expansion graphite, SBS modifier and epitomized soybean oil. The best material composition proportion was studied and put forward. Afterwards it was proved that composite modified asphalt of fume suppression has excellent performance of asphalt fume suppression and its fume suppression rate is60%.
     6. Conventional asphalt test, performance test after RTFOT aging, Brookfield viscosity test and dynamic shear religious test prove composite modified asphalt of fume suppression has low temperature susceptibility, good high temperature stability, good low-temperature crack resistance, good water stability. Its performance is better than that of the basic asphalt and the same as that of SBS modified asphalt. So its pavement performance is good.
     7. Tests of asphalt mixture prove conventional indexes of the composite modified asphalt of fume suppression meet the current specification, it has good elevated temperature stability, good resistance to water damage, good resistance to fatigue performance, meets the use requirements (winter temperature area, winter cold area) about the low-temperature performance; The composite modified asphalt mixture of fume suppression's viscoelasticity change rule is revealed. The regression equations for the axial strain or strain rate of asphalt mixtures and loading time were built. Loading creep equation was built. Dynamic Modulus (phase angle) master curve and master curve regression equation are established.
     8. Analysis of the oxygen concentration combustion test and smoke density test of asphalt cementing material, unconstrained and constrained combustion test of asphalt mixture prove that composite modified asphalt of fume suppression pavement can pay a role to prevent asphalt pavement combustion. The flame-retardant mechanism of composite modified asphalt of fume suppression is mastered.
     9. Reference technical indexes of composite modified asphalt and asphalt mixture of fume suppression are put forward.
     Systematic research in this paper shows that composite modified asphalt of fume suppression and asphalt mixture can decrease asphalt fume emission of HWA greatly and have good pavement performance. It provides a new technical way to decrease harm of asphalt fume.
引文
[1]才洪美,王鹏,王涛,张玉贞.沥青中潜在的有害组分环境污染研究综述[J].石油沥青,2009,23(2):1-8.
    [2]交通科学和技术综合专题组.2020年中国交通科学和技术发展研究[R].北京:中国土木工程学会,2004:361.
    [3]潘琼,曾鼎文,袁兴中.公路沥青路面环境问题的探讨[J].环境与可持续发展,2006:59-60
    [4]李鸿.浅谈沥青烟气的危害及几种治理方法[J].有色金属设计,2004,31(3):73-75.
    [5]杨禹华,谢曦,康洁.关于沥青烟尘治理的工业安全与卫生评价[J].中国安全科学学报,2004,14(5):103-106.
    [6]肖石.沥青烟气和悬浮颗粒对人体健康危害的研究[J].中国建筑防水,2004,11:44.
    [7]IARC. Bitumens and extracts of steam-refined bitumens[R].1987(42):133-134.
    [8]IARC. Certain polycyclic hydrocarbons and heterocyclic compounds[R].1973(3).:123.
    [9]Centers for Disease Control and Prevention National Institute for Occupational Safety and Health. Hazard review:Health effects of occupational exposure to asphalt. Tech. report[R].US Departement of Health and Human Services.2000.
    [10]Centers for Disease Control and Prevention National Institute for Occupational Safety and Health. Asphalt fume exposures during the manufacture of asphalt roofing products [R].2001.
    [11]美国环境卫生科学研究院.环境与健康展望[J].2003,111:27.
    [12]潘琼,曾鼎文.沥青路面环境问题浅谈[J].江苏环境科技,2005,18(增刊):147-148.
    [13]Missouri Department of Natural Resources Environmental Assistance Office. Preventing Pollution at Hot Mix Asphalt Plants [R].A Guide to Environmental Compliance and Pollution Prevention for Asphalt Plants in Missouri,.2004:5
    [14]Norseth T, Waage J, Dale I.Acute effects and exposure to organic compounds in road maintenance workers exposed to asphalt[J].American Journal of Industrial Medicine,1991. 6:737-74.
    [15]Machado ML, Beatty PW, Fetzer JC, et al. Evaluation of the relationship between PAH content and mutagenic activity of fumes from roofing and paving asphalts and coal tar pitch[J]. Fundam and Appl Toxicol,1993,21(4):492-499.
    [16]Anthony J.Kriech, Josepht. Kurek, Lindav. Osborn, Gary r. Blackburn, Fred M. Fehsenfeld. Bio-directed fractionation of laboratory-generated asphalt fumes' relationship between composition and carcinogenicity[R]. ASPHALT INSTITUTE Executive Offices and Research Center, Kentucky, 2000.
    [17]Genevois C, De Meo M, Brandt H. In vitro studies of the genotoxic effects of bitumen and coal-tar fume condensates:comparison of data obtained by mutagenicity testing and DNA adduct analysis by 32P-postlabelling [J]. Chem Biol Interact,1996,101(21):73-88.
    [18]Sikora ER, Stone S, Tomblyn S. Asphalt exposure enhances neuropeptide levels in sensory pulmonary responses [J]. Arch Toxicol 2000,74:452-459.
    [19]Simmers MH. Petroleum asphalt inhalation by mice. Arch of Environ Health [J].1964, 9:727-734.
    [20]李海玲.沥青烟对小鼠中枢神经系统损伤机制的实验研究[D].兰州:兰州大学,2006.
    [21]郭湘云,王金惠,卢启明,刘晓霞.沥青烟致肺损伤细胞凋亡及突变的实验研究[J].中国工业医学杂志,2007,20(1):9-12.
    [22]钟莹,李小红,潘举升,林萍,魏泽荣.沥青烟对肺通气功能的影响[J].中国工业医学杂志,2003,16(6):366-367.
    [23]柴尔青,郭湘云,李艳.沥青烟作业工人认知功能的观察[J].中国神经免疫学和神经病学杂志,2010,17(4):250-253.
    [24]赵进顺,马进,巩德田,刘桂兰.石油沥青加热烟尘对人体外周血淋巴细胞微核率的影响[J].南京铁道医学院学报,1994,13(2):23-24.
    [25]赵进顺,张宝义,陈玉莉,王小芬,李厚勇.石油沥青致突变和致癌作用的实验研究[J].南京铁道医学院学报,]998,4:31-35.
    [26]王慧萍.石油沥青烟对小鼠肝、肾损伤的实验研究.[D].兰州:兰州大学,2007.
    [27]张业岚,周围,王明仁,马昌庭.沥青接触者外周血淋巴细胞姊妹染色单体交换率的研究[D].唐山,中国综合临床1984,3:42-47.
    [28]蒋益林.石油沥青生产工人外周血淋巴细胞微核及SCE观察结果分析[J].职业医学,1996,23(3):25-26.
    [29]张丹.多环芳烃化合物生物监测的研究进展[J].国外医学卫生学分册,2008,35(1):28-31.
    [30]赵进顺,张宝仪.石油沥青职业毒性研究概况[J].职业医学,1990,17(121):369-370.
    [31]慈捷元.石油沥青毒性及职业危害[J].卫生毒理学杂志.2001,15(3):180-181.
    [32]黄杨程.温拌型阻燃沥青混凝土制备及应用技术研究[D].重庆:重庆交通大学,2011.
    [33]巢文革.沥青烟气治理方法探讨[J].中国建筑防水,2005(12):35-37.
    [34]刘英.沥青烟气污染与防治[J].贵州化工,2001,26(2):34-39.
    [35]牛利民.低浓度沥青烟的净化处理[J].有色冶金节能,2003,20(6):33-35.
    [36]张德见,魏先勋,曾光明,李方文,翟云波.粉煤灰改性吸附材料处理沥青烟气[J].环境保护科学,2003,29(3):4-5.
    [37]Warm-mix Asphalt:European Practice[R].FHWA-PL-08-007:1-2.
    [38]李新阳、黄刚、王俐栋.温拌沥青混合料技术综述.[J].石油沥青,2013,Vol.27No.1:P66-P71
    [39]秦永春,黄颂昌,徐剑等.温拌沥青混合料技术及最新研究[J].石油沥青,2006,(4).18-20.
    [40]仰建岗.温拌沥青混合料应用现状与性能[J].公路交通科技(应用技术版),2006(8).26-28.
    [41]郭红兵,陈拴发.Aspha-min温拌沥青混合料技术现状与路用性能[J].中外公路,2008,28(2):152-155.
    [42]杨小娟,李淑明,史保华.温拌沥青混合料的技术与应用分析[J].石油沥青,2007,21(4):58-61.
    [43]张智强,严世祥,周进川.温拌沥青混合料技术探讨[J].重庆建筑大学学报,2007,29(6):113-116.
    [44]任雪松,杜辉,孙强,陈静,王钦涛.公路施工中沥青烟治理技术的研究[J].公路环境保护,2004,3:214-216.
    [45]赵天燕,王慧觉,杜辉,董炽.公路沥青供应站沥青烟排放模拟及控制装置经济论证[J].武汉理工大学学报(交通科学与工程版),2005,29(1):41-44.
    [46]段东平,郭占成,唐惠庆.沥青混凝土装车烟气的除尘净化和余热回收[J].环境工程,2004,22(3):41-43.
    [47]Ilmeg Products. AFC 2000 Asphalt Fume Control System. Ilmeg Products [Z]. Sweden. Ilmeg Products.
    [48]Valerie Viranaiken. Development of a new laboratory protocole to study fumes generation by bituminous mixtures [J]. Energy, Environment and Resources.2010:1-2
    [49]Paranhos R, Beghin A, Petiteau C, Moneron P, de la Roche C. Laboratory Characterization of Hot Mix Asphalt Fumes During Mixing Linked with Mechanical Performances[R].Proceedings of 10th International Conference on Asphalt Pavements Held at Quebec City,2006.
    [50]郑莘荑,刘黎萍.沥青混合料烟雾与材料力学性能之间的关系[J].中外公路,2010,30(1):254-258.
    [51]Valerie Viranaiken. Vincent Gaudefroy, Patricia LeCoutaller, Francois Deygout, Bruno Bujoli.A New Asphalt Fume Generator:Development of an Original Sequential Mixing and Sampling Protocol. Transportation Research Board Business Office,2010.
    [52]Sivak, A, Menzies, K, Beltis, K, Worthington, J, Ross, A, Latta, R. Assessment of the carcinogenic/promoting activity of asphalt fumes [R]. U.S. Department of Health and Human Services Contract 200-83-2612_1989.
    [53]才洪美.沥青使用过程中对环境的影响研究[D].东营,中国石油大学,2010:3-4.
    [54]E.Gasthauer, M.Maze, J.P.Marchand.J.Amouroux. Characterization of asphalt fume composition by GC/MS and effect of temperature [J]. Science Direct, Fuel 2008,87:1428-1434.
    [55]Agnes Jullien, Pierre Mon'eron, Gaetana Quaranta, David Gaillard.Air emissions from pavement layers composed of varying rates of reclaimed asphalt. [J]. Science Direct, Resources, Conservation and Recycling 2006,87:1428-1434.
    [56]Jin Wang,, Daniel M. Lewis,, Vincent Castranova,, etc. Characterization of asphalt fume composition under simulated road paving conditions by GC/MS and microflowLC/quadrupole time-of-flight MS [J]. Analytical Chemistry,2001,73 (15):3691-3700.
    [57]Joseph T. Kurek, Authony J. Kriech, Herbert L. Wissel, Linda V Osborn. Laboratory generation and evaluation of paving asphalt fumes [J]. Journal of the Transportation Research Board, 2007,35-40.
    [58]国家环境保护总局.HJT 45-1999.固定污染源排气中沥青烟的测定重量法[S].北京:中国环境科学出版社,1999:1~4.
    [59]中华人民共和国国家质量监督检验检疫总局.GB 18553-2001车间空气中石油沥青(烟)职业接触限值[S].北京:中国环境科学出版社,2002:1-4.
    [60]钱立群,高文华,王爱红,温秋芳.大气中沥青烟含量的分析方法研究-值法[J].中国环境监测,1989,5(3):16-19.
    [61]张新雨,何泽,刘西雷.道路石油沥青烟气成分分析及污染控制技术[J].工会博览:理论研究,2010:59-60.
    [62]张中豪.空气中沥青烟的浓度测定及其治理[J].化学世界,2000,41(1):47-50.
    [63]毛吉平.对沥青烟测定方法的分析和改进[J].青海环境,2000,10(2):66-70.
    [64]高英华.重量法在沥青烟监测中的应用探讨[J].科技信息,2008:32-32.
    [65]周莹,王珂,李永安.环境空气中沥青烟的监测[J].环境监测管理与技术,1998,10(6):33-37.
    [66]王春华,洪抒,董丽波,王德才.高效液相色谱测定沥青烟雾中3,4-苯并芘[J].环境与职业医学,2007,24(4):443-445.
    [67]田建锋,陈振林.石油沥青质的吸附、沉淀机理及其影响因素[J].海相油气地质,2005,10(3):37-42.
    [68]盈培科(中国)有限公司上海盈培科贸易有限公司.吸附棉、吸附剂和吸收剂在油品化学品泄漏处理中的应用[R].盈培科(中国)有限公司上海盈培科贸易有限公司2010:1-4.
    [69]百度百科.分子筛干燥剂[EB/OL].[2012.03.06].http://baike.baidu.com/view/87143.htm.
    [70]李斌.聚氯乙烯(PVC)的抑烟与阻燃[M].哈尔滨林业大学出版社.2000
    [71]鸥育湘.阻燃剂[M].北京,化学工业出版社.1997.219-226.
    [72]汪晓鹏,贺建梅,张玉爱等.阻燃抑烟PVC-U配方的研究[J].聚氯乙烯.2008.36(5):20-22.
    [73]王永强.阻燃材料及应用技术[M].北京.化学工业出版社.2003
    [74]付永然,林元奎.阻燃沥青的研究进展与建议[J].石油沥青.2006,20(6):69-71.
    [75]张俊红.环境友好型材料-膨胀石墨的制备方法及应用现状[J].中国非金属矿工业导刊,2010,1:15-16,37.
    [76]刘大梁,姚洪波,包双雁.纳米碳酸钙和SBS复合改性沥青的性能[J].中南大学学报(自然科学版),2007,38(3):579-582.
    [77]方安平,叶卫平.origin8.0实用指南[M].北京:机械工业出版社,2009.
    [78]肖信.Origin 8.0实用教程:科技作图与数据分析[M].北京:中国电力出版社,2009.
    [79]OriginLab Corporation. Origin 8 User Guide [M]. Northampton,USA:OriginLab Corporation,2011.
    [80]交通部公路科学研究院.JTG E20-2011公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011.
    [81]JTG F40-2004公路沥青路而施工技术规范[S].北京:人民交通出版社,2004.
    [82]韩松.C9石油树脂的研究现状[J].当代化工.2008,37(5):503-507.
    [83]baron j.szusta kowski M. catalytic degradation of benzo [a]pyrene[J]. cheminzekol.1996. 3 (5):591-561.
    [84]田树盛.Blue rayon人造纤维对多环芳烃的富集作用[J].分析化学,2002,30(11):1404.
    [85]李响,沈康,刘利亚,周政懋.膨胀石墨在阻燃材料中的应用及其表而改性[J].阻燃材料与技术,2001(5):11-15.
    [86]张俊红.环境友好型材料-膨胀石墨的制备方法及应用现状[J].中国非金属矿工业导刊,2010,1:15-16,37.
    [87]曹乃珍,沈万慈,温诗铸,刘英杰.膨胀石墨吸附材料在环境保护中的应用[J].环境工程,1996,14(3):27-30.
    [88]李湘洲.新型碳材料—膨胀石墨[J].新型碳材料:3841.
    [89]曹乃珍.膨胀石墨的微观结构及吸附性[D].北京,清华大学.1997:15-20.
    [90]任剑锋,王增长,牛志卿.沥青烟的治理探索[J].科技情报开发与经济,2003,13(4):88-89.
    [91]刘静.高温条件下沥青烟尘评价系统与抑制技术研究[D].重庆,重庆交通大学:2006.
    [92]G. M. Badger. A. G. Moritz. The C-H stretching bands of methyl groups attached to polycyclic aromatic hydrocarbons [J]. Spectrochimica Acta,1959,15:672-678.
    [93]国家环境保护总局.HJT 45-1999.固定污染源排气中沥青烟的测定重量法[S].北京:中国环境科学出版社,1999:1-4.
    [94]Kriech AJ, Kurek JT, Wissel HL, et al. Evaluation of worker exposure to asphalt paving fumes using traditional and nontraditional techniques [J]. AIHA J (Fairfax, Va) 2002,63(5):628-635.
    [95]史宝成,徐光,刘景泰.沥青烟化学组成的气相色谱一质朴联机分析[J].环境化学,2001,2(20):200-201.
    [96]U.S.EPA. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons[R]. Washington DC:Environmental Protection Agency,1993:10-17.
    [97]程珈宁.沥青烟气特性及其吸附净化处理[J].工程设计与研究,2007,122:26-27.
    [98]A.J. Groszek. New lubricating oils by graphite treatments of petroleum distillates. ASAE Tans. 1980,24(4):490-496.
    [99]A.J. Gxoszek. Selectivo adsorption at graphite/hydrocarbon interfaces.Proc.Royal.Soc.A314, 1970,473-498.
    [100]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,24(4)719-722.
    [101]陈繁华,吴少鹏,陶园园,王静,佟海波.有机化累托石改性沥青的制备及性能研究[J].武汉理工大学学报,2007,29(9):35-37.
    [102]王华才,薛理辉.有机化蒙脱土改性沥青微观机理研究[J].中国科技论文在线,2010,5(4):301-306.
    [103]黄刚,何兆益,胡诚,黄涛.基于微观和流变分析的岩沥青改性沥青性能评价[J].东南大学学报(自然科学版),201,0,40(2):367-372.
    [104]翁诗甫.傅里叶变换红外光谱分析(第二版)[M].北京:化学工业出版社,2010.
    [105]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [106]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社,2006.
    [107]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,2005.
    [108]王新钢.可膨胀石墨在膨胀型防火涂料中的应用及发展[J].现代涂料与涂装,2007,10(6):10-13.
    [109]张达威.新型无卤可膨胀石墨的制备及其阻燃材料的开发[D]哈尔滨,哈尔滨理工大学,2007.
    [110]原健安,周吉萍,李玉珍.SBS与沥青的相互作用性分析[J].中国公路学报,2005,18(4):21-26.
    [111]曹丽萍,谭忆秋,董泽蛟.改性剂对SBS改性沥青低温性能的影响[J].同济大学学报(自然科学版),2006,34(5):607-612.
    [112]万利.SBS改性沥青的特点及其应用[J].青岛理工大学学报,2006,27(3):42-45.
    [113]陈华鑫.SBS改性沥青路用性能与机理分析[D].西安,长安大学,2006:37-40.
    [114]肖鹏,孙陆逸,肖敏,龚克成.膨胀石墨填充SBS复台材科的界面相互作用[J].兰州,合成橡胶工业,2000,23(4):240.
    [115]蒙哥马利(Montgomery,D.C).傅钰生译等.实验设计与分析[M].北京,人民邮电出版社.2009.
    [116]方开泰,马长兴.正交与均匀试验设计[M].北京,科学出版社.2001.
    [117]唐启义,冯明光.DPS数据处理系统—实验设计、统计分析及模型优化[M].北京,科学出版社.2006.
    [118]贾渝,曹荣吉,李本京.高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社,2005.
    [119]American Association of State Highway and Transportation Officials. Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR) [S].Standard Method of test,2012.
    [120]交通部公路科学研究所.JTG E42-2005公路工程集料试验规程[S].北京:人民交通出版社,2005.
    [121]王旭东.沥青路面材料动力特性与动态参数[M].人民交通出版社.2002.
    [122]张肖宁.沥青与沥青混合料的黏弹性原理及应用[M].北京:人民交通出版社,2006.
    [123]European Committee for Standardization. prEN 12697-24:Bituminous mixtures-Test methods for hot mix asphalt-Part 24:Resistance to fatigue[S]. Brussels, Belgium:European Committee for Standardization,2004.
    [124]徐鸥明,韩森,段小琦.SBS改性沥青混合料疲劳极限拉应变研究[J].建筑材料学报,2010,13(2):193-197,202.
    [125]American Association of State Highway and Transportation Officials.Standard Method of Test for Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subjected to Repeated Flexural Bending.
    [126]European Committee for Standardization. prEN 12697-25:Bituminous mixtures-Test methods for hot mix asphalt-Part25:Cyclic compression test[S]. Brussels, Belgium:European Committee for Standardization,2004.
    [127]樊统江,何兆益.沥青混合料蠕变劲度模量的静态和动态响应[J].建筑材料学报,2008,11(6):736-740.
    [128]樊统江,何兆益.沥青混合料动态蠕变模量与动稳定度的关系[J].建筑材料学报,2009,12(6):667-671.
    [129]侯曙光.基于动态蠕变试验的沥青混合料黏弹性分析[J].南京工业大学学报(自然科学版),2010,32(1):33-36.
    [130]杨挺青,罗文波,徐平,危银涛,刚芹果.黏弹性理论与应用[M].北京:科学出版社,2004.
    [131]黄刚,何兆益,黄涛.沥青混合料动态蠕变黏弹性特性分析[J].东南大学学报(自然科学版),2012,42(6):1211-1216.
    [132]张裕卿,黄晓明.高温重载下沥青混合料变形特性三轴重复荷载蠕变试验研究[J].公路,2006(12):151-156.
    [133]张久鹏,黄晓明,李辉.重复荷载作用下沥青混合料永久变形[J].东南大学学报:自然科学版,2008,38(3):511-515.
    [134]American Association of State Highway and Transportation Officials.AASHTO TP79-09, Determining the Dynamic Modulus and Flow Number for Mix Asphalt(HWA) Using the Asphalt Mixture Performance Tester(AMPT). [S].Standard Method of test,2009.
    [135]HARRIGAN E T.Simple Performance Tester for Superpave Mix Design, NCHRP 9-29[R]. Virginia:Advanced Asphalt Technologies, LLC,2004.
    [136]周志刚,傅搏峰.用黏弹性理论评价沥青混合料的高温稳定性[J].公路交通科技,2005,12(11):54-56.
    [137]American Association of State Highway and Transportation Officials.AASHTO Designation:AASHTO TP79-09, Determining the Dynamic Modulus and Flow Number for Mix Asphalt(HWA) Using the Asphalt Mixture Performance Tester(AMPT) [S].Standard Method of test,2009.
    [138]American Association of State Highway and Transportation Officials.AASHTO Designation:AASHTO TP62-07(2009), Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures [S].Standard Method of test,2009.
    [139]American Association of State Highway and Transportation Officials.AASHTO Designation: AASHTO PP62-09:Developing Dynamic Modulus Master Curves for Hot Mix Asphalt (HMA) [S].Standard Method of test,2009.
    [140]American Association of State Highway and Transportation Officials.AASHTO Designation:PP 60-09 Stangard Practice for Preparation of Cylindrical Performance Test Specimens Using the Superpave Gyratonf CoMPactor (SGC) [S].Standard Method of test,2009.
    [141]American Association of State Highway and Transportation Officials.AASHTO Designation: AASHTO PP61-09:Developing Dynamic Modulus Master Curves for Hot Mix Asphalt (HMA) Using the Asphalt Mixture Performance Tester (AMPT) [S].Standard Method of test,2009.
    [142]马林,张肖宁.基于间接拉伸试验模式的沥青混合料动态模量[J].公路工程,2009,34(5):60-62,78.
    [143]赵延庆,吴剑,文健等.沥青混合料动态模量及其主曲线的确定与分析[J].华南理工大学学报(自然科学版),2008,36(10):86-91.
    [144]马翔,倪富健,陈荣生.沥青混合料动态模量试验及模型预估[J].中国公路学报,2008,21(3):35-39,52.
    [145]罗桑,钱振东,HARVEY J.环氧沥青混合料动态模量及其主曲线研究[J].中国公路学报,2011,23(6):16-20.
    [146]刘福明.沥青混合料动态模量预估方程的验证分析[J].中外公路,2012,32(1):208-213.
    [147]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB T2406.2-2009《塑料用氧指数法测定燃烧行为第二部分:室温实验》[S].北京:中国标准出版社,2009.
    [148]樊军,杨群,陈以清.沥青氧指数测试方法[J].解放军理工大学学报(自然科学版),2004,5(6):30-32.
    [149]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T8627-2007建筑材料燃烧或分解的烟密度试验方法[S].北京:中国标准出版社,2009.
    [150]梁晓莉,姜汶泉,黄志义,吴珂.沥青混合料燃烧试验研究[J].公路,2007,vol10:195-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700