用户名: 密码: 验证码:
空气源热泵延缓结霜及除霜方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源热泵在结霜区运行时,室外换热器壁面存在结霜现象。霜层的生长导致了机组供热性能的下降。为保证空气源热泵机组的高效运行,需要周期性除霜。目前,逆循环除霜是应用最广泛的除霜方法之一。逆循环除霜过程中,室外换热器变为冷凝器,室内换热器变为蒸发器。机组从室内环境取热融化霜层,造成了室内环境的恶化。另一方面,为了防止向室内吹冷风,除霜过程中室内风机关闭,除霜能量主要来源于压缩机做功和室内换热器盘管蓄热。因此造成了除霜能量的不足,从而造成较低的吸气压力,较长的除霜时间、较低的室内环境温度。为了改善空气源热泵机组结霜区的供热性能,提高除霜效率,本文在延缓结霜、过冷蓄能除霜,以及除霜控制方法等方面开展了理论和实验研究工作。
     针对不同研究内容,在两个人工模拟环境小室中设计并搭建了三套实验台。选取了热泵机组及数据测量和采集系统,确定了模拟室内外环境的控制策略,计算了实验台误差。结果表明所搭建实验台的测量误差在可接受的范围内。
     在研究空气源热泵结霜机理和室外换热器气流组织对结霜影响的基础上,提出了一种延缓空气源热泵结霜的新方法,即通过室外风机换向,在供热运行时,将室外换热器由常规的负压区变为紊流正压区,从而利于霜层脱离室外换热器壁面,并达到延缓结霜的目的。通过改变室外换热器风向及风量,对新型延缓结霜方法进行了实验研究,分析了其延缓结霜效果和机理,最终验证了首次提出的延缓空气源热泵结霜新方法的可行性和可靠性。
     为了缩短除霜时间,减少除霜能耗,提高除霜效率,在室内风机开启状态下,对空气源热泵单个逆循环除霜过程中除霜能量的来源和能耗分配进行实验研究。分析了除霜能量的来源及各自的份额,研究了除霜能耗的用途及各自分配,计算了系统的除霜效率,提出了提供充足除霜能量,减少除霜能耗和提高除霜效率的方法,为进一步改善空气源热泵逆循环除霜过程中的系统性能提供支持。
     为了提供充足的除霜能量,提出了空气源热泵过冷蓄能除霜新系统,分析了过冷蓄能除霜系统的系统原理,针对该系统的全新关键部件相变蓄热器,采用表冷器中肋片效率的思想,计算了相变过程中的肋片效率,建立了有翅片和无翅片情况下相变蓄热器模型,模拟分析了使用有机和无机两种相变材料时,相变蓄热器的蓄热和释热特性,为其结构形式的优化设计奠定了基础。
     针对提出的过冷蓄能除霜系统,设计了相变蓄热器,选取和测试了相变材料,实验研究了系统在过冷蓄能和蓄能除霜过程中的系统特性,结果表明:该过冷蓄能除霜新系统不仅实现了节流前制冷剂过冷,保证了系统的安全运行,同时为除霜提供了充足热量,有效地缩短除霜时间,很好地改善除霜时室内供热环境,提高热舒适性。
     提出了一种基于最小稳定过热度的空气源热泵除霜控制新方法。实验研究了以毛细管为节流机构,采用定时除霜方法时热泵机组结霜过程中的系统性能,分析了室外换热器出口制冷剂过热度变化,提出了基于最小稳定过热度的除霜控制方法。另外,在以固定开度电子膨胀阀作为节流机构,采用定时除霜方法的热泵机组上开展了结霜过程系统性能实验,并验证了新型除霜控制方法的科学性和合理性,提出了采用新型除霜控制方法的后续研究工作,为实现按需除霜和热泵机组性能优化提供支持。
     本文的研究工作以及后续工作将为改善空气源热泵除霜过程中系统性能,实现合理除霜,以及达到延缓结霜的目的,甚至在供热周期内实现不除霜,提供了理论基础和技术储备。
For a space heating air source heat pump (ASHP) unit, when its outdoor coilsurface temperature is below both the air dew point and the freezing point of water,frost will form on its outdoor coil surface. Frost affects its operational performanceand energy efficiency. Therefore, periodic defrosting is necessary. During a reversecycle defrosting operation, the indoor coil in an ASHP unit actually acts as anevaporator while the outdoor as an condenser. Therefore, there is no heatingprovided and hence indoor air temperature in a heated space can drop. At the sametime, the indoor fan is turned off during defrosting operation to avoid cold air fromindoor coil. And hence the defrosting energy is mainly from input power intocompressor and energy stored in indoor coil metal. As a result, there is insufficientenergy to melt and drain the frost on outdoor coil surface, which leads to lowsuction pressure, prolonged defrosting period and deteriorated indoor environment.To improve the system performances under frosting condition and increasedefrosting efficiency, some experimental and theoretical work about retarding frost,energy storage defrosting based on sub-cool energy of refrigerant and defrostingcontrol method were conducted in this paper.
     Firstly, three test-rigs were built in two artificial environment chambers. Firstof all, the experimental ASHP units and parameter measurement and data acquisitionequipment were chosen, and then control strategies of simulated indoor and outdoorenvironments were determined. Finally, test error was calculated, which resultsshowed that the built test-rigs were enough accurate for the following experiments.
     Secondly, a novel method of retarding frost on outdoor coil surface for anASHP unit was presented based on the study of frost mechanism and the effect ofoutdoor air distribution on frost. Using which, the air pressure of outdoor coilchanged from negative zone to positive by changing the operation direction ofoutdoor fan, which facilitated the frost remove from coil surface and finally retardedfrost accumulation. In this study, the novel retarding frost method by changingoutdoor fan direction and air flow rate was experimentally studied, and then themechanism was analyzed. The experimental results indicated that it couldeffectively retard frost accumulation on outdoor coil surface by using the providednovel method.
     Thirdly, the experimental study on defrosting heat supplies and energyconsumptions during a reverse cycle defrost operation for an ASHP unit wasconducted when the indoor fan was turned on. The sources of heat supplies andrespective amounts, the purpose of energy consumptions and respective amount were respectively measured. And then the defrosting efficiency was calculated.Finally, methods of providing enough defrosting energy, reducing energyconsumption and improve defrosting efficiency were suggested, which was in favorof perfecting the system performances during defrosting operation.
     Fourthly, the energy storage defrosting method using sub-cool energy ofrefrigerant for an ASHP unit was presented to provide enough defrosting energy. Inwhich the phase change material-heat exchanger (PCM-HE) was importantequipment. In this paper, the energy storage and release process in the PCM-HEwere simulated and analyzed. The fin efficiency in PCM-HE was calculated duringphase change process. And then the energy storage and release process under withand without fins were simulated, and the simulation results were analyzed.
     Fifthly, the experimental study on energy storage and defrosting using thenovel method was measured. During normal heating operation, the refrigerantleaving indoor coil flowed to PCM-HE first, before passing through the capillarytube. In this way, the sub-cool energy of refrigerant was absorbed by the PCM andstored in the PCM-HE. At the same time, the safe system operation could be ensuredbecause further sub-cooling of refrigerant reduced the likelihood of liquidrefrigerant flashing and suction refrigerant over-superheating. When defrost becamenecessary, the heat stored in the PCM-HE could be used so as to provide sufficientthermal energy to melt the frost off the outdoor coil surface. In this study, the novelsystem form was provided, and then the PCM-HE was designed and appropriatePCM was chosen and measured. Finally, system performance during heating anddefrosting were measured.
     Sixthly, a novel defrost control method based on degree of refrigerant superheatwas provided. A conventional experiment was carried out on an ASHP unit withcapillary as throttle device under simulated frosting and defrosting conditions basedon time control defrosting method, and its experimental result was analyzed,especially the degree of refrigerant superheat. And then the novel defrost controlmethod was provided. To validate the provided novel defrost control method,another experiment was conducted on ASHP unit with fixed opening electronicexpansion valve (EEV) as throttle device under simulated frosting and defrostingconditions, and its experimental results validated the correctness of the providedmethod. Further study on this novel control method could achieve defrostingoperation when it was needed and performance optimization for an ASHP unit.
     Accomplished work in this paper and further study was in favor of achievingretarding frost and defrosting when it was needed, so far as to no defrostingoperation during heating cycle.
引文
[1]国家科技攻关计划项目可行性研究报告:建筑节能关键技术研究,科学技术部.2005,8.
    [2]陆亚俊,马最良,姚杨.空调工程中的制冷技术[M].哈尔滨:哈尔滨工程大学出版社,1997:217-218.
    [3] Takao N.‘Heat Pumps-status and Trends’ in Asia and the Pacific [J].International Journal of Refrigeration,2002,25(4):405-413.
    [4]张建中,龚延风.空气源热泵冷热水机组在南京的应用[J].现代空调,2001,3(3):141-156.
    [5]钟婷,龙惟定.风冷热泵在若干城市制热运行的调研与分析.2002年全国暖通空调制冷学术年会论文集,珠海,2002:410-413.
    [6] Yao Y, Jiang Y Q, Deng S M, Ma Z L. A Study on the Performance of theAirside Heat Exchanger under Frosting in an Air Source Heat Pump WaterHeater/chiller Unit [J]. International Journal of Heat and Mass Transfer,2004,47(17-18):3745-3756.
    [7] Kondepudi S N, O`Neal D L. Effects of Different Fin Configuration on thePerformance of Finned-tube Heat Exchanger under Frosting Conditions [J].ASHRAE Transactions,1990,96(2):439-444.
    [8] Kondepudi S N, O`Neal D L. Frosting Performance of Tube Fin HeatExchanger with Wavy and Corrugated Fins [J]. Experimental Thermal andFluid Science,1991,4(5):613-618.
    [9]夏清.不同参数对翅片管式蒸发器性能影响及热泵化霜周期的优化[J].上海交通大学学报,1998,32(7):114-116.
    [10] Guo X M, Chen Y G, Wang W H, Chen C Z. Experimental Study on FrostGrowth and Dynamic Performance of Air Source Heat Pump System [J].Applied Thermal Engineering,2008,28(17-18):2267-2278.
    [11] Wang S M, Liu Z Y. A New Method for Preventing HP from Frosting [J].Renewable Energy,2005,30(5):753-761.
    [12] Kondepudi S, Murali K, Bhalerao A. Voiding HP Evaporator Frost throughthe Use of Desiccants. ASME-JSES-JSME International Solar EnergyConference, New York,1995, PART1:25-29.
    [13] Kinsara A A, Moustafa M E, Omar M A. Proposed Energy-efficientAir-conditioning System using Liquid Desiccant [J]. Applied ThermalEngineering,1996,16(10):791-806.
    [14] Jain S, Bansal P K. Performance Analysis of Liquid DesiccantDehumidification Systems [J]. International Journal of Refrigeration,2007,30(5):861-872.
    [15]徐邦裕,陆亚俊,马最良.热泵.北京:中国建筑工业出版社.1988
    [16] Kwak K, Bai C. A Study on the Performance Enhancement of Heat Pumpusing Electric Heater under the Frosting Condition: Heat Pump underFrosting Condition [J]. Applied Thermal Engineering,2010,30(6-7):539-543.
    [17]刘斌,杨永安,杨昭.低温结霜模型及影响因素的分析[J].制冷学报,2004,(4):40-42.
    [18]黄虎,束鹏程,李志浩.风冷热泵冷热水机组在结霜工况下运行特性的实验研究[J].流体机械,1998,(12):43-47.
    [19] Byun J S, Lee J, Jeon C D. Frost Retardation of an Air-source Heat Pump bythe Hot Gas Bypass Method [J]. International Journal of Refrigeration,2008,31(2):328-334.
    [20]谷波.风冷热泵机组的结霜特性研究[J].暖通空调,2001,31(1):81-82.
    [21]王洋,江辉民,马最良.增大蒸发器面积对延缓空气源热泵冷热水机组结霜的实验与分析[J].暖通空调,2006,36(7):83-87.
    [22]程卫红,姚杨,马最良.空气源热泵空气侧换热器结构参数对结霜特性的影响[J].沈阳建筑大学学报,2006,22(3):458-461.
    [23] Watters R J, O'Neal D L, Yang J. Frost/defrost Performance of a Three-rowFin Staged Heat Pump Evaporator [J]. ASHARE Transaction,2002,108(2):318-329.
    [24]费千,王宝军.高疏水性涂层在空气冷却器中的应用研究[J].机电设备,1997,(6):12-13.
    [25]王贤林,蒋绍坚,艾元方.疏水表面用于延缓热泵结霜及加快除霜的探讨[J].节能技术,2004,(5):37-38.
    [26] Ryun S G, Lee K S. A Study on the Behavior of Frost Formation according toSurface Characteristics in the Fin-tube Heat Exchanger [J]. Air-conditioningand Refrigerating,1999,11(3):377-383.
    [27] Jhee S, Lee K S, Kim W S. Effect of Surface Treatments on theFrosting/defrosting Behavior of a Fin-tube Heat Exchanger [J]. InternationalJournal of Refrigeration,2002,25(8):1047-1053.
    [28] Williams S J. Energy Equations for Five Defrost Methods [J], Refrigeration.Engngeer,1952,8:859-863.
    [29] Niderer D H. Frost and Defrosting Effects on Coil Heat Transfer [J],ASHARE Transaction,1976,82(1):467-473.
    [30] Stoecker W F, Lux J J, Kooy R J. Energy Consideration in Hot GasDefrosting of Industrial Refrigeration Coils [J], ASHARE Transaction,1983,89(2A):549-573.
    [31] Abdel-Wahed R M, Hifini M A, Sherif S A. Hot Water Defrosting of aHorizontal Flat Plate Cooling Surface [J], International Journal ofRefrigeration,1983,6(3):152-154.
    [32] Baxter V D, Moyers J C. Field-measured Cycling, Frost and DefrostingLosses for a High Efficiency Air Source Heat Pump [J]. ASHARETransaction,1985,91(2):537-554.
    [33] Cole R A. Refrigeration Loads in a Freezer due to Hot Gas Defrost and TheirAssociated Costs [J]. ASHARE Transaction,1989,95(2):1149-1154.
    [34] Krakow K I, Yan L, Lin S. A Model of Hot-gas Defrosting ofEvaporators-Part1: Heat and Mass Transfer Theory [J]. ASHARETransaction,1992,98(1):451-461.
    [35] Krakow K I, Yan L, Lin S. A Model of Hot-gas Defrosting ofEvaporators-Part2: Heat and Mass Transfer Theory [J]. ASHARETransaction,1992,98(1):462-474.
    [36] Sherif S A, Hertz M G. A Semi-empirical Model for Electric Defrosting of aCylindrical Coil [J], International Journal of Energy Research,1998,22(1):85-92.
    [37] Al-Mutawa N K, Sherif S A. Determination of Coil Defrosting Loads: Part1:Experimental Facility Description [J]. ASHARE Transaction,1998,104(1):268-288.
    [38] Al-Mutawa N K, Sherif S A. Determination of Coil Defrosting Loads: Part2:Instrumentation and Data-acquisition Systems [J]. ASHARE Transaction,1998,104(1):289-302.
    [39] Al-Mutawa N K, Sherif S A. Determination of Coil Defrosting Loads: Part3:Testing Procedures and Data Reduction [J]. ASHARE Transaction,1998,104(1):303-312.
    [40] Al-Mutawa N K, Sherif S A. Determination of Coil Defrosting Loads: Part4:Refrigeration Defrost Cycle Dynamics [J]. ASHARE Transaction,1998,104(1):313-343.
    [41] Alebrahim A M, Sherif S A. Electric Eefrosting Analysis of a Finned-tubeEvaporator Coil using the Enthalpy Method [J], Journal of MechanicalEngineering Science,2002,216(2):655-673.
    [42] O'Neal D L, Peterson K T. Refrigeration System Dynamics during theReverse Cycle Defrost [J]. ASHRAE Transaction,1989,95(2):689-698.
    [43] Payne V, O'Neal D L. Defrost Cycle Performance for an Air Source HeatPump with a Scroll and a Preciprocating Compressor [J]. InternationalJournal of Refrigeration,1995,18(2):107-112.
    [44]黄虎,李志浩,虞维平.风冷热泵冷热水机组除霜过程模拟[J].东南大学学报,2001,31(1):52-56
    [45]刘志强,汤广发,赵福云.风冷热泵除霜过程动态特性模拟和实验研究[J].制冷学报,2003,(3):1-5.
    [46]姬长发,黄东,袁秀玲.风冷热泵冷热水机组结霜与除霜性能的实验研究[J].西安交通大学学报,2005,39(5):480-484.
    [47] O'Neal D L, Peterson K. A Comparison of Orifice and TXV ControlCharacteristics during the Reverse-cycle Defrost [J]. ASHRAE Transaction,1990,96(1):337-342.
    [48] O'Neal D L, Peterson K. Effect of Short-tube Orifice Size on thePerformance of an Air Source Heat Pump during the Reverse-cycle Defrost[J]. International Journal of Refrigeration,1991,14(1):52-57.
    [49]史建春.两种不同节流系统对融霜的影响[J].流体机械,1994,22(7):60-63.
    [50]吴贵森.热泵除霜特性分析[J].福建能源开发与节约,2002,(1):17-19.
    [51]石文星,李先庭,邵双全.房间空调器热气旁通除霜分析及实验研究[J].制冷学报,2000,(2):29-35.
    [52] Ma G Y, Ding Y J, Chai Q H, Jiang Y. Experiment Investigation of ReverseCycle Defrosting Methods on Air Source Heat Pump with TXV as theThrottle Regulator [J]. International journal of refrigeration,2004,27(6):671-678.
    [53]黄东,袁秀玲,陈蕴光.节流机构对风冷热泵冷水机组逆循环除霜时间的影响[J].西安交通大学学报,2003,37(5):512-518.
    [54]龚鹰.住宅用热泵中的新式融霜系统[J].暖通空调,1991,21(3):23-26.
    [55]仲华,唐双波,陈芝久.轿车空调蒸发器除霜实验研究[J].流体机械,2001,29(1):44-46.
    [56] Nutter W, Vance W. Impact of the Suction Line Accumulator on thePerformance of an Air-source Heat Pump with a Scroll Compressor [J].ASHRAE Transaction,1996,102(1):284-290.
    [57]唐黎明,董志明.热泵机组制冷剂充注量补偿对化霜的改进[J].制冷空调与电力机械,2003,94(24):19-22.
    [58] Kuwahra E, Kawamura T, Tamazaki M. Shortening the Defrost Time on aHeat Pump Air Conditioner [J]. ASHRAE Transaction,1989,95(2):20-29.
    [59] Anand K, O'Neal D L. Effect of Outdoor Coil Fan Pre-start on PressureTransients during the Reverse Cycle Defrost of a Heat Pump [J]. ASHRAETransaction,1989,95(2):699-704.
    [60] Anon. American Society of Heating, Refrigerating, and Air-conditioningEngineering. ASHRAE refrigeration handbook,1998,(ISBN1-883413-54–0,chapter2).
    [61] Stoecker W F, Walukas D J. Conserving Energy in Domestic Refrigeratorsthrough the Use of Refrigerant Mixtures [J]. ASHRAE Transactions,1981,87(1):279-281.
    [62] Domanski P A, Didion D A. Thermodynamic Evaluation of R22AlternativeRefrigerants and Refrigerant Mixtures [J]. ASHRAE Transactions,1993,99(2):636-648.
    [63] Domanski P A, Didion D A, Doyle J P. Evaluation of Suction-line/liquid-lineHeat Exchange in the Refrigeration Cycle [J]. International Journal ofRefrigeration,1994,7(7):487-493.
    [64] Bivens D B, Allgood C C, Shiflett M B. HCF-22Alternative for AirConditioners and Heat Pumps [J]. ASHRAE Transactions,1994,100(2):566-572.
    [65] Bittle R R, Stephenson W R, Pate M.B. An Experimental Evaluation ofCapillary Tube-liquid-suction Heat Exchanger Performance with R152a [J].ASHRAE Transactions,1995,101(1):124-135.
    [66] Bittle R R, Stephenson W R, Pate M B. An Evaluation of the ASHRAEMethod for Predicting Capillary Tube-liquid-suction Heat ExchangerPerformance [J]. ASHRAE Transactions,1995,101(2):434-442.
    [67] Klein S A, Reindl D T, Brownell K. Refrigeration System Performance usingLiquid-suction Heat Exchanger [J]. International Journal of Refrigeration,2000,23(8):588-596.
    [68] Mastrullo R, Mauro A W, Tino S. A Chart for Predicting the PossibleAdvantage of Adopting a Suction/liquid Heat Exchanger in RefrigeratingSystem [J]. Applied Thermal Engineering,2007,27(14-15):2443-2448.
    [69] Thornton J W, Klein S A, Mitchell J W. Dedicated Mechanical SubcoolingDesign Strategies for Supermarket Applications [J]. International Journal ofRefrigeration,1994,17(8):508-515.
    [70] Zubair S M. Thermodynamics of a Vvapor-compression Refrigeration Cyclewith Mechanical Subcooling [J]. Energy,1994,19(6):707-715.
    [71] Zubair S M, Yaqub M, Khan S H. Second-law-based ThermodynamicsAnalysis of Two-stage and Mechanical-subcooling Refrigeration Cycles [J].International Journal of Refrigeration,1996,19(8):506-516.
    [72] Khan J R, Zubair S M. Design and Rating of an IntegratedMechanical-subcooling Vapor-compression Refrigeration System [J]. EnergyConversion and Management,2000,41(11):1201-1222.
    [73] Liu Z L, Wang Z Y, Ma C F. An Experimental Study on Heat Characteristicsof Heat Pipe Heat Exchanger with Latent Heat Storage. PARTⅠ:Chargingonly and Discharging only Modes [J]. Energy Conversion and Management,2006,47(7-8):944-966.
    [74] Cabeza L F, Mehling H, Hiebler S. Heat Transfer Enhancement in Waterwhen used as PCM in Thermal Energy Storage [J]. Applied ThermalEngineering,2002,22(10):1141-1151.
    [75] Chieh J J, Lin S J, Chen S L. Thermal Performance of Cold Storage inthermal Battery for Air Conditioning [J]. International Journal ofRefrigeration,2004,27(2):120-128.
    [76] Huang M C, Chen B R, Hsiao M J. Application of Thermal Battery in the IceStorage Air-conditioning System as a Subcooler [J]. International Journal ofRefrigeration,2007,30(2):245-253.
    [77] Hsiao M J, Kuo Y F, Shen C C. Performance Enhancement of a Heat PumpSystem with Ice Storage Subcooler [J]. International Journal ofRefrigerantion,2010,33(2):251-258.
    [78] Farid M M, Khudhair A M, Razack A K. A Review on Phase Change EnergyStorage: Materials and Applications [J]. Energy Conversion and Management,2004,45(9-10):1597-1615.
    [79]齐琦,姜益强,马最良.相变蓄热材料及其在暖通空调领域中的应用[J].建筑热能通风空调,2006,25(3):17-19.
    [80] Abhat A. Low Temperature lLatent Heat Thermal Energy Storage: HeatStorage Materials [J]. Solar Energy,1983,30(4):313-332.
    [81] Sharma A, Tyagi V V, Chen C R, Buddhi D. Review on Thermal EnergyStorage with Phase Change Materials and Applications [J]. Renewable andSustainable Energy Reviews,2009,13(2):318–345.
    [82]张寅平,胡汉平,孔祥东等.相变贮能—理论和应用.中国科学技术大学出版社,1996:10-11.
    [83] Hadjieva M, Kanev S, Argirov J. Thermophysical Properties of SomeParaffins Applicable to Thermal Energy Storage [J]. Solar Energy Mater,Solar Cells,1992,27(2):181-187.
    [84] Gibbs B M, Hasnain S M. DSC Study of Technical Grade Phase Change HeatStorage Materials for Solar Heating Applications. Proceedings of the1995ASME/JSME/JSEJ international solar energy conference, part2,1995.
    [85] He B, Mari G E. Tetradecane and Hexadecane Binary Mixtures as PhaseChange Materials (PCMs) for Cool Storage in District Cooling Systems [J].Energy,1999,24(12):1015-1028.
    [86] Sari A. Thermal Properties and Thermal Reliability of Eutectic Mixtures ofSome Fatty Acids as Latent Heat Storage Materials [J]. Energy conversionand management,2004,45(3):365-376.
    [87]张国正,文磊,方晓明等.复合相变储热材料的研究与发展[J].化工进展,2003,22(4):462-465.
    [88]姚杨,宋孟杰,姜益强,董建锴.几种有机二元相变材料的的热物性实验研究[J].建筑热能通风空调,2010,29(6):24-26.
    [89] Sari A, Kaygusuz K. Thermal Performance of Myristic Acid as a PhaseChange Material for Energy Storage Application [J]. Renewable Energy,2001,24(2):303-317.
    [90] Sari A, Kaygusuz K. Thermal Energy Storage System using Stearic Acid as aPhase Change Material [J]. Solar Energy,2001,71(6):365-376.
    [91] Sari A, Kaygusuz K. Thermal Performance of Palmitic Acid as a PhaseChange Energy Storage Material [J]. Energy Conversion and Management,2002,43(6):863-876.
    [92]李香玲,陈超,蹇瑞欢.填充板状定形相变材料蓄热槽蓄/放热特性实验研究[J].暖通空调,2005,35(10):122-126.
    [93]曲作丰,于长顺,王岩.三水合醋酸钠体系蓄放热性能的实验研究[J].大连轻工业学院学报,2005,24(2):93-95.
    [94]王裕民,孙泽权,彭岚.内纵翅片套管相变蓄热器的性能试验[J].重庆大学学报,1994,17(4):121-126.
    [95]胡军,董华,周恩泽等.螺旋盘管式相变储热单元储热性能[J].太阳能学报,2006,27(4):399-403.
    [96]杜雁霞,程宝义,贾代勇等.融化过程自然对流影响作用的实验研究[J].实验流体力学,2006,20(3):48-52.
    [97]王增义,刘中良,马重芳.热管式相变蓄热器储/放能过程中的传热特性的实验研究[J].工程热物理学报,2005,26(6):989-991.
    [98] Bathelt A G, Viskanta R. Heat Transfer and Interface Motion during Meltingand Solidification around a Finned Heat Source/sink [J]. ASMEJ Heattransfer,1981,103:720-726.
    [99] Bathelt A G, Baren V, Viskanta R. Heat Transfer during Solidification arounda Cooled Horizontal Cylinder [J]. AICHE Symposium Series,1979,189(75):103-111.
    [100]曾艳,田怀璋,余鹏.固液相变蓄能中有效导热系数的数值分析与实验研究[J].太阳能学报,2003,24(4):497-503.
    [101] Ismail K A R, Goncalves M M. Thermal Performance of a PCM Storage Unit[J]. Energy Conversion and Management,1999,40(2):115-138.
    [102] Frusteri F, Leonardi V, Maggio G. Numerical Approach to Describe the PhaseChange of an Inorganic PCM Containing Carbon Fibres [J]. Applied ThermalEngineering,2006,48(7):2161-2168.
    [103] Casano G, Stefano P. Experimental and Numerical Investigation of the SteadyPeriodic Solid-liquid Phase-change Heat Transfer [J]. International Journalof Heat and Mass Transfer,2002,45(20):4181-4190.
    [104] Vakilaltojjar S M, Saman W. Analysis and Modeling of a Phase ChangeStorage System for Air Conditioning Applications [J]. Applied ThermalEngineering,2001,21(3):249-263.
    [105] Ahmet Z, Sahin, Ibrahim D. Analytical Modeling of Transient Phase ChangeProblems [J]. International Journal of Energy Research,2000,24(10):1029-1039.
    [106]康艳兵,张寅平,朱颖秋.相变蓄热通信套管传热模型和性能分析[J].太阳能学报,1999,20(1):20-25.
    [107]朱颖秋,张寅平,江亿.内通传热流体的圆管外相变材料的无量纲储传热准则的研究[J].太阳能学报,1999,20(3):244-250.
    [108]吴南路,王立,孔庆瑞.相变平板传热问题的一种精确解法[J].哈尔滨商业大学学报,2006,22(2):109-111.
    [109]侯欣宾,袁修干,杨春信.高温相变蓄热容器传热的隐式求解[J].太阳能学报,2001,22(4):431-435.
    [110] Ismail K A R, Stuginsky R. A Parametric Study on Possible Fixed BedModels for PCM and Sensible Heat Storage [J]. Applied ThermalEngineering,1999,19(7):757-788.
    [111] Ismail K A.R, Jesus A B. Modeling and Solution of the SolidificationProblem of PCM around a Cold Cylinder [J]. Numerical Heat Transfer,1999,36(1):95-114.
    [112] Khodadadi J M, Zhang Y. Effects of Buoyancy-driven Convection onMelting within Spherical Containers [J]. International Journal of Heat andMass Transfer,2001,44(8):1605-1618.
    [113] Refin A F, Solanki S C, Saini J S. Latent Heat Thermal Energy Storage usingCylindrical Capsule: Numerical and Experimental Investigations [J].Renewable Energy,2006,31(13):2025-2041.
    [114] Lamberg P, Reijo L, Maria H A. Numerical and Experimental Investigationof Melting and Freezing Processes in Phase Change Material Storage [J].International Journal of Thermal Sciences,2004,43(3):277-287.
    [115] Abel H G, Eduardo S M A. Modeling of the Charge and Discharge Processesin Energy Storage Cells [J]. Energy Conversion and Management,1999,40(15-16):1753-1763.
    [116]陈敬良,田怀璋,陈林辉.硬脂酸相变蓄能模型的改进[J].制冷与空调,2003,3(2):24-31.
    [117]陈林辉,田怀璋,王石.第二类边界条件下硬脂酸固液相变蓄能研究[J].西安交通大学学报.2004,38(11):1128-1131.
    [118] Castell A, Sole C, Medrano M. Natural Convection Heat TransferCoefficients in Phase Change Material Modules with External Vertical [J].Applied Thermal Engineering,2008,28(13):1-26.
    [119] Karaipekli A, Sari A, Kaygusuz K. Thermal Conductivity Improvement ofStearic Acid using Expanded Graphite and Carbon Fiber for Energy StorageApplications [J]. Renewable Energy,2007,32(13):2201-2210.
    [120] Mettawee E B S, Assassa G M R. Thermal Conductivity Enhancement in aLatent Heat Storage System [J]. Solar Energy,2007,81(13):839-845.
    [121] Fukai J, Kanou M, Kodama Y. Thermal Conductivity Enhancement ofEnergy Storage Media using Carbon Fibers [J]. Energy Conversion andManagement,2000,41(14):1543-1556.
    [122] Fukai J, Kanou M, Kodama Y. Effect of Carbon-fiber Brushes on ConductiveHeat Transfer in Phase Change Materials [J]. International Journal of Heatand Mass Transfer,2002,45(24):4781-4792.
    [123] Fukai J, Kanou M, Kodama Y. Improvement of Thermal Characteristics ofLatent Heat Thermal Energy Storage Units using Carbon-fiber Brushes:Experiments and Modeling [J]. International Journal of Heat and MassTransfer,2003,46(23):4513-4525.
    [124] Ettouney H M, Alatiqi I, Sahali M A. Heat Transfer Enhancement by MetalScreens and Metal Spheres in Phase Change Energy Storage Systems [J].Renewable Energy,2004,29(6):841-860.
    [125] Liu Z L, Sun X, Ma C F. Experimental Investigations on the Characteristicsof Melting Processes of Stearic Acid in an Annulus and its ThermalConductivity Enhancement by Fins [J]. Energy Conversion and Management,2005,46(20):959-969.
    [126]陈超,欧阳军,王秀丽.空气源热泵机组冬季除霜热量补偿新方法[J].制冷学报,2006,27(4):37-40.
    [127]曾文良,曲景年.几种蓄热热泵空调器的性能比较[J].暖通空调,2004,34(11):66-68.
    [128] Esen M, Ayhan T. Development of a Model Compatible with Solar AssistedCylindrical Energy Storage Tank and Variation of Stored Energy with Timefor Different Phase Change Materials [J]. Energy Conversion andManagement,1996,37(12):1775-1785.
    [129] Hamada Y, Fukai J. Latent Heat Thermal Energy Storage Tanks for SpaceHeating of Buildings: Comparison between Calculations and Experiments [J].Energy Conversion and Management,2005,31(13):2025-2041.
    [130] Long J Y, Zhu D S. Numerical and Experimental Study on Heat Pump WaterHeater with PCM for Thermal Storage [J]. Energy and Buildings,2008,40(4):666-672.
    [131] Wang F Q, Maidment G, Missenden J. The Novel Use of Phase ChangeMaterials in Refrigeration Plant. Part1: Experimental Investigation [J].Applied Thermal Engineering,2007,27(17-18):893-2901.
    [132] Wang F Q, Maidment G, Missenden J. The Novel use of Phase ChangeMaterials in Refrigeration Plant. Part2: Dynamic Simulation Model for theCombined System [J]. Applied Thermal Engineering,2007,27(17-18):2902-2910.
    [133] Wang F Q, Maidment G, Missenden J. The Novel use of Phase ChangeMaterials in Refrigeration Plant. Part3: PCM for Control and EnergySavings [J]. Applied Thermal Engineering,2007,27(17-18):2911-2918.
    [134] Gu Z, Liu H, Li Y. Thermal Energy Recovery of Air Conditioning SystemHeat Recovery System Calculation and Phase Change MaterialsDevelopment [J]. Applied Thermal Engineering,2004,24(17-18):2511-2526.
    [135]韩志涛.空气源热泵常规除霜与蓄能除霜特性实验研究[D].哈尔滨:哈尔滨工业大学,2007:22-27.
    [136]胡文举.空气源热泵相变蓄能除霜系统特性研究[D].哈尔滨:哈尔滨工业大学,2010:18-25.
    [137] Hewitt N, Huang M J. Defrost Cycle Performance for a Circular ShapeEvaporator Air Source Heat Pump [J]. International Journal of Refrigeration,2008,31(3):444-452.
    [138] Byun J S, Lee J, Jeon C D. Frost Retardation of an Air-source Heat Pump bythe Hot Gas Bypass Method [J]. International Journal of Refrigeration,2008,31(2):328-334.
    [139] Huang D, Li Q X, Yuan X L. Comparison between Hot-gas BypassDefrosting and Reverse-cycle Defrosting Methods on an Air-to-water HeatPump [J]. Applied Energy,2009,86(9):1697-1703.
    [140] Hu W J, Jiang Y Q, Qu M L, Ni L, Yao Y, Deng S.M. An Experimental Studyon the Operating Performance of a Novel Reverse-cycle Hot Gas DefrostingMethod for Air Source Heat Pumps [J]. Applied Thermal Engineering,2010,31(2-3):363-369.
    [141] Qu M L, Xia L, Deng S M, Jiang Y Q. Improved Indoor Thermal Comfortduring Defrost with a Novel Reverse-cycle Defrosting Method for Air SourceHeat Pumps [J]. Building and Environment,2010,45(11):2354-2361.
    [142]何雪冰,刘宪英.空气源热泵冷热水机组设计选型[J].暖通空调,2004,34(3):55-58.
    [143]韩志涛,姚杨,马最良等.空气源热泵误除霜特性的实验研究[J].暖通空调,2006,36(2):15-19.
    [144] Buick T R, Mcmullan J T, Morgan R, Murry R B. Ice Detection in HeatPumps and Coolers [J]. International Journal of Energy Research,1978,2(1):85-98.
    [145] Datta D, Tassou S A. Defrost Control of Evaporator Coils using ArtificialIntelligence Techniques. Process of the20thinternational conference ofrefrigeration. IIR/IIF, Sydney, Australia.
    [146] Datta D, Tassou S A. Implementation of a Defrost on Demand ControlStrategy on a Retail Display Cabinet. IIF/IIR-commission D1/B1-Urbana, IL,USA-2002/07, pp.218-226.
    [147] Muller E D. A New Concept for Defrosting Refrigeration Plants [J]. Kalte,1975,28(2):52-54.
    [148] Byun J S, Jeon C D, Jung J H, Lee J. The Application of Photo-coupler forFrost Detecting in an Air-source Heat Pump [J]. International Journal ofRefrigeration,2006,29(2):191-198.
    [149] Xiao J, Wang W, Guo Q C, Zhao Y H. An Experimental Study of theCorrelation for Predicting the Frost Height in Applying the PhotoelectricTechnology [J]. International Journal of Refrigeration,2010,33(5):1006-1014.
    [150] Lawrence J M W, Evans J A. Refrigerant Flow Instability as a Means toPredict the Need for Defrosting the Evaporator in a Retail Display FreezerCabinet [J]. International Journal of Refrigeration,2008,31(1):107-112.
    [151]方修睦.建筑环境测试技术[M].中国建筑工业出版社,2002,135~137.
    [152]井上宇市.空气调节手册[M].中国建筑工业出版社,1986.
    [153] Ding Y J, Ma G Y, Chai Q H. Experiment Investigation of Reverse CycleDefrosting Methods on Air Source Heat Pump with TXV as the ThrottleRegulator [J]. International Journal of Refrigeration,2004,27(6):671-678.
    [154] Payne V, O'Neal D L. Defrost Cycle Performance for an Air-source HeatPump with a Scroll and a Reciprocating Compressor [J]. InternationalJournal of Refrigeration,1995,18(2):107-112.
    [155] Chen N, Xu L, Feng H D, Yang C G. Performance Investigation of a FinnedTube Evaporator under the Oblique Frontal Air Velocity Distribution [J].Applied Thermal Engineering,2005,25(1):113-125.
    [156] Cheng C H, Shiu C C. Oscillation Effects on Frost Formation and LiquidDroplet Solidification on a Cold Plate in Atmospheric Air Flow [J].International Journal of Refrigeration,2003,26(1):69-78.
    [157] Krakow K I, Yan L, Lin S. An Idealized Model of Reverse-cycle Hot GasDefrosting of Evaporators-Part2: Experimental Analysis and Validation [J].ASHRAE Transactions,1993,99:329-338.
    [158]柴永金.增大室外换热器面积对空气源热泵的影响研究[D].哈尔滨工业大学硕士学位论文.2008:15-19.
    [159]葛云亭.房间空调器系统仿真模型研究[D].清华大学博士学位论文.1997
    [160] Wang H, Touber S. Distributed and Non-steady-state Modeling of an AirCooler[J]. International Journal of Refrigeration,1991,14(2):98-111.
    [161]姚杨.空气源热泵冷热水机组冬季融霜工况的模拟与分析[D].哈尔滨工业大学博士学位论文.2002:29-39.
    [162] Shah A E. A General Correlation for Heat Transfer during Film Condensationinside Pipes [J]. International journal of heat mass transfer,1979,22(4):547-556.
    [163]杨世铭.传热学[M].高等教育出版社,1998,40-42.
    [164] Lane G A. Low Temperature Heat Storage with Phase Change Materials [J].International Journal of Ambient Energy,1980,1(3):155-168.
    [165] Chen Y M, Deng S M, Xu X G, Chan M Y. A Study on the OperationalStability of a Refrigeration System having a Variable Speed Compressor [J].International Journal of Refrigeration,2008,31(8):1368-1374.
    [166] Chen W, Chen Z J, Zhu R Q, Wu Y Z. Experimental Investigation of aMinimum Stable Superheat Control System of an Evaporator [J].International Journal of Refrigeration,2002,25(8):1137-1142.
    [167] Hayashi Y, Aoki A, Adachi S, Hori K. Study of Frost Properties Correlatingwith Frost Formation Types [J]. Journal Heat Transfer,1977,99(1):239-244.
    [168] Gong J Y, Gao T Y, Yuan X L, Huang D. Effects of Air Flow Maldistributionon Refrigeration System Dynamics of an Air Source Heat Pump Chillerunder Frosting Conditions [J]. Energy Conversion and Management,2008,49(6):1645-1651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700