用户名: 密码: 验证码:
三套管蓄能型热泵集成系统运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源热泵应用广泛,但其缺点为低温适应性差和室外换热器的结霜。太阳能作为热泵的一种再生低位热源,具有很大吸引力。太阳能虽然具有无法比拟的优点,但作为能源利用时,也存在能量密度低、间歇、收集和转换设备造价高等缺点。因此,针对此问题,为改善空气源热泵低温运行性能,可以利用相变蓄能来改变供能时间,弥补太阳能单一低位热源时的不稳定和间歇性问题,提出了三套管蓄能型热泵集成系统(Heat Pump Integrated System withTriple-sleeve Energy Storage Exchangers,简称HPISTRESE)。本文研究了该新系统的动态运行特性,主要研究内容如下:
     研制了三套管蓄能型热泵集成系统的核心部件——三套管蓄能换热器(TRESE),搭建了三套管蓄能型热泵集成系统实验台,对集成系统的蓄冷模式、集热兼蓄能热泵供热模式、蓄能热泵供热模式、释冷模式以及集热模式等多个运行模式进行动态实验研究。实验结果表明,集成系统在集热兼蓄能热泵供热模式运行的COP值最高,蓄能热泵供热模式次之,蓄冷模式的COP值最低。集成系统释冷模式过程中释冷率变化剧烈,释冷稳定性稍差。而集热模式实验表明三套管蓄能换热器具有较快的蓄热速度。
     建立了三套管蓄能换热器基本单元的数学模型,采用分布参数法建立蓄能换热器的动态仿真模型。对蓄能换热器单元换热特性进行了模拟分析,结果表明三套管蓄能换热单元换热效果较好,并对不同因素对换热特性的影响进行了分析,为三套管蓄能换热器的强化换热以及优化设计提供理论依据。
     研究分析了三套管蓄能型热泵集成系统各运行模式特点及机理,建立了实验系统各模式的系统动态模型。理论和实验相结合,通过实验数据与数值模拟结果对比分析,结果表明模型能很好地反映系统各运行模式的物理过程。
     基于验证的各运行模式的数学模型,分析了运行参数以及结构参数等因素对不同模式下系统的运行特性的影响,结果显示,三套管蓄能换热器减少蓄能单元数量时,蓄冷模式及集热兼蓄能热泵供热模式下系统运行性能明显降低。提高水流量以及水温对集热兼蓄能供热模式性能有很大改善。在释冷模式下,可以通过减小水流量或降低水温来提高释冷的稳定性。不同因素影响分析结果为蓄能换热器与集成系统匹配提供依据。
     为综合评价集成系统,对集成系统进行了全年运行特性分析。首先对集成系统进行选型设计计算,并分析了系统各运行模式的转换条件及运行策略,对集成系统冬季运行特性与夏季运行特性进行了分析。并与常规空气源热泵系统进行了全年能耗以及运行费用的对比分析,结果表明集成系统在能耗及运行费用方面具有较好的节能效果。
     本文的研究工作,深入全面掌握了三套管蓄能型热泵集成新系统的运行特性,为集成新系统的优化设计、建筑负荷的匹配及应用推广提供重要的理论基础和技术储备。也为系统的综合节能,生态用能提供新思路。
Air source heat pump was widely used, however, its shortcomings were the poorlow-temperature adaptability and frosting at the outdoor heat exchanger. Solarenergy as a renewable low heat source heat pump was very attractive. Solar energyhad the incomparable advantages, but it had disadvantages of low energy density,intermittent, high cost of collecting and converting equipment. Therefore, in orderto solve this problem, improving air source heat pump and solar energy low-temperature performance, a phase change energy storage used to change the energyof time, making up the solar energy low heat source of instability and intermittentproblems, the thesis puts forward Heat Pump Integrated System with Triple-sleeveEnergy Storage Exchangers (HPISTRESE). This paper studies the new systemdynamic characteristics, the main research contents are as follows:
     Core part of the HPISTRESE—triple-sleeve energy storage exchanger (TRESE)was prepared and experimental setup for HPISTESE was built. The test data can becollected automatically and dynamic experimental study on cool storage mode, heatstorage simultaneous stored energy heat pump heating mode, stored energy heatpump heating mode and cool release mode were carried out. The experimentalresults show that, in the integrated system COP of heat storage simultaneous storedenergy heat pump heating mode was highest, energy storage heat pump heatingmode was next, and cool storage mode had the minimum value. Cool energyreleasing rate in cool release process changed dramatically, and dischargingstability was slightly. Experiments of the heat storage mode show that the triple-sleeve energy storage exchanger has high heat storage rate.
     Mathematical model of triple-sleeve energy storage exchanger unit was established,based on the distribution parameter method dynamic simulation mode was set up.Heat transfer characteristics of the energy storage heat exchanger unit wereanalyzed. The results show that triple-sleeve energy storage exchanger unit havegood heat transfer effect, and the influence of different factors on the heat transfercharacteristics were analyzed. The analysis supplied theoretical basis for heattransfer enhancement as well as optimal design of triple-sleeve energy storageexchanger.
     Study on the analysis of operating characteristics and mechanism of solar and airsource heat pump integrated system with triple-sleeve energy storage exchangers,and experimental system dynamics model was set up. Combining theory and experiment, and the results of comparing the experimental data and numericalsimulation results indicate that the model can well reflect the physical process ofsystem operation modes.
     Based on the validated mathematical model, the influence factors of the water flowmass rate, water temperature and heat storage structures on the operatingcharacteristics of different modes were anaylized. The analysis results suggestedthat reducing energy storage unit quantity of triple-sleeve energy storage exchanger,the operating performance of cool storage mode and heat storage simultaneousstored energy heat pump heating mode declined quickly. Increasing water flowmass rate and water temperature can improve performance of heat storagesimultaneous stored energy heat pump heating mode. In the cool release mode,reducing water flow mass rate can improve cool energy releasing stability. Resultsfor matching the energy storage heat exchanger and integrated system supplied thetheory basis.
     The yearly operating performance of the integrated system was carried out forcomprehensive evaluation. Firstly, selection and design calculation of the integratedsystem was carried out. The operating conditions of different modes were analyzed.Secondly, the yearly operation performance of integrated system were studied, andcompared with the conventional air source heat pump system with the annualenergy consumption and operation cost. The results show that the integrated systemhas good energy-saving effect, however, constrained by the price of phase changematerial investment recovery period of integrated system is long.
     The research work in this paper comprehensive grasps the novel solar and airsource heat pump integrated system with triple-sleeve energy storage exchangers,and the study results supplied theory basis and technical reserve for the integratedsystem optimal design and construction load matching. In addition, the thesisprovides new ideas for comprehensive energy-saving and ecological energyapplication.
引文
1.李鹏.空气源热泵有望进入可再生能源范畴[J].家电科技,2012,(1):4.
    2.丁高峰,方龙胜.空气源热水器如何担当第四代热水器文明使[OL]. http://www.hea.cn/news
    3.中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社.2009:135-135.
    4.罗振涛.太阳能热利用产业发展:回顾与展望[J].建设科技.2011,(24):22~25.
    5.胡润青.太阳能热利用产业发展:前景与挑战[J].建设科技.2011,(24):18~21.
    6.赵玉文.太阳能利用的发展概况和未来趋势[J].中国电力.2003,36(9):63-68.
    7.赵玉文.21世纪我国太阳能利用发展趋势[J].中国电力.2000,33(9):73-77.
    8.姜益强,姚杨,马最良.空气源热泵结霜除霜损失系数的计算.暖通空调[J].2000,30(5):24-26.
    9. Horiuchi N. Development of Package Air Conditioner for Cold Regions[J].Refrigeration.1997,72(7):8371.
    10.马最良,杨自强,姚杨等.空气源热泵冷热水机组在寒冷地区应用的分析[J].暖通空调.2001,31(3):28~31.
    11.俞银平,马最良.双级耦合式热泵供热系统在寒冷地区应用的可行性分析[J].电力需求侧管理.2002,4(2):39~42.
    12. Masaji Y. Development of Burners for Room Air Conditioners [J] TechnicalReview Mitsubishi Heavy Industries,1998,35(2)1-12.
    13.马国远,邵双全.寒冷地区空调用热泵的研究[J].太阳能学报.2002,(2):17-21.
    14.马国远,彦启森.涡旋压缩机经济器系统的性能分析[J].制冷学报.2003,(3):20-24.
    15.田长青,石文星,王森太.用于寒冷地区双级压缩变频空气源热泵的研究[J].太阳能学报.2004,25(3):288-393.
    16.付圣东,刘金祥.提高空气源热泵低温性能的实验研究[J].暖通空调.2007,37(12):63-67.
    17. Sami S M, Tulej P J. A New Design for An Air Source Hat Pump Using aTernary Mixture for Cold Climates [J]. Heat Recovery Systems&Chp.2001,15(6):5212-5291.
    18.李晓燕,闫泽生.R417A在热泵热水系统中替代R22的实验研究[J].制冷学报,2003(4):1~4.
    19.刘宗华,王起霄,李晓燕等.提高低温空气源热泵性能的研究[J].制冷学报.2007,28(1):12-18.
    20.王伟,金苏敏,陈建中.用于低温环境下的双级压缩风冷热泵热水器[J].流体机械.2005,33(9):62-66.
    21.赵会霞.涡旋压缩机闪发器热泵系统的理论分析与实验研究[D].北京工业大学硕士学位论文.2005.
    22.周峰,马国远.空气能热泵热水器的现状及展望[J].节能.2006,25(7):13-16.
    23. Hepbasli A, Kalinci Y. A Review of Heat Pump Water Heating Systems[J].Renewable and Sustainable Energy Reviews.2009,13:1211-1229.
    24.董振宇,陆春林,金苏敏.空气源热泵热水器的实验研究[J].流体机械.2008,36(8):54-57.
    25.蔡芳芳,刘乃玲,李楠.直流变频空气源热泵热水器的实验研究[J].节能.2010,331(2):33-37.
    26.张后雷,刘心志,陈士发,熊荣辉.往复加热型双水箱空气源热泵热水器试验研究[J].流体机械.2010,38(1):61-68.
    27.项品义,章立新,黄陈师.工质为R415b的空气源热泵热水器性能实验研究[J].能源研究与信息.2008,24(4):217-225.
    28.黄玉优,王俊,尹茜,于静.R32空气源热泵热水器的实验研究[J].制冷与空调.2011,11(2):69-72.
    29.吴华根,束鹏程,邢子文.采用替代工质的空气源热泵性能试验研究[J].暖通空调,2006,36(1):61-62.
    30.饶荣水.制冷剂R32特性及其用于空气源热泵热水器的理论循环分析[J].制冷与空调,2010,10(3):79-84.
    31.王健,周全,翁文兵.R427a应用于空气源热泵热水器的性能研究[J].流体机械.2011,39(12):47-53.
    32.曹锋,马元,王凯等. R417a用于热泵热水器的试验研究[J].流体机械.2005,33(增刊):117-120.
    33.陈嘉澍,陈姝,卓献荣等.R22和R134a应用于家用热泵热水器实验性能研究[J].广东化工,2006,33(6):25-27.
    34.桂秋静,金宁,夏威伟.应用于热泵热水器的工质性能对比研究[J].制冷与空调,2006,(3):25-28.
    35. Fernandez. Seara J, Sieres J. Experimental Analysis of a Domestic Electric HotWater Storage Tank, Part I: Static mode of operation[J]. Applied ThermalEngineering,2007,27:129-136.
    36. Xu G, Zhang X, Deng S. A Simulation Study on the Operating Performance of aSolar Air Source Heat Pump Water Heater [J]. Applied Thermal Engineering,2006,26:1257-1265.
    37. Cao F, Fei Xing Z, L i L, Study on Performance of A Heat Pump water HeaterUsing Duction Dtream Liquid Injection[J]. Applied Thermal Engineering,2009,29:2942-2948.
    38.王伟.双级压缩空气源热泵热水器系统的研究[D].南京工业大学硕士学位论文,2006.
    39.姜益强,姚杨,马最良.空气源热泵结霜除霜损失系数的计[J]算.暖通空调.2000,30(5):24-26.
    40.姚杨,马最良.空气源热泵冷热水机组室外换热器结霜工况下数学模型的建立[J].流体机械.2001,29(10):50-53.
    41.黄虎,李志浩,虞维平.风冷热泵冷热水机组除霜过程仿真[J].东南大学学报,2001,31(1):52-56.
    42.郭宪民,陈轶光,汪伟华等.室外环境参数对空气源热泵翅片管蒸发器动态结霜特性的影响[J].制冷学报.2006,27(6):29-33.
    43.金宁,李生飞,张科等.两级压缩空气源热泵结霜性能试验研究[J].制冷学报.2010,31(5):38-43.
    44.黄东,袁秀玲,陈蕴光.节流机构对风冷热泵冷热水机组逆循环除霜时间的影响[J].西安交通大学学报,2003,37(5):512-518.
    45. Dong H, Xiu ling Y. Effects of a Starting Methods on the Reverse Cycle DefrostPerformance of an Air to Water Heat Pump[J]. International Journal ofRefrigeration.2004,27(8):869-875.
    46. Yi guang C, Xian min G. Dynamic Defrosting Characteristics of Air Source HeatPump and Effects of Outdoor Air Parameters on Defrost Cycle Performance [J].Applied Thermal Engineering,2009,29(13):2701-2707.
    47. WATT ERSR J, O’NEAL D L. Effect of Fin Staging on Frost/DefrostPerformance of A Two Row Heat Pump Evaporat or at Sandard TestConditions[J]. ASHRAE Transactions,2001,107(2):240-249.
    48. JHEE S, LEEK S, KIM W S. Effect of Surface Treatments on the Frosting/Defrosting Behavior of A Fin Tube Heat Wxchange r [J]. International Journal ofRefrigeration.2002,25(8):1047-1053.
    49. JAIN S, BANSAL P K. Performance Analysis of Liquid DesiccouldtDehumidification Systems [J]. International Journal of Refrigeration,2007,30(5):861-872.
    50.韩志涛,姚杨,马最良等.空气源热泵蓄能热气除霜新系统与实验研究[J].哈尔滨工业大学学报,2007,39(6):901-903.
    51.胡文举.空气源热泵相变蓄能除霜系统动态特性研究.哈尔滨工业大学博士论文.2010.
    52. Sheng Wei W. A New Method for Preventing HP from Frosting [J]. RenewableEnergy.2005,30(5):753-761.
    53. MEI V C, DOM ITROVIC R E, CHEN F C, et al. A frost Less Heat Pump [J].ASHRAE Transactions,2002,108(1):452-459.
    54.高强.无霜空气源热泵系统的实验研究.哈尔滨工业大学硕士学位论文.2011.
    55.闫凌.无霜空气源热泵系统喷淋溶液特性变化规律研究[J].哈尔滨工业大学硕士学位论文.2011.
    56.肖杰,何雅玲,程泽东.槽式太阳能集热器集热性能分析[J].工程热物理学报.2009,30(5):729-733.
    57.叶宏,葛新石.几种集热贮热式太阳房的动态模拟集热性能比较[J].太阳能学报.2000,21(4):349-357.
    58.乔力,叶宏,葛新石等.利用太阳能集热器系统仿真模型进行季节划分研究[J].太阳能学报.1997,18(4):395-400
    59.乔力,叶宏,葛新石等.利用四维热网络仿真模型计算反射镜和腔体窗光学性能对太阳集热器系统热性能的影响[J].太阳能学报.1997,18(3):307.
    60.陈滨.被动式太阳能建筑夏季降温实验研究[J].阳光技术.2008,(1)45-48.
    61.陈滨,陈星,丁颖慧.冬季特朗贝墙内置卷帘对墙体热性能的影响[J].太阳能学报.2006,27(6):564-570.
    62.赵金玲,陈滨,王永学.被动式太阳能加热系统动态热特性研究[J].大连理工大学学报.2008,48(4):580-587.
    63.刘圣勇,张百良,袁超,张杰.采用太阳能集热器干燥玉米的研究[J].农业工程学报.2001,(06)1-4.
    64. HIRUNLABH J, KON GDUAN G W, NAMPRA KAI P, et al. Study of NaturalVentilation of Houses by A Metallic Solar Wall Nnder Tropical Climate[J].Renewable Energy,1999,18(1):109-119.
    65.王志峰.抛物跟踪式太阳高温集热器的研究.太阳能学报[J].2000,21(1):69-
    76.
    66.吴静怡,王如竹.间歇热源驱动下的吸附式制冷系统运行特性研究[J].工程热物理学报.2003,06:6-10.
    67.罗会龙;王如竹;代彦军.低温储粮太阳能吸附式制冷系统研究[J].制冷学报.2006,02:45-50.
    68.王丽伟,王如竹,吴静怡等.氯化钙-氨的吸附特性研究及在制冷中的应用[J].中国科学E辑.2004,03:77-84.
    69.孔祥强,王如竹,吴静怡.微型冷热电联供系统集成与实验研究[J].工程热物理学报.2005,S1:8-12.
    70.王德昌;吴静怡;王如竹等.新型硅胶-水吸附式冷水机组动态运行特性[J].上海交通大学学报.2006,(02):57-63.
    71.李明,孙长江,王如竹,许煜雄,黄海宾.改进型太阳能固体吸附式制冰机的研制[J].上海交通大学学报.2002,(11):11-18.
    72.李明,王如竹,施锋.太阳能固体吸附式制冰机热动力学性能分析模型及实验[J].太阳能学报.2001,(03):35-42.
    73.李明,王如竹,王六玲.太阳能固体吸附式制冰机系统内外特性分析[J].太阳能学报.2002,(02):25-29.
    74.翟晓强,王如竹.太阳能制冷系统在不同循环方式下的运行特性[J].化工学报.2008,59(2)187-192.
    75.陈光明,冯仰浦,王剑锋,飞原英治.一个用太阳能驱动的新型吸收制冷循环[J].低温工程;1999,(01):7-14.
    76.郑飞陈光明.三效吸收制冷循环国外研究概况.流体机械[J],1998,12:54-60.
    77.陈光明,何一坚,章文斌.溴化锂溶液空气预冷却绝热吸收过程研究[J].太阳能学报.2002,23(3):344-348.
    78.李戬洪,黄志成.我国太阳能制冷空调研究与发展[J].中国科技投资.2010,(4)53-55.
    79. Kirn H.Solar Energy Collector Combined with Heat Pump-Provides HeatingThroughout Year from Alternative Sources According toWeather[P].DE2540463-A1977.
    80. Shantzer-Wallin C.Heat Pumps with Solar Heat Source-Has ReversibleControl Allowing Withdrawal of Heat from Outside Air when Stored Heat isExhausted[P].US4030312-A.1977.
    81. Bet Sogeti, Ciat Cle Ind Appl Therm. Domestic Heating System Using HeatPump-Has Thermal Store in Loft to Absorb Solar Radiation Through Roof andWarm Circulated Air[P]. FR2408792-A.1979.
    82. MOLIVADAS S. Combined Heating and Cooling System-Has SolarCollector and Evaporator which Absorbs Heat for Evaporating Binary PhaseWorking Fluid[P].US4211207-A.1980.
    83. Trouilhet Y, Houlmann N, Vollerin B.Heat Pump Suitable for DomesticHeating-Where Refrigerant is Evaporated by Heat Obtd. from Both AmbientAir and Solar Energy Collector[P]. EP60813-A, WO8203264-A,JP58500298-W,CH640629-A,EP60813-B,DE3260237-G.1982.
    84. NussbaumO J.Heat Pump Using Solar and Outdoor Air Heat Sources-Permits Non-Reversing Refrigeration Cycle at Low Superheat by Use of Temp.Controlled Expansion Valve and Protects Against Flood-Backs[P].US4363218-A.1983.
    85. Lang R, Marth F, Marx U et al.Total Environmental Heat Source for HeatPump Has Heat Sources Such As Air Collector, Earth's Heat Exchanger andSolar Absorber Connected in Series, Bridged by Bypass Lines Controlled byValve[P]. EP1248055-A, EP1248055-A2, DE10214216-A1,AT200100757-A, AT413302-B.2002.
    86.杨灵艳,姚杨,姜益强,马最良,周权.太阳能热泵蓄能技术研究进展[J].流体机械.2008,36(12):65-70.
    87.胡盼盼.三套管蓄能型换热器性能实验研究.哈尔滨工业大学硕士论文.
    2008.
    88.黄挺.空气源热泵除霜用相变蓄能换热器的模拟研究.哈尔滨工业大学硕士论文.2007.
    89.刘寅,周光辉,李安桂,张超.太阳能辅助空气源热泵空调低温特性研[J].低温与超导.2008,37(10):4-8.
    90.陈俭,苏顺玉,佘明威.太阳能蒸发面板为辅助热源的空气源热泵系统的分析[J].节能.2010,332(3):14-16.
    91.陈仕泉,黄夏东,谢竹雯,赵士怀.太阳能空气源热泵集成热水系统[J].暖通空调.2011,41(8):114-120.
    92.朱志朋,翁文兵.空气源热泵辅助太阳能毛细管辐射供暖系统[J].煤气与热力.2010,30(1):07-19.
    93.刘伟锋.太阳能一空气复合热泵系统的应用技术研究[D].山东建筑大学硕士学位论文.2011.
    94.梁彩华,张小松,朱霞.基于新型太阳能空气源热泵供热系统的热泵性能研究[J].东南大学学报.2010,26(2):227-231.
    95.韩宗伟,李先庭,石文星.适用于寒冷地区的太阳能与低温空气源热泵复合空调系统[J].暖通空调.2011,41(1):104-108.
    96.石惠娴,王卓,朱洪光,雷勇.太阳能-空气源热泵耦合式沼气池加温系统设计[J].建筑节能.2010,38(10):28-31.
    97.杨灵艳.三套管蓄能型太阳能与空气源热泵集成系统实验与模拟[D].哈尔滨工业大学博士学位论文.2009.
    98.杨灵艳,倪龙,姚杨等.三套管蓄能型太阳能与空气源热泵集成系统运行模式研究[J].煤气与热力,2009,29(1):01-04.
    99. Badescu V. Model of a Thermal Energy Storage Device Integrated into a SolarAssisted Heat Pump System for Space Heating [J]. Energy Conversion andManagement.2003,44:1589-1604.
    100. Yumrutas R, Kaska O. Experimental Investigation of Thermal Performance ofA Solar Assisted Heat Pump System with an Energy Storage [J]. Int J Energy Res.2004,28:163-175.
    101. Kaygusuz K. Investigation of a Combined Solar Heat Pump System forResidential Heating. Part1: Experimental Results[J]. Int J Energy Res.2000,23:1213–1223.
    102. Yumrutas R, Kunduz M, Ayhan T. Investigation of Thermal Performance of aGround Coupled Heat Pump System with a Cylindrical Energy Storage Tank [J].Int J Energy Res.2003,27:1051-1066.
    103. Y.H. Kuang, R.Z. Wang. Performance of a Multi-Functional Direct-ExpansionSolar Assisted Heat Pump System [J]. Solar Energy.2006,80:795-803.
    104. Mohammed M.Farid, Amar M.Khudhair et. A Review on Phase Change EnergyStorage: Materials and Applications [J]. Energy Conversion and Management.2004,45:1597-1615.
    105. M. N. A. Hawlade, M. S. Uddin. Miroencapsulated PCM thermal-energystorage system [J]. Applied energy,2003,74(1):195-202.
    106. Ryu HW, Woo SW, Shin BC, Kim SD. Prevention of Subcooling andStabilization of Inorganic Salt Hydrates as Latent Heat Storage Materials [J].Solar Energy Mater Solar Sells.1992,27:161-172.
    107. Gibbs B, Hasnain S. DSC Study of Technical Grade Phase Change Heat StorageMaterials for Solar Heating Applications[Z]. Proceedings of the1995ASME/JSME/JSEJ International Solar Energy Conference, Part2,1995.
    108. Costa M, Buddhi D, Oliva A. Numerical Simulation of a Latent Heat ThermalEnergy Storage System with Enhanced Heat Conduction[J].Energy Conversionand Management.1998,39:319-330.
    109. Bauer C, Wirtz R. Thermal Characteristics of a Compact, Passive ThermalEnergy Storage Device [Z]. Proceedings of the2000ASME IMECE, Orlando,USA.2000.
    110. Py X, Olives S, Mauran S. Paraffin/porous Graphite Matrix Composite as aHigh and Constant Power Thermal Storage Material [J]. International Journal ofHeat and Mass Transfer.2001,44:2727-2737.
    111.阮德水,张太平,张道圣等.相变蓄热材料的DSC研究[J].太阳能学报.1994,15(1):19~23.
    112.刘玲,叶红卫.国内外蓄热材料发展概况[J].兰州科技.1998,16(3):168~171.
    113.姜益强,齐琦,姚杨,马最良.圆柱形壳管式相变蓄热单元的蓄热特性研究[J].太阳能学报.2008,29(1):29-34.
    114.张东,周剑敏,吴科如等.颗粒型相变储能复合材料[J].复合材料学报.2004,21(5):103-109.
    115.陈云深,陈凯,沈斌君等.交联定型相变储能材料的研制[J].复合材料学报.2006,23(3):67-70.
    116.樊耀峰,张兴祥,王学晨等.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程,2005,21(1):288-292.
    117.张静.以棕榈酸为基的复合相变材料的制备和表征[J].盐湖研究,2006,14(1):9-13.
    118. Mehmet Esen. Thermal Performance of a Solar-Aided Latent Heat Store Usedfor Space Heating Pump [J]. Solar Energy.2000,69(1):15-20.
    119. Giovanni, Casano, Stefano, Piva.Experimental and Numerical Investigationof the Steady Periodic Solid–Liquid Phase-Change Heat Transfer[J].International Journal of Heat and Mass Transfer.2002,45:4181-4190.
    120. Kamal A.R. Ismail,Maria das Gracas E. da Silva. Numerical Solution of ThePhase Change Problem Around a Horizontal Cylinder in The Presence of NaturalConvection in The Melt Region [J]. International Journal of Heat and MassTransfer.2003,46:1791-1799.
    121. Uros S. An Experimental Study of Enhanced Heat Transfer in Rectangular PCMThermal Storage [J]. International Journal of Heat and Mass Transfer.2004,47:2841-2847.
    122. K.C.Nayak, S.K. Saha, A Numerical Model for Heat Sinks with Phase ChangeMaterials and Thermal Conductivity Enhancers [J]. International Journal of Heatand Mass Transfer.2006,49:1833-1844.
    123. V.Shatikian, G. Ziskind. Numerical Investigation of a PCM-based Heat Sinkwith Internal Fins: Constant Heat Flux [J]. International Journal of Heat andMass Transfer.2008,51:1488-1493.
    124.张寅平,胡汉平,孔祥冬等.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社.1996:14~15.
    125.杨启容,孙泽权.内通流体套管式潜热蓄热器充放热过程的实验分析[J].能源工程.2003,(5):45-49.
    126.马贵阳,郑平.相变蓄热装置的研制及放热性能测试[J].辽宁石油化工大学学报.2005,12(25):55-57.
    127.王增义,刘中良.热管式相变蓄热换热器储/放能过程中传热特性的实验研究[J].工程热物理学报.2005,26(12):989-991.
    128.朱孝钦,陆建生.用六水氯化钙作为相变材料的换热器储热性能研究[J].无机盐工业.2007,39(8):56-58.
    129. Fuqiao W, Graeme Maidment. The Novel Use of Phase Change Materials inRefrigeration Plant. Part1: Experimental Investigation [J]. Applied ThermalEngineering.2007,27:2893–2901.
    130.吕磊磊,章学来.复合相变蓄热器在空调系统冷凝热回收中的应用.能源技术[J].2007,28(6):353-355.
    131.鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社.2002:8-15.
    132.江辉民.带热水供应的热泵空调器的运行特性研究.哈尔滨工业大学博士论文.2006.
    133.姚杨.空气源热泵冷热水机组冬季融霜工况的模拟与分析[D].哈尔滨工业大学博士学位论文.2002:29-39.
    134. H.Wang, S.Toubor. Distributed and Non-steady Modeling of an Air Cooler [J].International Journal of Refrigeration.1991,14(5):158-167.
    135. A.E.Shah. A General Correlation for Heat Transfer during Film Condensationinside Pipes [J]. International Journal of Heat Mass Transfer.1979,22(4):547-
    556.
    136. Turaga M., R.W.Guy. Refrigerant Side Heat Transfer and Pressure DropEstimates for Direct Expansion Coils [J]. International Journal of Refrigeration.2003,8(3):134-142.
    137. L. Guo, Z. Feng, etal. An Experimental Investigation of the FrictionalPressure Drop of Stem-Water Two-Phase Flow in Helical Coils [J].International Journal of Heat Mass Transfer.2001,44(9):2601-2610.
    138. A. E. Dbiri, C. K. Rice. A Compressor Simulation Method withCorrelations for The Level of Suction Gas Superheat [J]. ASHRAETransactions.2000,87(2):1019~1025.
    139.葛云亭.房间空调器系统仿真模型研究[D].清华大学博士学位论文.1997:1~16.
    140.许为全.热质交换过程与设备[M].北京:清华大学出版社.1991:120~
    121.
    141.彦启森,石文星,田长青.空气调节用制冷技术[M].北京:中国建筑工业出版社.2004(3):64~65.
    142.陈涌.风冷冷(温)水机组(热泵型)的模拟与试验[D].清华大学硕士学位论文.1997:35~39.
    143.陈光明,陈国邦,沈永年等.制冷与低温原理[M].北京:机械工业出版社.2000:54~55.
    144.吴业正.小型制冷装置设计指导[M].北京:机械工业出版社.2001:40~43.
    145.周强泰.两相流动与热交换[M].北京:水利电力出版社.1990:20~
    23.
    146. Turaga M.,R.W.Guy.Refrigerant Side Heat Transfer and PressureDrop Estimates for Direct Expansion Coils[J]. International Journal ofRefrigeration.2005,8(3):134~142.
    147. Wang H., Toubor S.Distributed and Non-Steady-Steady Modeling of anAir Cooler[J].International Journal of Refrigeration.2001,14(5):158~
    167.
    148.周淳婻,郑金宝,张力立.求解固液相变问题的方法.低温与特气[J].1994,(2):20~25.
    149.郭宽良,孔祥谦,陈善年.计算传热学[M]:合肥.中国科技大学出版社.1988:33~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700