用户名: 密码: 验证码:
异步电机无速度传感器系统轻载稳定性与低速性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节约能源是当今社会可持续发展的一个永恒的主题。异步电机调速系统的应用对节约能源有着举足轻重的作用。然而,随着我国现代化进程的不断发展,对异步电机调速系统的性能指标要求越来越高。如何进一步提高异步电机无速度传感器调速系统的低速性能是亟待解决的关键技术之一。在异步电机无速度传感器控制算法中,应用较为广泛的主要有开环V/f控制算法和无速度传感器矢量控制算法两种。其中,开环V/f控制算法具有鲁棒性好和可靠性高的特点,但其低速性能差,且在空载和轻载时系统在某一频段存在持续振荡问题。而无速度传感器矢量控制算法具有很好的动、静态性能,低速性能较好,然而此系统在低速发电状态下的稳定性有待提高。对异步电机无速度传感器算法进行深入研究,并解决其核心技术难点,这对拓宽异步电机调速技术在工业控制中的应用场合具有重要意义。
     本文主要研究异步电机的无速度传感器控制算法,包括开环V/f控制算法和无速度传感器矢量控制算法,着重解决此算法中的核心技术难点。具体内容包括以下几个方面:
     针对异步电机开环V/f控制系统在空载或轻载时存在一个持续振荡的稳定性问题,提出了一种抑制异步电机开环V/f控制系统轻载振荡的方法。首先,通过仿真建模详细分析了系统出现持续振荡时的不稳定现象。然后,通过理论推导,对系统轻载振荡的原因进行了研究,并分析了系统中各参数对此振荡的影响。最后根据系统振荡与无功电流波动之间的关系,并基于定子电压定向对电流进行分解,通过控制无功电流分量恒定,调节电机定子电压的幅值来抑制电机振荡。该方法不依赖电机参数,鲁棒性高。采用该方法,系统在电机额定频率以下的工作范围内都能平稳运行,电机的振荡得到了抑制,有效地提高了系统在轻载下的稳定性。
     基于电机理想模型,转子转速在极低速下具有不可观测性。为了实现极低速下带载调速,在开环V/f控制算法的基础上结合矢量控制的思想,根据异步电机状态方程推导出一种新型电压矢量控制策略。该策略采用一种新颖的电压提升方法对电机定子电阻压降进行补偿,使电机磁链幅值保持恒定。在极低速情况下,通过对电机转矩进行提升以及对滑差频率进行补偿,使系统的低速性能和转速精度得到明显改善。与无速度传感器矢量控制算法不同的是,该控制算法是根据定子电压矢量定向对电流进行解耦,其不需要复杂的磁链观测运算,容易实现,参数鲁棒性高。实验结果表明,采用此方法在0.1Hz满载情况下,电机能平稳运行。系统的低速性能和转速精度得到了明显提升,并且系统的轻载振荡得到了抑制,在基频以下的工作范围内都能平稳运行。
     基于转速自适应磁链观测器的异步电机无速度传感器矢量控制算法,针对其低速发电状态下不稳定的问题,根据异步电机小信号线性化模型,推导出转速自适应观测系统的传递函数,并采用劳斯-赫尔维茨稳定性判据,提出一种基于观测器的转速自适应观测方法。该方法通过在传统的转速观测自适应律中加入励磁电流观测误差项,使转速的观测精度得到大幅提高,并通过在线调节励磁电流观测误差项的比例系数,可使系统在低速发电状态下稳定运行。考虑到电机参数误差的影响,对此算法的参数鲁棒性进行了分析。通过7.5kW异步电机对拖实验平台对此算法的有效性进行了验证。从实验结果可知,此新型速度自适应观测方法明显提高了低速下的速度观测精度,改善了系统的低速性能,并有效解决了低速发电状态下系统不稳定的问题。
     在异步电机调速系统中,无论是开环V/f控制算法中的定子电阻压降和滑差补偿,还是矢量控制算法中各控制器参数设计以及磁链观测都依赖于电机参数。电机参数的精度直接影响着系统的控制性能。为获得准确的电机参数,提出了一种异步电机在静止状态下的参数辨识方法。采用了一种自适应的方法对器件的非线性进行补偿,从而提高了算法的辨识精度和适应性。同时考虑到电机的磁滞效应对电机互感辨识的影响,通过在传统单相交流实验的基础上叠加一个直流电流,利用此直流电流先将电机磁场激励起来,从而准确地辨识出电机在额定励磁情况下的互感值。最后通过实验证明了此方法可以准确辨识出电机T型等效电路中的全部参数。
Energy saving is an eternal theme for a sustainable development in present society.Induction motor (IM) drive system plays an important role in the energy saving.However, with the continuous development of the modernization process in our country,the performance requirements for the IM drive system becomes higher and higher. Howto further improve the low speed performance of the IM drive system is one of the mostarduous technologies to be solved. Open loop variable voltage and variable frequency(V/f) control method and close loop speed sensorless vector control (SLVC) method aretwo popular methods for IM speed sensorless control. V/f control method possessesgood robustness and high reliability. However this method has poor low speedperformance and suffers from sustained oscillations under the light load conditions. Inaddition, the SLVC method is specialized by the good dynamic and static performanceand good low speed performance. But the drive systems controlled by this methodencounter instability in the regenerating mode at low speeds. Thorough study in IMspeed sensorless control algorithms and research on the solution for the core technologyis important for improving the applications of IM speed control technology in powerdrive systems.
     This thesis mainly studies the IM speed sensorless control methods, including theopen-loop V/f control method and speed sensorless vector control method, and focuseson solving the core technologies that involved in these methods. The contents includeseveral aspects as follows:
     In order to improve the stability of V/f controlled IM drive system in light loadconditions, a stabilizing control method is presented. Through simulation modeling, thesystem instability is analyzed in detail based on the simulation results. Then bytheoretical derivation, the reasons that result in the instability under light load conditionare studied, and the influences on system stability of various parameters are alsoanalyzed. Based on the relationship between the system oscillations and the fluctuationof reactive current the stabilizing method is implemented by adjusting the stator voltageamplitude according to the fluctuation of reactive current which is decoupled throughstator voltage oriented synchronous rotation frame transformation. The proposedmethod is parameter independent and robust. Experiments have proven that the systemhas a very stable operation over the whole speed range from0to50Hz with theproposed method. The oscillations have been suppressed effectively, and the systemstability in light load conditions is much improved.
     Based on the ideal model of IM, the motor speed is unobservable when the IM is operating in a very low speed range. In order to achieve speed control with load inextremely low speed range, on the basis of open loop V/f control method combing withthe vector control theory, a novel voltage vector control strategy is derived according tothe state equations of IM. The control scheme adopts a novel voltage boost method tocompensate the stator resistor voltage drop keeping the magnitude of the stator fluxconstant. The performance under very low speed conditions is greatly improved byboosting the torque and compensating the motor slip frequency. Different from speedsensorless vector control methods, all the compensation and regulation are based onstator voltage oriented synchronous rotation frame transformation, which avoidscomplicated flux linkage vector estimation, and is easy to implement, and has goodparameters robustness. The experimental results show that, by adopting the proposedmethod, the speed can be accurately controlled down to0.1Hz with rated load torque.The low speed performance and speed accuracy are much improved, and the systemunder no load condition is stabilized at the speed range from0to50Hz.
     In the speed-sensorless IM drive system adopting the speed adaptive flux observermethod, there exists an unstable region in the regenerating mode at low speeds. In orderto solve this problem, a novel speed estimation method is presented. Based on the smallsignal linearized model of IM, the transfer function of the speed adaptive estimationsystem is deduced, and a novel speed adaptive estimation method is developed byapplying Routh-Hurwitz criteria. The speed accuracy could be greatly improved byadding the magnetizing current estimation error to the general speed estimation law, andthe instability behavior in the low speed regenerating mode could be remedied byadjusting the adaptation gain on-line. Concerning the motor parameters error, therobustness of the proposed method is analyzed as well. The feasibility of the proposedscheme is verified by the experimental results of speed sensorless field-oriented vectorcontrolled7.5kW IM platform. Experimental results show that the speed estimationaccuracy and the low speed performance are greatly improved, and also a stableoperation is acquired in a very wide speed range.
     In the IM drive system, both the stator resistance voltage drop and slipcompensation in open loop V/f control algorithm, or the parameters design of variouscontrollers and flux observations in vector control algorithm, depend on motorparameters. The control performance is highly dependent on the accuracy of theparameters of IM. In order to obtain the parameters of IM accurately, a parameteridentification method at standstill is proposed. The nonlinearity of the inverter is takeninto account and compensated adaptively to improve the estimation precision. Inaddition, the influence due to the magnetic hysteresis phenomenon when calculating themutual inductance is also considered. The mutual inductance is estimated at the rated magnetizing level by superimposing a direct current into the traditional single phasealternating current. The feasibility of the proposed scheme is verified by theexperimental results which show a high estimation accuracy of IM parameters.
引文
[1] H. Kubota, K. Matsuse, and T. Nakano. DSP-based speed adaptive flux observerof induction motor [J]. IEEE Trans. on Industry Applications,1993,29:344-348
    [2] G. Yang and T. H. Chin. Adaptive speed identification scheme for a vectorcontrolled speed sensorless inverter induction motor drive [J]. IEEE Trans. onIndustry Applications,1993,29:820-825
    [3] S. Suwankawin and S. Sangwongwanich. A speed sensorless IM drive withdecoupling control and stability analysis of speed estimation [J]. IEEE Trans. onIndustry Electronics,2002,49:444-455
    [4] Sun Jin, Zheng Wei, etc. One novel scalar control scheme for induction machine
    [C]. IEEE Annual Conference of Industrial Electronics Society (IECON),2004,1:347-352
    [5] K. C. Vinay, H. N. Shyam, etc. FPGA based implementation of variable voltagevariable frequency controller for a three phase induction motor [C]. InternationalConference on Process Automation Control and Computing (PACC),2011,1-6
    [6]罗慧,王庆义,等.基于电流解耦的异步电机V/F控制补偿方法[J].华中科技大学学报(自然科学版),2007,35(10):60-63
    [7] K. Suzuki, S. Saito, etc. Stability improvement of V/F controlled large capacityvoltage source inverter fed induction motor [C]. IEEE Annual MeetingConference on Industry Applications,2006,1:90-95
    [8] Rongfeng Yang, Wei Chen, etc. A novel V/F control system based on statorvoltage oriented method [C]. International Conference on Electrical Machines andSystems (ICEMS),2008,83-87
    [9] Jee Hoon Jung, Gang Youl Jeong, etc. Stability improvement of V/f controlledinduction motor drive systems by a dynamic current compensator [J]. IEEE Trans.on Industrial Electronics,2004,51(4):930-933
    [10] M. Tsuji, Shuo Chen, etc. A novel V/f control of induction motors for wide andprecise speed operation [C]. International Symposium on Power ElectronicsElectrical Drives Automation and Motion (SPEEDAM),2008,1130-1135
    [11] M. Tsuji, Xiaodan Zhao, He Zhang, etc. Steady-state and transient characteristicsof a novel V/f controlled induction motor [C]. International Conference onElectrical Machines and Systems (ICEMS),2009,1-6
    [12] Wu Di, Chang CS, etc. Performance improvement of V/f induction-motor controlin the low-frequency range [C]. International Conference on Advances in PowerSystem Control Operation and Management (APSCOM),2009,1-6
    [13] M. H. V. Reddy, V. Jegathesan. Open loop V/f control of induction motor basedon hybrid PWM with reduced torque ripple [C]. International Conference onEmerging Trends in Electrical and Computer Technology (ICETECT),2011,331-336
    [14] J. Itoh, T. Hoshino, etc. A Performance Improvement of V/f Control Using aDisturbance Observer [C]. International Conference on Power Electronics andMotion Control (EPE-PEMC),2006,1167-1172
    [15] J. Iyer, K. Tabarraee, etc. An improved V/F control scheme for symmetric loadsharing of multi-machine induction motor drives [C].24thCanadian Conferenceon Electrical and Computer Engineering (CCECE),2011,1487-1490
    [16] J. Iyer, M. Chapariha, etc. Load sharing in V/F speed controlled multi-motordriven system under mechanical wheel-slippage [C]. IEEE Vehicle Power andPropulsion Conference (VPPC),2011,1-6
    [17] M. Tsuji, Xiaodan Zhao, etc. A new simplified V/f control of induction motor forprecise speed operation [C]. International Conference on Electrical Machines andSystems (ICEMS),2011,1-6
    [18] K. Sandeep Kumar, K. Pritam Satsangi. Micro-controller based closed loopcontrol of induction motor using V/F method [C]. International Conference onInformation and Communication Technology in Electrical Sciences (ICTES),2007,340-342
    [19] C.S.Kamble, J.G.Chaudhari, etc. Digital Signal Processor Based V/f ControlledInduction Motor Drive [C]. International Conference on Emerging Trends inEngineering and Technology (ICETET),2010,345-349
    [20] Gaolin Wang, Dianguo Xu, etc. Improved rotor flux estimation based on voltagemodel for sensorless field oriented controlled induction motor drives [C].39thIEEE Power Electronics Specialists Conference (PESC),2008,1887-1890
    [21] Jung Ho Han, Min Yeong Jang, etc. Improved performance of sensorlessinduction motor using reactive power [C]. Annual Conference on InstrumentationControl Information Technology and System Integration (SICE),2007,637-642
    [22] M. Dybkowski, T. Orlowska Kowalska. Low-speed performance of the statorcurrent-based MRAS estimator with FL controller in the sensorless inductionmotor drive [C]. International Conference on Optimization of Electrical andElectronic Equipment,2008,75-80
    [23] M. Zerikat, S. Chekroun, etc. Fuzzy neural networks controller based adapatationmechanism for MRAS sensorless induction motor drives [C].8thInternationalSymposium on Advanced Electromechanical Motion Systems&Electric DrivesJoint Symposium,2009,1-7
    [24] M. Dybkowski, T. Orlowska-Kowalska. Application of the stator current-basedMRAS speed estimator in the sensorless induction motor drive [C]. PowerElectronics and Motion Control Conference (EPE-PEMC),2008,2306-2311
    [25] P. Santhosh, R.H.Chile, etc. Model Reference Adaptive Technique for SensorlessSpeed Control of Induction Motor [C]. International Conference on EmergingTrends in Engineering and Technology (ICETET),2008,893-898
    [26] Kang Hyo Park, Cheol Moon, etc. State observer with parameter estimation forsensorless induction motor [C]. Annual Conference on Instrumentation ControlInformation Technology and System Integration (SICE),2011,2967-2970
    [27] Yong Hun Park, Kang Hyo Park, etc. Sliding mode observer with parameterestimation for sensorless induction motor [C]. IEEE Region10Conference onTrends and Developments in Converging Technology (TENCON),2010,37-41
    [28] G. Pellegrino, P. Guglielmi, etc. Self-Commissioning Algorithm for InverterNonlinearity Compensation in Sensorless Induction Motor Drives [J]. IEEE Trans.on Industry Applications,2010,46(4):1416-1424
    [29] Pang Peilin, Ding Guangbin. An improved flux and torque estimation strategy ofspeed sensorless induction motor [C]. Control and Decision Conference,2009,1144-1147
    [30] T. Orlowska-Kowalska, M.Dybkowski, etc. Adaptive sliding-mode neuro-fuzzycontrol of the sensorless induction motor drive with MRASCCestimator [C].13thEuropean Conference on Power Electronics and Applications,2009,1-8
    [31] M.S.Zaky, M.M.Khater, etc. Wide-Speed-Range Estimation With OnlineParameter Identification Schemes of Sensorless Induction Motor Drives [J]. IEEETrans. on Industrial Electronics,2009,56(5):1699-1707
    [32] V.M.Leppanen, J.Luomi. Observer using low-frequency injection for sensorlessinduction motor control-parameter sensitivity analysis [J]. IEEE Trans. onIndustrial Electronics,2005,53(1):609-616
    [33] S.M.Gadoue, D.Giaouris, etc. Performance Evaluation of a Sensorless InductionMotor Drive at Very Low and Zero Speed Using a MRAS Speed Observer [C].IEEE Region10and the Third international Conference on Industrial andInformation Systems (ICIIS),2008,1-6
    [34] M.G.Aydeniz, I.Senol. A novel approach to sensorless control of induction motors
    [C]. International Conference on Electrical and Electronics Engineering (ELECO),2009, I-179-I-183
    [35] H.Abu-Rub, J.Guziński, etc. Predictive current controller for sensorless inductionmotor drive [C]. IEEE International Conference on Industrial Technology (ICIT),2010,1845-1850
    [36] S.Danan, L.Wenli, etc. Speed Sensorless Induction Motor Drive Based on EKFand Γ-1Model [C]. International Conference on Computer Distributed Control andIntelligent Environmental Monitoring (CDCIEM),2011,290-294
    [37] M.S.Zaky. Stability Analysis of Speed and Stator Resistance Estimators forSensorless Induction Motor Drives [J]. IEEE Trans. on Industrial Electronics,2012,59(2):858-870
    [38] C.C.Gastaldini, H.A.Grundling, etc. Speed-sensorless induction motor controlwith torque compensation [C].13th European Conference on Power Electronicsand Applications,2009,1-8
    [39] M.Dybkowski, T.Orlowska-Kowalska. Speed sensorless induction motor drivewith magnetizing reactance estimation [C].14th International Power Electronicsand Motion Control Conference (EPE/PEMC),2010,T5-120-T5-125
    [40] A.Larabi, M.S.Boucherit. Robust speed-sensorless induction motor with the rotortime constant adaptation [C]. Electrical Systems for Aircraft, Railway and ShipPropulsion (ESARS),2010,1-6
    [41] M.Comanescu, Longya Xu, T.D.Batzel. Decoupled Current Control of SensorlessInduction-Motor Drives by Integral Sliding Mode [J]. IEEE Trans. on IndustrialElectronics,2008,55(11):3836-3845
    [42] T.Orlowska-Kowalska, M.Dybkowski, etc. Adaptive Sliding-Mode Neuro-FuzzyControl of the Two-Mass Induction Motor Drive Without Mechanical Sensors [J].IEEE Trans. on Industrial Electronics,2010,57(2):553-564
    [43] N.Salvatore, G.L.Cascella, etc. Stator Flux Oriented Sliding Mode Control ofSensorless Induction Motor Drives by Kalman Filter [C].33rd Annual Conferenceof the IEEE Industrial Electronics Society (IECON),2007,956-961
    [44] G.Tarchala, M.Dybkowski, etc. Analysis of the chosen speed and flux estimatorsfor sensorless induction motor drive [C]. IEEE International Symposium onIndustrial Electronics (ISIE),2011,525-530
    [45] Deng Xin, Zhao Jin, etc. Design of MRAS-based observer in speed sensorlessinduction motor drive [C].4th IEEE Conference on Industrial Electronics andApplications (ICIEA),2009,3585-3590
    [46] S.M.Gadoue, D.Giaouris, etc. A neural network based stator current MRASobserver for speed sensorless induction motor drives [C]. IEEE InternationalSymposium on Industrial Electronics (ISIE),2008,650-655
    [47] Q. Gao, G.M.Asher, etc. Sensorless Control of Induction Machines, includingZero Frequency using only Fundamental PWM Excitation [C].32rd AnnualConference on IEEE Industrial Electronics (IECON),2006,793-798
    [48] C.Caruana-Mifsud, G.M.Asher, etc. Effect of motor type on performance ofsensorless induction motor control using HF injection [C]. InternationalConference on Power Electronics, Machines and Drives,2002,515-521
    [49]李红梅,李忠杰,等.逆变器供电下异步电动机低频振荡现象的研究[J].电工技术学报,2000,15(3):16-19
    [50]王庆义,尹泉,等.一种改善VVVF变频调速系统稳定性方法[J].电机与控制学报,2007,11(2):138-142
    [51]严干贵,姜齐荣,等.变频电源驱动下的中高压异步电动机的振荡分析[J].电力电子技术,2003,37(3):45-48
    [52] Y. Murai, I. Hosono, etc. On system stability of PWM inverter-fed inductionmotor [J]. IEEJ Transactions,1985,105(5):467-474
    [53] T. Kishimoto, K. Matsumoto, etc. Stability analysis of a voltage source PWMinverter-fed induction motor drive [J]. IEEJ Transactions,1986,106(9):737-744
    [54] T. A. Lipo, P. C. Krause. Stability analysis of a rectifier-inverter induction motordrive [J]. IEEE Trans. on Power Apparatus and Systems,1969,88(1),55-65
    [55] Nobuyoshi Mutoh, Akiteru Ueda, etc. Stabilizing control method for suppressingoscillations of induction motors driven by PWM inverters [J]. IEEE Trans. onIndustrial Electronics,1990,37(1):48-56
    [56] Nobuyoshi Mutoh, Akiteru Ueda, etc. Tripless control method for general purposeinverters [J]. IEEE Trans. On Industry Applications,1992,28(5):1031-1137
    [57] Ryuzo Ueda, Toshikatsu Sonoda, etc. Stability analysis in induction motor drivenby V/f controlled general purpose inverter [J]. IEEE Trans. on IndustryApplications,1992,28(2):472-481
    [58] David Leggate, Russel J. Kerkman. Pulse based dead time compensator for PWMvoltage inverters [J]. IEEE Trans. on Industrial Electronics,1997,44(2):191-197
    [59] M. Cade. Improvement of induction machine stability by modulation techniques[J]. IEE Proceedings Electric Power Applications,1994,141(6):347-352
    [60] Roy S. Colby, Anil K. Simlot, etc. Simplified model and corrective measures forinduction motor instability caused by PWM inverter blanking time [C].21stAnnual IEEE Power Electronics Specialists Conference (PESC),1990,678-683
    [61] Lazhar Ben Brahim. Improvement of the stability of the V/f controlled inductionmotor drive systems [C]. Proceedings of the24th Annual Conference of the IEEEIndustrial Electronics Society (IECON),1998,2:859-864
    [62]李红梅.逆变器供电异步电动机低频振荡及转矩脉动的研究[D].沈阳工业大学博士学位论文,2002
    [63]吴茂刚,赵荣祥,等.正弦和空间矢量PWM逆变器死区效应分析与补偿[J].中国电机工程学报,2006,26(12):101-105
    [64]孙向东,钟彦儒,等.一种新颖的死区补偿时间测量方法[J].中国电机工程学报,2003,23(2):103-107
    [65]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法[J].中国电机工程学报,2005,25(3):13-17
    [66] K. Koga, R. Ueda, etc. Achievement of high performances for general purposeinverter drive induction motor system [C]. Proceedings of IEEE Conference onIndustry Applications Society,1989,1:415-425
    [67] Stich F A. Transistor inverter motor drive having voltage boost at low speeds [P].U.S. Patent:3971972,1976-07-27
    [68]岩崎政彦.逆变器控制装置[P].中国发明专利:85107270,1987
    [69]沈安文,张侨.基于补偿策略的通用变频器高性能控制方法研究[J].电气传动,2007,37(1):16-18
    [70]罗慧,王庆义,等.基于电流解耦的异步电机V/f控制补偿方法[J].华中科技大学学报(自然科学版),2007,35(10):60-63
    [71] Abbondanti A. Flux control system for controlled induction motors [P]. U.S.Patent:3909687,1975-09-30
    [72] T. C.Green, B. W. Williams. Control of induction motors using phase currentfeedback derived from the DC link [C]. European Conference on PowerElectronics and Applications,1989,3:1391-1396
    [73] Xue Y, Xu X, etc. A low cost stator flux oriented voltage source variable speeddrive [C]. IEEE Conference on Industry Applications Society,1990,1:410-415
    [74] Munoz-Garcia A, Lipo T A, etc. A new induction motor V/F control methodcapable of high-performance regulation at low speeds [J]. IEEE Trans. onIndustry Applications,1998,34(4):813-821
    [75] Ohmori Y, Fujita H, M itsuhashi T. A Spatial Vector Controlled Inverter forInduction Motor Drive Without Speed Sensor [C]. Proc IPEMC’94. Beijing,China,1994:466-471
    [76] Hu J and Wu B. New Integration Algorithms for Estimating Motor Flux Over aWide Speed Range [J]. IEEE Trans. on Power Electronics,1998,13(5):969-977
    [77]韦立祥,刘丛伟等.一种消除电压型磁链观测器中直流偏置误差的新方法[J].清华大学学报,2001,41(9):51-54
    [78]王高林,陈伟等.无速度传感器感应电机改进转子磁链观测器[J].电机与控制学报,2009,13(5):638-642
    [79] Bimal K. Bose and Nitin R. Patel. A Programmable Cascaded Low-Pass Filter-Based Flux Synthesis for a Stator Flux-Oriented Vector-Controlled InductionMotor Drive [J]. IEEE Trans. on Industrial Electronics,1997,44(1):140-143
    [80] Joachim Holtz and Juntao Quan. Drift and Parameter Compensated FluxEstimator for Persistent Zero Stator Frequency Operation of Sensorless ControlledInduction Motors [J]. IEEE Trans. on Industry Applications,2003,39(4):1052-1060
    [81]张旭,瞿文龙.一种低速下磁链观测补偿的新方法[J].电工电能新技术,2003,22(3):50-53
    [82]杨文强,贾正春.异步电机转子磁链观测器的准确度分析与设计[J].华中科技大学学报,2001,29(2):11-13
    [83] C. Schauder. Adaptive speed identification for vector control of induction motorswithout rotational transducers [J]. IEEE Trans. on industry applications,1992,28(5):1054-1061
    [84] B. Karanayil, M.F.Rahman, etc. An implementation of a programmable cascadedlow pass filter for a rotor flux synthesizer for an induction motor drive [J]. IEEETrans. on power electronics,2004,19(1):257-263
    [85] Q. Gao, C.S.Staines, etc. Sensorless speed operation of cage induction motorusing zero drift feedback integration with MRAS observer. European Conferenceon Power Electronics and Applications,2005: P.1-P.9
    [86] Deng Xin, Zhao Jin, etc. Design of MRAS based observer in speed sensorlessinduction motor drive. IEEE Conference on Industrial Electronics andApplications (ICIEA),2009,3585-3590
    [87] Mineo Tsuji, Yousuke Umesaki, etc. A simplified MRAS based sensorless vectorcontrol method of induction motor. Proceedings of the Power ConversionConference,2002,2(1):1090-1095
    [88] F.Z.Peng, T.Fukao, etc. Robust speed identification for speed sensorless vectorcontrol of induction motors. IEEE Trans. on Industry Applications,1994,30(5):1234-1240
    [89] Cheng Lu, Yi Liu, etc. Considerations of stator resistance online tuning methodfor MRAS based speed sensorless induction motor drive. IEEE InternationalElectric Machines&Drives Conference (IEMDC),2007,1142-1147
    [90] M.Rashed, A.F.Stronach. A stable back-EMF MRAS based sensorless low speedinduction motor drive insensitive to stator resistance variation. IEE ProceedingsElectric Power Applications,2004,151(1):685-693
    [91] S. Maiti, C. Chakraborty, etc. Model reference adaptive controller based rotorresistance and speed estimation techniques for vector controlled induction motordrive utilizing reactive power. IEEE Trans. on industry electronics,2008,55(2):594-601
    [92] Keyuan Huang, Ying Zhang, etc. A MRAS method for sensorless vector controlof induction motor based on instantaneous reactive power. InternationalConference on Electrical Machines and Systems (ICEMS),2010,1396-1400
    [93] Yung Chang Luo, Cheng Chou Lin. Fuzzy MRAS based speed estimation forsensorless stator field oriented controlled induction motor drive. InternationalSymposium on Computer Communication Control and Automation,2010,152-155
    [94] Mokhtar Zerikat, Soufyane Chekroun, etc. A robust MRAS sensorless schemebased rotor and stator resistances estimation of a direct vector controlled inductionmotor drive. International Conference on Methods and Models in Automation andRobotics (MMAR),2011,151-156
    [95] Mihai Comanescu, Vadim Utkin. A sliding mode adaptive MRAS speed estimatorfor induction motors. International Symposium on Industrial Electronics (ISIE),2008,634-638
    [96] Shady M. Gadoue, Damian Giaouris, etc. A neural network based stator currentMRAS observer for speed sensorless induction motor drives. IEEE InternationalSymposium on Industrial Electronics (ISIE),2008,650-655
    [97] Maurizio Cirrincione, Marcello Pucci, etc. A new TLS based MRAS speedestimation with adaptive integration for high performance induction machinedrives. IEEE Trans. on Industry Applications,2004,40(4):1116-1137
    [98] Shady M. Gadoue, Damian Giaouris, etc. An experimental assessment of a statorcurrent MRAS based on neural networks for sensorless control of inductionmachines. Symposium on Sensorless Control for Electrical Drives (SLED),2011,102-106
    [99] Maurizio Cirrincione, Marcello Pucci. An MRAS based sensorless highperformance induction motor drive with a predictive adaptive model. IEEE Trans.on Inductrial Electronics,2005,52(2):532-551
    [100] M. Zerikat, S. Chekroun, etc. Fuzzy neural networks controller based adaptationmechanism for MRAS sensorless induction motor drives. InternationalSymposium on Advanced Electromechanical Motion Systems&Electric DrivesJoint Symposium,2009,1-7
    [101] Jinfeng Xiao, Biwen Li, etc. Improved performance of motor drive using RBFNNbased hybrid reactive power MRAS speed estimator. IEEE InternationalConference on Information and Automation,2010,588-593
    [102] Li Yi, Qin Wenlong. Low speed performance improvement of sensorless IMcontrol system based on MRAS and NN flux observers. IEEE InternationalConference on Intelligent Computing and Intelligent Systems (ICIS),2010,421-425
    [103] Jehudi Maes, Jan Melkebeek. Speed sensorless direct torque control of inductionmotors using an adaptive flux observer [J]. IEEE Trans. on Industry Applications,2000,36(3):778-785
    [104]奚国华,沈红平,喻寿益,等.异步电机无速度传感器直接转矩控制系统.中国电机工程学报,2007,27(21):76-82
    [105]奚国华,沈红平,喻寿益,等.基于全阶状态观测器的无速度传感器DTC系统,电气传动,2008,38(7):22-25
    [106] F. Alonge, F. D. Ippolito, etc. Design and Low-Cost Implementation of anOptimally Robust Reduced-Order Rotor Flux Observer for Induction MotorControl [J]. IEEE Trans. on Industrial Electronics,2007,54(6):3205-3216
    [107] T. Tuovinen, M. Hinkkanen, etc. A comparison of an adaptive full-order observerand a reduced-order observer for synchronous reluctance motor drives[C].2011Symposium on Sensorless Control for Electrical Drives (SLED),2011,1:118-122
    [108] S. Doki, S. Sangwongwanich, etc. Implementation of speed sensorless fieldoriented vector control using adaptive sliding observers. Proceedings ofInternational Conference on Industrial Electronics, Control, Instrumentation, andAutomation (IECON),1992,1:453-458
    [109] Yongchang Zhang, Zhengming Zhao, etc. A comparative study of luenbergerobserver, sliding mode observer and extended kalman filter for sensorless vectorcontrol of induction motor drives [C]. IEEE Energy Conversion Congress andExposition (ECCE),2009,2466-2473
    [110]赵德宗,张承进,等.一种无速度传感器感应电机鲁棒滑模控制策略.中国电机工程学报,2006,26(22):122-127
    [111]路强,沈传文,等.一种用于感应电机控制的新型滑模速度观测器研究.中国电机工程学报,2006,26(18):164-168
    [112] S. Solvar, V. Le, etc. Sensorless second order sliding mode observer for inductionmotor. IEEE International Conference on Control Applications (CCA),2010,1933-1938
    [113] S. Bolognani, R. Oboe, etc. Sensorless Full-Digital PMSM Drive with EKFEstimation of Speed and Rotor Position. IEEE Trans. on Industry Electronics,1999,46(4):184-191
    [114] K. L. Shi, T. F.Chan, etc. Speed Estimation of an Induction Motor Drive Using anOptimized Extended Kalman Filter. IEEE Trans. on Industry Electronics,2002,49(1):124-133
    [115] Leite. A. V, Esteves Araujo. R, etc. A New Approach for Speed Estimation inInduction Motor Drives Based on a Reduced-Order Extended Kalman Filter. IEEEInternational Symposium on Industrial Electronics,2004,2:1221-1226
    [116]李洁,钟彦儒.无轨迹卡尔曼滤波器在感应电机转速估计中的应用研究.电工技术学报,2006,21(2):45-50
    [117] G. Henneberger, B. J. Brunsbach, etc. Field oriented control of synchronous andasynchronous drives without mechanical sensors using kalman filter [C].European Conference on Power Electronics and Applications (EPE),1991,664-671
    [118] A. Ferrah, K. G. Bradley, etc. Sensorless speed detection of inverter fed inductionmotors using rotor slot harmonics and fast fourier transform [C]. IEEE PowerElectronics Specialist Conference (PESC),1992,1:279-286
    [119] Jeong Seong Kim, S. Doki, etc. Improvement of IPMSM sensorless controlperformance by suppression of harmonics on the vector control using fouriertransform and repetitive control [C]. IEEE28thAnnual Conference of theIndustrial Electronics Society,2002,1:597-602
    [120] Muneaki Ishida, Koji Iwata. A new slip frequency detector of an induction motorutilizing rotor slot harmonics. IEEE Trans. on Industry Applications,1984,20(3):575-582
    [121] Jung Ik Ha and Seung Ki Sul. Sensorless Field-Orientation Control of anInduction Machine by High-Frequency Signal Injection [J]. IEEE Trans. onIndustry Applications,1999,35(1):45–51
    [122] R. D. Lorenz. Sensorless Drive Control Methods for Stable High PerformanceZero Speed Operation [C]. Proc. Eur. Conf. Power Electronics and Applications-Power Electronics and Motion Control (EPE-PEMC), Kosice, Slovakia,2000,1:1–11
    [123]秦峰,贺益康,刘毅,章玮.两种高频信号注入法的无速度传感器运行研究.中国电机工程学报,2005,25(5):116-121
    [124] Qiang Gao, Greg Asher, and Mark Sumner. Sensorless Position and Speed Controlof Induction Motors Using High-Frequency Injection and Without Offline Pre-commissioning [J]. IEEE Trans. on Industrial Electronics,2007,54(5):2474-2481
    [125] H. Tajima, G. Guidi, etc. Consideration about Problems and Solutions of SpeedEstimation Method and Parameter Tuning for Speed Sensorless Vector Control ofInduction Motor Drives [J]. IEEE Trans. on Industry Applications,2002,38(5):1282–1289
    [126] Hofmann H,Sanders S R.Speed sensorless vector torque control of inductionmachines using a two time scale approach [J]. IEEE Trans. on IndustryApplications,1998,34(1):169-177
    [127] Kubota H,Sato I,Tamura Y,et al.Regenerating mode low speed operationof sensorless induction motor drive with adaptive observer [J].IEEE Trans. onIndustry Applications,2002,38(4):1081-1086.
    [128] Hinkkanen M, Luomi J. Stabilization of regenerating mode operation insensorless induction motor drives by full order flux observer design [J].IEEETrans. on Industry Electronics,2004,516(651):1318-1328.
    [129] Hamefors L.Instability phenomena and remedies in sensorless indirect fieldoriented control[J].IEEE Trans. on Power Electronics,2000,15(154):733-743.
    [130] Hinkkanen M.Analysis and design of full-order flux observers for sensorlessinduction motors[J].IEEE Trans. on Industry Applications,2004,51(5):1033-1040.
    [131]李永东,李明才.感应电机高性能无速度传感器控制系统-回顾、现状与展望[J].电气传动,2004,34(1):4-10
    [132] Suwankawin S,Sangwongwanich S.Design strategy of an adaptive full orderobserver for speed sensorless induction motor drives-Tracking performance andStabilization[J].IEEE Trans. on Industry Electronics,2006,53(1):96-119
    [133]范蟠果,杨耕.感应电机无速度传感器控制自适应速度观测器[J].电机与控制学报,2008,12(6):621-628
    [134] Sussmann H J, Kokotovic P V. The peaking phenomenon and the globalstabilization of nonlinear systems [J]. IEEE Trans. on Automatic Control,1991,36(4):424-440
    [135] Fernando B, Degner M W, Lorenz R D. Analysis and design of current regulatorsusing complex vectors [J]. IEEE Trans. on Industry Applications,2000,36(3):817-825
    [136] Toliyat H A, Emil L, etc. A review of RFO induction motor parameter estimationtechniques [J]. IEEE Trans. on Energy Conversion,2003,18(2):271-283
    [137]汤蕴璆,罗应立,梁艳萍.电机学[M].北京:机械工业出版社,2008:185-187
    [138] Y. N. Lin, C. L. Chen. Automatic induction motor parameters measurement undersensorless field oriented control [J]. IEEE Trans. on Industrial Electronics,1999,46(1):111-118
    [139]罗慧,刘军锋,万淑芸.感应电机参数的离线辨识[J].电气传动,2006,36(8):16-21
    [140] Bunte A, Grotstollen H. Parameter identification of an inverter-fed inductionmotor at standstill with a correlation method[C].5thEuropean Conference onPower Electronics and Applications,1993:97-102
    [141]刘宏鑫,张科孟,王玉雷.异步电机参数辨识方法[P],中国:01130041.8.2002
    [142] P. J. Chrzan, H. Klaassen. Parameter identification of vector controlled inductionmachines [J]. Electrical Engineering,1994,79(1):39-46
    [143] S. Moonl, A. Keyhani. Estimation of induction machine parameters fromstandstill time domain data [J]. IEEE Trans. on Industry Applications,1994,30(6):1609-1615
    [144] Young Su Kwon, Jeong Hum Lee, etc. Standstill parameter identification ofvector controlled induction motors using the frequency characteristics of rotorbars [J]. IEEE Trans. on Industry Applications,2009,45(5):1610-1618
    [145] M. Ruff, H. Grotstollen. Identification of the saturated mutual inductance of anasynchronous motor at standstill by recursive least squares algorithm [C].5thEuropean Conference on Power Electronics and Applications,1993,5:103-108
    [146]蒋小春,杨耕,窦曰轩.变频器驱动下感应电机参数的一种辨识方法[J].电力电子技术,2005,39(5):130-133
    [147]李文,张彬娜.感应电机参数辨识的计算机实现[J].大连交通大学学报,2008,29(2):67-69
    [148]王明渝,冼成瑜,等.感应电机矢量控制参数离线辨识技术[J].电工技术学报,2006,21(8):90-96
    [149] Seok J K, Moon S I, Sul S K. Induction machine parameter identification usingPWM inverter at standstill [J]. IEEE Trans. on Energy Conversion,1997,12(2):127-132
    [150] Rasmussen H, Knudsen M, Tonnes M. Parameter estimation of inverter and motormodel at standstill using measured currents only [C]. Proceedings of the IEEEInternational Symposium on Industrial Electronics (ISIE),1996:331-336
    [151] Moon S I, Keyhani A. Estimation of induction machine parameters from standstilltime-domain data [J]. IEEE Trans. on Industry Applications,1994,30(6):1609-1615
    [152] Jacobina C B, Filho C, Lima N. Estimating the parameters of induction machinesat standstill [J]. IEEE Trans. on Energy Conversion,2002,17(1):85-89
    [153] Kerkman R, Thunes J D, etc. A frequency-based determination of transientinductance and rotor resistance for field commissioning purposed [J]. IEEE Trans.on Industry Applications,1996,32(3):577-584
    [154] Ganji A, Guillaume P, etc. Induction motor dynamic and static inductanceidentification using a broadband excitation technique [J]. IEEE Trans. on EnergyConversion,1998,13(1):15-20
    [155] Lin Y N, Chen C L. Automatic IM parameter measurement under sensorless field-oriented control [J]. IEEE Trans. on Industry Electronics,1999,26(1):111-118
    [156] Castaldi P, Tilli A. Parameter estimation of induction motor at standstill withmagnetic flux monitoring [J]. IEEE Trans. on Control Systems Technology,2005,13(3):386-400
    [157]张虎,李正熙,童朝南.基于递推最小二乘算法的感应电动机参数离线辨识[J].中国电机工程学报,2011,31(18):79-86
    [158]孙涓涓,李永东.异步电机定子电压定向矢量控制系统的改进[J].电工技术学报,2002,17(2):29-33
    [159] Francis C J,Zelaya De La Parra H.Stator resistance voltage drop compensationfor open loop ac drives[J].IEE Proceedings-Electric Power Applications,1997,144(21):21-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700