用户名: 密码: 验证码:
乌头汤中苯甲酰新乌头胺及麻黄碱的药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     类风湿性关节炎(Rheumatoid Arthritis, RA)是以关节组织慢性炎症性病变为主要临床表现的自身免疫性疾病,其患病率约为0.3%~1%。目前该病病因尚未完全明确,感染、遗传、雌激素水平、环境、劳累、外伤等因素均可能诱导RA发生。若治疗不及时、不规范,滑膜炎的持久、反复发作可导致关节内软骨和骨的破坏,引起严重关节畸形、关节功能障碍,从而严重影响RA患者的生活质量。西医对RA的治疗目标主要是缓解症状、控制病情发展,从而改善患者的生活质量。目前临床上用于治疗RA的药物主要有非甾体抗炎药、慢作用抗风湿药及糖皮质激素,这些药物可以快速起效,但是长期使用均可导致严重的不良反应。目前已有大量的临床研究显示一些传统中医药制剂以及中西医联合疗法对RA的治疗效果比单独使用西药治疗更让人满意。
     乌头汤是一个应用历史悠久的经典方剂,由川乌、麻黄、白芍、甘草及黄芪组成,临床上主要用于RA、风湿性关节炎等疾病的治疗。乌头汤的疗效确切,已使广大的RA患者获益。然而,处方中的“君药”及“臣药”的川乌及麻黄均具有严重毒副作用,因此,必须通过科学手段阐明乌头汤产生疗效的物质基础和作用机制,以提高药物疗效和减轻毒副作用。
     药代动力学着重研究研究药物产生临床疗效的物质基础及体内过程,药代动力学参数可用于指导临床用药、评价药品的安全性、促进新药的开发研究等。由于中药的化学成分比较复杂,目前,中药药代动力学研究常选取一种或几种代表成分作为研究对象,进而阐述中药或方剂的药代动力学特征。选取具有代表性的指标成分进行针对性的研究,是研究乌头汤药代动力学特征的关键。我们采用以下两个条件为基础选择具有代表性的指标成分:1)该物质的药理活性应当与乌头汤的药理作用一致;2)该物质在乌头汤提取液中应当具有相对较高的含量。
     川乌为乌头汤的“君药”,是乌头汤产生临床疗效不可或缺的组分。众所周知,乌头类生物碱是川乌中的主要药理活性成分,包括双酯二萜类生物碱及单酯二萜类生物碱。双酯二萜类生物碱受热不稳定,煎煮过程中,易水解生成对应的单酯二萜类生物碱。已有文献报道附子水煎液加热30mmin,即有大部分双酯二萜类生物碱发生水解。乌头汤的制备需要较长时间的煎煮,可导致大部分双酯二萜类生物碱(乌头碱、次乌头碱、新乌头碱)发生水解,显然不符合我们对目标化合物选择的条件。苯甲酰新乌头胺(Benzoylmesaconine, BMA)是一种单酯二萜类生物碱,是新乌头碱(Mesaconitine, MA)的水解产物,也是川乌最主要的有效成分之一。BMA具有显著的镇痛作用,已有文献证实BMA对RA具有治疗作用;且其在乌头汤提取液中的含量显著高于其他乌头类生物碱。因此,本实验选择BMA作为乌头汤“君药”的代表成分,研究其药代动力学特征。
     麻黄为乌头汤的“臣药”,麻黄碱是其主要有效成分。麻黄碱在乌头汤产生临床疗效的过程中发挥了重要的作用。麻黄碱具有类似于肾上腺素的化学结构,可与血管中肾上腺素受体结合。肾上腺素受体结合,产生舒张血管的作用,从而加快血流速度、增加皮肤血流量,从而辅助川乌以增强疗效。已有大量文献报道麻黄碱是麻黄含量最高的生物碱,其在乌头汤提取液中的含量也显著高于其他化学成分。因此,本实验选择麻黄碱作为乌头汤“臣药”的代表成分,研究它的药代动力学特征及肠道吸收特征。
     然而,关于乌头汤有效成分的药代动力学研究有以下几个难点。首先,乌头汤由多种药材组成,其成分复杂;其次,生物样品中待测物质浓度低,对其提取、分离、纯化、检测均有较高难度:第三,中药药代动力学研究的生物样本量多,工作量大。因此,建立一个灵敏、准确、快速的生物样品定量分析方法是药代动力学研究的关键。超高效液相色谱-串联质谱(Ultra Performance Liquid Chromatography tandem Mass Spectrometry, UPLC-MS/MS)充分体现了色谱和质谱优势的互补。UPLC-MS/MS具有高灵敏度和较强的专属性,不需要使分析物之间实现完全的色谱分离,使得样品预处理过程简化,且大大缩短样品的分析时间;MRM模式还允许同时对多个成分进行定性、定量分析。采用UPLC-MS/MS可更加准确、快速的分析样品,有利于获得更精确的药代动力学参数。
     研究目的
     本实验旨在对乌头汤“君药”、“臣药”代表成分的药代动力学特征进行深入研究,以期为乌头汤更深入的研究及其临床应用提供物质基础和理论依据。主要研究内容包括以下几点:
     1.研究口服乌头汤后BMA的药代动力学特征,考察乌头汤其他组分对“君药”代表成分的体内过程的影响作用。
     2.研究口服乌头汤及麻黄单味药材提取液后麻黄碱的药代动力学特征,考察乌头汤其他组分对“臣药”代表成分的体内过程的影响作用。
     3.采用大鼠在体肠灌流模型,研究乌头汤中麻黄碱在大鼠肠道不同部位的吸收特征,考察乌头汤其他组分对“臣药”代表成分在肠道吸收的影响作用。
     实验方法及结果
     1.“君药”代表成分苯甲酰新乌头胺药代动力学研究
     我们建立了一个快速、灵敏的UPLC-MS/MS方法,用于定量测定样品中BMA的含量。冷冻干燥已制备的乌头汤提取液,制成冻干粉末,于实验前日使用UPLC-MS/MS测定其中BMA的含量。选用10只体重为230~280g的雄性SD大鼠,随机分为两组,按照5mg/kg (BMA)的剂量分别灌胃给予乌头汤提取液及BMA溶液。分别于给药后5、15、30、45、60、90、120、180、240、420、600min经大鼠眼眶静脉丛采集血样约0.3ml,所采集的血样在8000rpm离心8min,取上层血清至EP管,置于-80℃冰箱中保存备测。血浆样品处理如下:取80μl血浆样品,加入320μl甲醇(睾丸酮浓度为100nM),用于去除血浆的蛋白成分,在13000rpm离心30min,吸取适量上清液,室温下氮气吹干,所得残渣以100μl甲醇水溶液(50%)复溶,然后在13000rpm离心30min,吸取上清液进样分析。经UPLC-MS/MS测定样品中BMA的含量,并采用WinNonlin3.3软件的标准非室性模型计算BMA的药代动力学参数。
     大鼠口服给药BMA溶液后,BMA的血药浓度于45min达峰;600min后,血浆样品中BMA浓度接近O。然而,口服给药等剂量BMA的乌头汤提取液,BMA的血药浓度于15min达峰;240min后,血浆中的BMA基本上完全被清除。以BMA溶液为参照组,口服给药乌头汤提取液后,BMA的相对生物利用度为19.9%。口服给药乌头汤提取液后,BMA在大鼠体内的AUC较低;其Tmax及MRT均显著缩短,经两独立样本t检验(Two Independent Samples t-test)进行分析,具有显著性差异(P<0.05)。
     2.“臣药”代表成分麻黄碱药代动力学研究
     我们建立了一个快速、灵敏的UPLC-MS/MS方法,用于定量检测血浆中麻黄碱的浓度。取麻黄单味药材制备提取液,并制成冻干粉末。于实验前日使用HPLC测定乌头汤提取液和麻黄单味药材提取液冻干粉末中麻黄碱的含量。选用20只体重为230~280g的雄性SD大鼠,随机分为4组。其中三组按照10mg/kg(麻黄碱)的剂量分别灌胃给予盐酸麻黄碱溶液、麻黄单味药材提取液及乌头汤提取液,并于给药后5、15、30、45、60、90、120、180、240、420、600、1440min经大鼠眼眶静脉丛采集血样约0.3ml;另外一组按照4mg/kg:麻黄碱)的剂量静脉注射盐酸麻黄碱溶液,并于给药后1、5、12、18、30、45、72、100、150、240、480、600min经大鼠眼眶静脉丛采集血样约0.3ml。所采集血样在8000rpm离心8min,取上层血清至EP管,置于-80℃冰箱中保存。血浆样品处理如下:取80μl血浆样品,加入520μl乙酸乙酯(睾丸酮浓度为20μM),用于去除血浆的蛋白成分,在13000rpm离心30min,吸取上清液400μl,室温下氮气吹干,所得残渣以100μl甲醇水溶液(50%)复溶,然后在13000rpm离心30min,吸取上清液进样分析。经UPLC-MS/MS测定样品中麻黄碱的含量,并采用WinNonlin3.3软件的标准非室性模型计算BMA的药代动力学参数。
     以10mg/kg(麻黄碱)的剂量灌胃给药盐酸麻黄碱溶液、麻黄单味药材提取液及乌头汤提取液后600min,血浆样品中麻黄碱的基本完全被清除;三组大鼠的绝对生物利用度分别为83.4%、71.4%、29.9%。以口服盐酸麻黄碱溶液为参照组,口服麻黄单味药材提取液及乌头汤提取液后,麻黄碱的相对生物利用度分别为85.6%、35.9%。口服乌头汤及麻黄单味药材提取液后,麻黄碱的Tmax显著缩短,经单因素方差分析(One Way ANOVA)进行分析,具有显著性差异(P<0.05)。
     3“臣药”代表成分麻黄碱肠道吸收特征研究
     冷冻干燥已制备的乌头汤提取液,制成冻干粉末,于实验前日使用HPLC测定其中麻黄碱的含量。精密称取适量盐酸麻黄碱及乌头汤冻干粉末,以HBSS溶液溶解稀释至麻黄碱浓度为40μg/ml。所用实验动物为230~280g的雄性SD大鼠。本实验采用大鼠在体肠灌流模型考察乌头汤中麻黄碱在肠道不同部位的吸收情况。以含有麻黄碱的HBSS溶液(盐酸麻黄碱溶液、乌头汤提取液)同时灌流大鼠的四个肠段(十二指肠、空肠上段、回肠下段、结肠),每隔30min收集一次样品。往收集到的灌流液样品中加入乙腈(v:v=2:1)去除蛋白,样品在13000rpm离心处理30min,吸取上清液。经UPLC系统检测分析,进样体积为10μl。
     灌流盐酸麻黄碱溶液后,麻黄碱在十二指肠、空肠、回肠、结肠的渗透系数(Peff)分别为2.20、1.81、2.33、1.68;麻黄碱在四个肠段的吸收率依次为24.9%、19.5%、25.2%、17.0%。灌流乌头汤提取液后,麻黄碱在十二指肠、空肠、回肠、结肠的渗透系数(Peff)分别为2.33、2.31、3.35、2.68;麻黄碱在四个肠段的吸收率依次为27.7%、26.4%、37.4%、30.3%。乌头汤提取液中麻黄碱在空肠、回肠及结肠的吸收率较高,经两独立样本t检验(Two Independent Samples t-test)进行分析,具有显著性差异(P<0.05)。
     结论
     1.口服给药乌头汤后,BMA的相对生物利用度为19.9%:BMA在大鼠体内的Tmax显著缩短,表明乌头汤中存在可促进BMA吸收的成分,有利于乌头汤快速起效;BMA在大鼠体内的MRT显著缩短,表明乌头汤中存在可加速BMA清除的成分,有利于BMA的清除而避免发生蓄积。
     2.口服给药乌头汤后,麻黄碱的绝对生物利用度为29.9%,低于口服给药含有相同剂量的盐酸麻黄碱溶液(83.4%)及麻黄单味药材提取液(71.4%)。口服给药乌头汤及麻黄单味药材提取液后,麻黄碱的大鼠体内的Tmax显著缩短,表明乌头汤中存在可促进麻黄碱吸收的成分。
     3.使用乌头汤及盐酸麻黄碱溶液进行大鼠在体肠灌流,麻黄碱在大鼠全肠道吸收良好,无明显的特定吸收部位。乌头汤中的麻黄碱在大鼠空肠、回肠及结肠的吸收率显著升高,表明乌头汤中存在促进其肠道吸收的成分。
Background
     Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic arthritis, and it has an incidence of0.3%to1%. The etiology of this disease is still unclear. RA is associated with many factors, such as infection, heredity, estrogen levels, fatigue, trauma, and environment. Without timely treatment, the lasting recurrent synovial inflammation can lead to the destruction of joint cartilage and bone, causing severe joint deformity and joint dysfunction, which can seriously reduce the quality of life of patients. The Western medical treatment of RA relieves its symptoms and controls its progression, thereby improving the quality of life of patients. Non-steroidal anti-inflammatory drugs, slow-acting anti-inflammatory drugs, and glucocorticoids are used to treat RA. Although these drugs are fast acting, their long-term use can lead to serious adverse reactions. Numerous clinical studies shown that some Traditional Chinese Medicine (TCM) preparations and TCM combined with chemical drug therapy achieve more satisfactory therapeutic efficacy on RA than chemical drug therapy.
     Wutou decoction has been used to treat RA, constitutional hypotension, and hemicrania for hundreds of years. Wutou decoction consists of five medicinal herbs, Radix Aconiti(Chuan Wu), Herba Ephedrae (Ma Huang), Radix Paeoniae alba (Bai Shao), Radix Astragali (Huang Qi), and Radix Glycytthizae (Gan Cao). Chuan Wu is the monarch drug and Ma Huang is the ministerial drug of Wutou decoction, and they are the most important effective components. However, Chuan Wu and Ma Huang have serious side effects. Thus, clarifying the material basis and mechanism of the clinical efficacy of Wutou decoction is necessary.
     Pharmacokinetic study has an important role in the research, development, and clinical application of drugs. Pharmacokinetic parameters can be used to guide clinical application, to assess drug safety, and to promote the development of new drugs. However, the effective components of TCM are much more complicated, and clarifying the pharmacokinetic characteristics of a TCM preparation is more difficult. At present, most of the pharmacokinetic studies on TCM preparations focus on one or several of the active components. Selecting representative compounds is the key to the pharmacokinetic study of Wutou decoction. The representative compounds were selected according to the following conditions. First, the pharmacologic activity of these compounds should be consistent with Wutou decoction. Second, these compounds should have higher content in Wutou decoction.
     Considering Chuan Wu is the monarch drug of Wutou decoction, it plays the most important role in the decoction. Aconitum alkaloids are the active ingredients of Chuan Wu, including diester diterpenoid alkaloids (DDAs) and monoester diterpenoid alkaloids (MDAs). DDAs are easily hydrolyzed to MDAS during boiling. Most of the DDAs in aconite decoction are hydrolyzed by30min of boiling. Preparing Wutou decoction requires prolonged boiling; therefore, DDA is not an appropriate representative component of Wutou decoction. Benzoylmesaconine (BMA), a mesaconitine hydrolyzate, is one of the active ingredients of Chuan Wu. BMA has significant analgesic effects and a therapeutic effect on RA. In addition, the BMA content of Wutou decoction is significantly higher than other aconitum alkaloids. Thus, BMA was selected as the representative component of Chuan Wu. The pharmacokinetic characteristics of BMA in Wutou decoction were determined in our experiments.
     Ephedrine exerts the most potent effect of Ma Huang, the ministerial drug of Wutou decoction. The chemical structure of ephedrine is similar to adrenaline, and it interacts with adrenaline receptors in vascular and diastolic blood vessels, thereby increasing blood flow. The ephedrine content of Wutou decoction is much higher than that of other compounds. Therefore, ephedrine was selected as the representative component of Ma Huang. The pharmacokinetic characteristics of ephedrine after oral administration of Wutou decoction and Ma Huang single herb decoction were investigated. A four-site perfusion model was also used to investigate the absorption of ephedrine in Wutou decoction at different intestinal segments.
     The effective components of Wutou decoction are highly complicated, and the concentrations of target compounds, such as BMA and ephedrine, are quite low in plasma and perfusate samples. Furthermore, many groups and many time points are available for sample acquisition. Thus, a large sample size is needed for analysis. An efficient and sensitive detection method is required for sample analysis. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) is sensitive and specific and it has a high throughput. Samples do not need to be separated completely, which simplifies the preparation process and greatly shortens the time for sample analysis. Multiple reaction monitoring (MRM) mode also allows simultaneous determination of several compounds. Using UPLC-MS/MS for pharmacokinetic study facilitates obtaining more accurate pharmacokinetic parameters.
     Objectives
     The objective of this study was to investigate the pharmacokinetic characteristic of BMA and ephedrine, the representative compounds of Wutou decoction. We believe that the pharmacokinetic study of the monarch drug (Chuan Wu) and ministerial drug (Ma Huang) of Wutou decoction can provide a material basis and theoretical foundation for the further study and clinical application of Wutou decoction. Our study could be divided into several parts as follows:
     1. To determine the pharmacokinetic characteristics and bioavailability of BMA after oral administration of Wutou decoction.
     2. To determine the pharmacokinetic characteristics and bioavailability of ephedrine after the oral administration of Wutou decoction and Mahuang single herb decoction.
     3. To investigate the absorption of ephedrine in Wutou decoction in different intestinal segments using a four-site perfusion model. Methods and Results
     1. Pharmacokinetic study of BMA after oral administration of Wutou decoction
     A rapid and sensitive UPLC-MS/MS method was developed for quantifying BMA in plasma samples. Wutou decoction was prepared and freeze-dried using a lyophilizer to obtain the lyophilized powder. The BMA content of the lyophilized powder was quantified by UPLC-MS/MS one day before the experiments. Male Sprague-Dawley (SD) rats weighing230g to280g were obtained for the experiments. Ten rats were divided into two groups, namely, BMA and Wutou decoction groups. BMA and Wutou decoction were administered orally at5mg of BMA per kilogram of body weight. Blood samples were collected at5,15,30,45,60,90,120,180,240,420, and600min after dosing. After centrifugation at8000rpm for8min, plasma fractions were transferred into a disposable tube and stored at -80℃until analysis. We mixed80μl of plasma with320μl of methanol containing100nM testosterone. The mixture was centrifuged at13,000rpm for30min. Approximately300μl of the supernatant was transferred into a disposable tube and evaporated to dryness under a stream of nitrogen at room temperature. The residue was reconstituted with100μl of methanol-water (v:v=1:1), and injected into the UPLC-MS/MS system for analysis. The pharmacokinetic parameters were determined using the standard non-compartmental method and calculated using WinNonlin3.3.
     The Tmax of BMA after oral administration of BMA solution was about45min, and the plasma concentration of BMA was approximately0at600min after dosing. However, the Tmax of BMA after oral administration of Wutou decoction was15min, and BMA was completely eliminated at600min after dosing. The relative bioavailability of BMA after oral administration was19.9%. The Tmax and mean residence time (MRT) after administration were significantly shorter(P<0.05).
     2. Pharmacokinetic study of ephedrine after oral administration of Wutou decoction and Ma Huang single herb decoction
     A rapid and sensitive UPLC-MS/MS method was developed and validated for quantitative determination of ephedrine in plasma samples. Wutou decoction and Ma Huang single herb decoction were prepared and freeze-dried by a lyophilizer to obtain the lyophilized powder. The ephedrine content in lyophilized powders was quantified by HPLC the day before the experiments. Male SD rats weighing from230g to280g were obtained for the experiments. Ephedrine hydrochloride, Wutou decoction, and Ma Huang single herb decoction were administered orally at a dosage of10mg of ephedrine per kilogram of body weight. Ephedrine hydrochloride was also administered via intravenous injection at4mg/kg. Blood samples were collected at5,15,30,45,60,90,120,180,240,420,600, and1440min after oral administration; and at1,5,12,18,30,45,72,100,150,240,480, and600min after intravenous injection. After centrifugation at8000rpm for8min, plasma fractions were transferred into a disposable tube and stored at-80℃until analysis. We mixed80μl of plasma with520μl of ethyl acetate containing20μM testosterone. The mixture was centrifuged at13000rpm for30min. Approximately400μl of the supernatant was transferred to a disposable tube and evaporated to dryness under a stream of nitrogen at room temperature. The residue was reconstituted with100μl of methanol-water (v:v=1:1), and injected into the UPLC-MS/MS system for analysis. The pharmacokinetic parameters were determined using the standard non-compartmental method and calculated using WinNonlin3.3.
     Ephedrine was completely eliminated at600min after oral administration of ephedrine hydrochloride, Wutou decoction, and Ma Huang single herb decoction. The absolute bioavailabilities of ephedrine in the rats after oral administration of ephedrine hydrochloride, Ma Huang single herb decoction, and Wutou decoction were83.4%,71.4%, and29.9%, respectively. The relative bioavailabilities of ephedrine in the rats after oral administration of Ma Huang single herb and Wutou decoctions were85.6%and35.9%, respectively. The Tma of ephedrine after oral administration of Wutou decoction and Mahuang single herb decoction were significantly shortened (P<0.05).
     3. Absorption study of ephedrine in Wutou decoction at different intestinal segments
     Wutou decoction was prepared and freeze-dried using a lyophilizer to obtain the lyophilized powder. The ephedrine content of the lyophilized powder was quantified by high-performance liquid chromatography (HPLC) the day before the experiments. Ephedrine hydrochloride and lyophilized powder were dissolved in Hank's balanced salt solution to obtain perfusate solutions containing40μg/ml ephedrine. Male SD rats weighing from230g to280g were obtained for the experiments. A four-site perfusion model was used to investigate the absorption of ephedrine at different intestinal segments. Four segments of the intestine (duodenum, upper jejunum, terminal ileum, and colon) were perfused simultaneously with the prepared perfusate. The perfusate samples were collected every30min. Acetonitrile was added into the perfusate (v:v=1:2) and centrifuged at13,000rpm for30min. We injected10μl of supernatant into the UPLC system for analysis.
     After perfusion with ephedrine hydrochloride solution, the permeability coefficients (Peff) of ephedrine in the duodenum, jejunum, ileum, and colon were2.20,1.81,2.33, and1.68, respectively. Approximately24.9%,19.5%,25.2%, and17.0%of ephedrine was absorbed in the duodenum, jejunum, ileum, and colon, respectively. After perfusion with Wutou decoction, the Peff of ephedrine at duodenum, jejunum, ileum, and colon were2.33,2.31,3.35, and2.68, respectively. Approximately27.7%,26.4%,37.4%, and30.3%of ephedrine was absorbed at duodenum, jejunum, ileum, and colon, respectively. The absorption of ephedrine at jejunum, ileum, and colon following Wutou decoction perfusion was significantly higher than those with ephedrine hydrochloride (P<0.05).
     Conclusions
     1. The relative bioavailability of BMA after oral administration of Wutou decoction was19.9%. The Tmax. of BMA after oral administration was significantly shortened, which indicates that some compounds in the decoction accelerate BMA absorption. MRT was also significantly shortened, indicating that some compounds in the decoction promote BMA clearance.
     2. The absolute bioavailabilities of ephedrine in the rats after oral administration of Wutou decoction was29.9%, which was much lower than the other groups. The Tmax of ephedrine after oral administration of Wutou decoction and Mahuang single herb decoction were significantly shortened, which indicates some compounds in the decoctions accelerate ephedrine absorption.
     3. Ephedrine was well absorbed at different intestinal regions in rats perfused with ephedrine hydrochloride solution and Wutou decoction. The absorption of ephedrine in the jejunum, ileum, and colon after Wutou decoction perfusion was significantly higher than those with ephedrine hydrochloride, which suggests that some compounds in the decoction promote ephedrine absorption.
引文
[1]李勇.非甾体类抗炎药作用机制及不良反应分析[J].临床合理用药,2012,5(7A):112-1 13.
    [2]李征寒,王丽娟,黄春萍,李丽波,时利平.不同DMARDs联合治疗类风湿关节炎疗效与安全性观察[J].2007,4(21):55-56.
    [3]周晓瑜.糖皮质激素的不良反应预防与剂型选择[J].医学信息,2011,24(5):167-168.
    [4]杨晓志.中西医结合治疗类风湿性关节炎82例疗效观察[J].云南中医中药杂志,2013,34(1):23-24.
    [5]魏艳,杨锡明,王慎娥.中西医结合治疗活动期类风湿性关节炎50例临床观察[J].中国中医药科技,2013,20(1):54-55.
    [6]齐淑仙.中西医结合治疗类风湿性关节炎48例体会[J].医学理论与实践,2013,26(4):482-483.
    [7]张永鹏,刘静,张海霞.川乌在痹证中的配伍应用[J].亚太传统医药,2012,8(4):195-196.
    [8]罗试计.乌头汤治疗风湿性关节炎36例疗效观察[J].新中医,2008,40(11):45.
    [9]李连飞,罗试计,覃应莲.自制鸟头汤加味治疗椎间盘源性腰痛88例疗效观察[J].贵阳中医学院学报,2011,33(1):31-32.
    [10]刘昕.乌头汤治疗强直性脊柱炎疗效观察[J].内蒙古中医药,2010,(8):11.
    [11]王付.颈椎增生(寒瘀证)妙方芎附乌头汤[J].家庭医学,2007,(3):58.
    [12]张世忠,吴博威.乌头碱与钾离子通道激动剂合用对离体大鼠心脏的正性肌力作用研究[J].中国药理学通报,2001,17(5):570-572.
    [13]王华灵,韩培秀,徐世明.乌头碱对癌症疼痛的治疗效果[J].中国中西医结合杂志,1994,14(4):219.
    [14]黄衍民,李成韶,潘留华.乌头注射液对小鼠的镇痛作用及其药效动力学研究[J].中国药学杂志,2000,5(9):613.
    [15]张明发,沈雅琴.温里药温经止痛除痹的药理研究[J].中国重要信息杂志,2000,7(1):29-32.
    [16]杨景锋,赵天才.芍甘附子汤对AA大鼠免疫调节及关节滑膜超微结构形态的影响[J].陕西中医学院学报,2004,27(3):65-67.
    [17]李晋奇,彭成,姬洁莹.制川乌总碱与白芍总苷、白芍多糖配伍治疗类风湿性关节炎大鼠的作用机制研究[J].中国中药杂志,2009,34(22):2937-2939.
    [18]陈长勋,金若敏,贺劲松.采用中药血清药理研究方法观察附子对离体豚鼠左心房收缩力的影响[J].中国中医药科技,1996,3(3):12-14.
    [19]展海霞,彭成.附子与干姜配伍对心衰大鼠血流动力学的影响[J].中药药理与临床,2006,22(1):42-44.
    [20]杨庆,聂淑琴,翁小刚.乌头、贝母单用及配伍应用体内、外抗肿瘤作用的实验研究[J].中国实验方剂学杂志,2005,11(4):25-28.
    [21]汤新铭,孙桂芝.乌头碱抑瘤及抗转移的研究与治癌的观察[J].北京中医志,1986,(3):27-28.
    [22]雷怀成,宋道江,易建华,等.大鼠乌头碱中毒心肌细胞凋亡的研究[J].中国工业医学杂志,2004,17(6):373-374.
    [23]王国柱,大浦彦吉.麻黄干浸膏及其单宁成分治疗慢性肾功能衰竭的实验研究[J].中国中西医结合杂志,1994,14(8):485-488.
    [24]Saito SY, Maruyama Y, Kamiyama S, et al. Ephedrae herba in Mao-Bushi-Saishin-To inhibits IgE mediated histamine release and increases cAMP content in RBL-2H3 cells[J]. J Pharmacol Sci 2004,95(1):41-46.
    [25]张仲林,彭成,刘宏伟.生川乌对小鼠Focal adhesion信号通路毒性影响的试验研究[J].中草药,2009,40(1):75-78.
    [26]雷怀成,易建华.乌头碱中毒肾小管上皮细胞凋亡的观察[J].工业卫生与职业病,2005,31(2):84-85.
    [27]周玲,吴德康,唐于平.麻黄中化学成分研究进展[J].南京中医药大学学报,2008,2(1):71-73.
    [28]李姿娇,杨屹,丁明玉.麻黄非麻黄碱部分中黄酮、生物碱和有机酸的分析[J].分析试验室,2005,24(4):67-69.
    [29]赵巍.草麻黄化学成分研究[D].北京:中国协和医科大学,2009.
    [30]Tao H M, Wang L S, Cui Z C, et al. Dimeric Proanthocyanidins from the roots of Ephedra sinica[J]. Planta Med,2008,74(15):1823-1825.
    [31]张知侠.草麻黄精油化学成分分析[J].咸阳师范学院学报,2010,25(2):35-37.
    [32]Wang L S, Zhao D Q, Liu Y H. GC-MS analysis of the supercritical CO2 fluid extraction of Ephedra sinica roots and its antisudorific activity [J]. Chemistry of Natural Compounds,2009 45(3):434-436.
    [33]Konno C, Mizuno T, Hiroshi H. Isolation and hypoglycemic activity of ephedrans A, B, C, D and E glycans Ephedra distachya herbs [J]. Planra MED, 1985,(2):162-163.
    [34]Kuang H X, Xia Y G, Liang J, et al. Structural characteristics of a hyperbranched acidic polysaccharide from the stems of Ephedra sinica and its effect on T-cell subsets and their cytokines in DTH mice [J]. Carbohydrate Polumers,2011,86(4):1705-1711.
    [35]Tamada M, Endo K, Hikino H. Structure of Ephedradine B, a hypotensive principle of Ephedra roots [J]. Heterocycles,1979,12(6):783-786.
    [36]Hikino H, Ogato M, Konno C. Structure of Ephedradine D, a hypotensive principle of Ephedra roots[J]. Heterocycles,1982,17(Spec Issue):155-158.
    [37]Saito S Y, Maruyama Y, Kamiyama S, et al. Ephedrae herba in Mao-Bushi-Saishin-To inhibits IgE mediated histamine release and increases cAMP content in RBL-2H3 cells[J]. J Pharmacol Sci 2004,95(1):41.
    [38]Koike K, Kawasuji T, Saito H, et al. Relaxant responses by optical isomers of ephedrine and methylephedrine in guinea pig tracheal smooth muscle [J]. Pharmacology,1996,53(5):289-295.
    [39]Kim BY, Cao LH, Kim JY. Common responses in gene expression by Ephedra herba in brain and heart of mouse [J]. Phytother Res,2011,25(10):1440-1446.
    [40]李佳莲,方磊,张永清,等.麻黄化学成分和药理活性的研究进展[J].中国现代中药,2012,14(7):21-27.
    [41]王国柱,大浦彦吉.麻黄干浸膏及其单宁成分治疗慢性肾功能衰竭的实验研究[J].中国中西医结合杂志,1994,14(8):485-488.
    [42]Konno C, Mizuno T, Hikino H. Isolation and hypoglycemic activity of ephedrans A, B, C, D and E, Glycsns of Ephedra D is tachya Herbs [J]. Planta Med,1985, (2):162-163.
    [43]Xiu LM, Miura AB, Yamamoto K, et al. Pancreatic islet regeneration by ephedrine in mice with streptozotocin-induced diabetes [J]. Am J Chin Med, 2001,29(3-4):493-500.
    [44]王芝春,李逢菊,杨静.浅谈麻黄的不良反应[J].临床与医疗,2010,13:407-408.
    [45]Enders JM, Dobesh PP, Ellison JN. Acute myocardial infarction induced by ephedrine alkaloids[J]. Pharmacotherapy,2003,23(12):1645-1651.
    [46]孙晓如.麻黄类药物的安全性值得重视[J].中国医药报,2008,B04:1-2.
    [47]覃禹,仇峰,韦日伟,张坤,杨美华,覃洁萍.中药多组分药代动力学的研究进展[J].解放军药学学报,2011,27(6):548-552.
    [48]韩玲.多成分中药药代动力学研究的现状及思考[J].中国中药杂志,2008,33(21):2442-2448.
    [49]Sheng Y, Li L, Wang C, et al. Solid phase extraction-liquid chromatographic method for the determination and pharmacokinetic studies of albiflorin and paeoniflorin in rat serum after oral administration of Si-Wu decoction[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,806(2):127-132
    [50]陈宁,张琪,杜宇,陈国广,朱玲玲.黄芪甲苷在大鼠体内的药代动力学和组织分布研究[J].生物加工工程,2006,4(3):67-72.
    [51]Liu W, Zheng Z, Liu X, Gao S, Ye L, Yang Z, Hu M, Liu ZQ. Sensitive and robustUPLC-MS/MS method to determine the gender-dependent pharmacokinetics in rats of emodin and its glucuronide. Journal of Pharmaceutical and Biomedical Analysis.2011; 54:1157-1162.
    [52]孙永,方泰惠,王耘,周静.中药药代动力学方法的探究与思考.医学信息,2011,4:1574.
    [53]马听.浅谈中药复方的药代动力学.北方药学,2011,8(11):18-19.
    [54]黄衍民,潘留华,吴晓放.乌头注射液对小鼠的毒效动力学研究[J].中国药学,1998,33(7):421-423.
    [55]潘嘉,王家葵,邹文侯..抑菌效应法测定川芎挥发油药动学参数[J].中药药理与临床,2002,18(4):18-19.
    [56]陈长勋,金若敏,李仪奎.附子/川乌/四逆汤表观药动学的测定[J].中国医院药学,1990,10(11):487-489.
    [57]Wang Zhi-qi, Zeng Rong, Tan Zhi-rong, et al. Pharmacokinetic of aconitine and glycyrrhetic acid in separation and combination with Aconiti lateralis Radix praeparata and Glycyrrhizae Radix et Rhizoma in rats [J]. Chinese Traditional Patent Medicine.2012,34(12):2305-2309.
    [58]Li Rui, Yan Yi-lin, Zhou Li-ling, Zhou Jiu-yao. Pharmacokinetical study on Sini decoction [J]. Chinese Traditional Patent Medicine.2002,24(10): 777-780.
    [59]赵镭,柳玉石,杨昊,唐星[J].人身四逆汤注射剂在大鼠及小鼠体内的药物动力学.沈阳药科大学学报.2008,25(7):524-529.
    [60]张建军,欧丽娜,李伟,王景霞,龙锐,刘海波,刘洋.经方治咳嗽的临床应用浅析[J].中华中医药杂志,2010,25(12):1991-1995.
    [61]贺丰,罗佳波,陈飞龙,余林中.麻黄汤中,麻黄碱、伪麻黄碱在人体药代动力学研究[J].中药药理与临床.2005,21(1):1-3.
    [62]贺丰,罗佳波.麻黄汤中臣佐使药对君药中伪麻黄碱的人体药代学的影响[J].中国中药杂志.2005,30(18):1454-1457.
    [63]张宏,彭成.川乌煎煮时间、剂量与药的相关性研究[J].中药药理与临床,2006,22(5):30-32.
    [64]Singh S, Fadnis PP, Sharma BK. Aconite poisoning [J]. J Assoc Physicians India,1986,34(11):825-826.
    [65]Bisset NG. Arrow poisons in China. Part Ⅱ. Aconitum-botany chemistry, and pharmacology [J]. J Ethnopharmacol,1981,4(3):247-336.
    [66]Suzuki Y, Hayakawa Y, Oyama T, et al. Analgesic effect of benzoylmesaconine [J]. Nihon Yakurigaku Zasshi,1993,102(6):399-404.
    [67]葛峥,施旭光.乌头汤及其配伍抗风湿作用的机理研究.2006.
    [68]陈信义,李峨,侯丽,等.乌头类生物碱研究进展与应用前景评述[J].中国中医药信息杂志,2004,11(10):922-923.
    [69]随志刚,陈明玉,刘志强,皮子风,刘忠英.附了煎煮与配伍应用中乌头类生物碱含量的变化及意义[J].吉林大学学报(医学版).2009,35(2):226-229.
    [70]陈玉,郭平,伍丽萍,陈聪,费小凡,叶利明.附片水煎制剂中乌头类生物碱水解物含量测定研究[J].华西医学,2011,26(9):1382-1385.
    [71]Jiang ZH, Xie Y, Zhou H, Wang JR, Liu ZQ, Wong YF, Cai X, Xu HX, Liu L. Quantification of Aconitum alkaloids in aconite roots by a modified RP-HPLC method, Phytochem Anal,2005,16:415-421
    [72]罗佳波,余林中,贺丰,朱全红.麻黄汤组方原理的研究[J].世界科学技术—中医药现代化.2007,9(2):6-14.
    [73]Zhu Z, Zhang H, Zhao L, et al. Rapid separation and identification of phenolic and diterpenoid constituents from radix salvia miltiorrhizae by high-performance liquid chromatography diode-array detection, electrospray ionization time-of-flight mass spectrometry and electrospray ionization quadropole ion trap mass spectrometry [J]. Rapid Commun Mass Spetrom, 2007,21(12):1855-1865.
    [74]Zheng C N, Hao H P, Wang X, et al. Diagnostic fragmentation-based extension strategy for rapid screening and identification of serial components of homologous families contained in traditional Chinese medicine prescription using high-resolution LC-ESI-IT-TOF/MS:Shenmai injection as an example [J]. J Mass Spectrom,2009,44(2):230-244.
    [75]Weckwerth W. Metabolomics in systems biology [J]. Annu Rev Plant Biol, 2003,54:669-689.
    [76]Sanchez BA, Capote FP, Luque de Castro MD. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sanple preparation [J]. Trends Analyt Chem,2010,29(2):111-119.
    [77]秦泽慧,谈英,谭婧,等.两面什液质联用指纹图谱的研究[J].中药新药与临床药理,2011,22(3):323-327.
    [78]吴泽明,赵春霞,许国旺,等.基于液相色谱质谱联用系统的维尔吾医异常黑胆质证哮喘病的血清代谢组学研究[J].世界科学技术(中医药现代化),2009,11(1):134-141.
    [79]Cai Z, Lee FS, Wang XR, et al. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs [J]. J Mass Spectrom,2002,37(10):1013-1024.
    [80]Li X, Xiao H, Liang X, et al. LC-MS/MS determination of naringin, hesperidin and neohesperidin in rat serum after orally administrating the decoction of Bulpleurum falcatuml and Fractus aurantii [J]. J Pharm Biomed Anal,2004, 34(1):159-166.
    [81]Xu RN, Fan L, Rieser MJ, et al. Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS [J]. J Pharm Biomed Anal,2007,44(2): 342-355.
    [82]丁丽丽,施松善,崔健,王顺春,王峥涛.麻黄化学成分与药理作用研究进展.中国中药杂志,2006,31(20):1661-1664.
    [83]李佳莲,方磊,张永清,等.麻黄化学成分和药理活性的研究进展[J].中国现代中药,2012,14(7):21-27
    [84]Li X, Xiao H, Liang X, et al. LC-MS/MS determination of naringin, hesperidin and neohesperidin in rat serum after orally administrating the decoction of Bulpleurum falcatuml and Fractus aurantii [J]. J Pharm Biomed Anal,2004, 34(1):159-166.
    [85]Pellati F, Orlandini G, Pinetti D, Benvenuti S. HPLC-DAD and HPLC -ESI-MS/MS methods for metabolite profiling pf propolis extracts [J]. J Pharmaceut Biomed.2011; 55:934-948.
    [86]Liu Y L, Li D M, Feng L, Yuan H. Simultaneous determination of 5 kinds of alkaloids in Kechuanning tablets by SPE-UPLC under different UV-vis wavelength [J]. Yao Xue Xue Bao.2011; 46(5):581-585.
    [87]Cooper SD, Fletcher BL, Silinski M, et al.. Determination of L-Ephedrine, Pseudoephedrine and Caffeine in Rat Plasma by Liquid Chromatography Tandem Mass Spectrometry [J]. J Analytical Toxicology.2011; 35:341-348.
    [88]李高,方超.药物肠道吸收的生物学研究方法[J].中国药学杂志.2002,37 (10):726-729.
    [89]吴雪荣.麻黄药理作用研究进展.中国中医药,2010,8(5):173.
    [90]廖音,杨秀伟.麻黄生物碱在人源肠Caco-2细胞单层模型的吸收转运研究.中国中药杂志,2010,35(22):3010-3015.
    [91]Zhao YH, Abraham MH, Le J, et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption[J]. Eur J Med Chem,2003, 38 (3):233-243.
    [92]Schurgers N, Bijdendijk J, Tukker JJ, et al. Comparison of four experimental techniques for studying drug absorption kinetics in the anesthetized rat in situ [J]. J Pharm Sci,1986,75 (2):117-119.
    [93]谭晓斌,贾晓斌,陈彦,等.在体肠灌流模型及其在中药研究中的应用[J].中成药.2007,38(11):1665-1668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700