用户名: 密码: 验证码:
HSF1对内毒素血症小鼠多器官损伤的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒症(sepsis)是由感染引起的全身炎症反应综合征(systemic inflammatory response syndrome,SIRS)。虽然脓毒症的发生机制尚未完全阐明,但是革兰氏阴性细菌胞壁上的脂多糖(lipopolysacchride,LPS)即内毒素启动体内免疫系统在脓毒症发病中的重要性已受到广泛关注。LPS进入机体内可激活多条信号转导通路,启动宿主防御反应,导致大量炎症介质基因的过度表达和全身炎症细胞活化。脓毒症发生机制的核心是感染所引起的失控性炎症反应,其主要特征和机制是过度的中性粒细胞(polymorphonuclear neutrophil,PMN)浸润,引起多器官损伤。
     热休克因子1(heat shock factor1,HSF1)是调控热休克反应的关键转录因子。本室前期研究发现HSF1敲除小鼠(HSF1-/-)对LPS的敏感性显著增强和生存率明显降低,表明HSF1对LPS所致的内毒素血症具有保护作用。但是HSF1的保护机制目前仍不清楚。内毒素血症的主要特征和机制是大量中性粒细胞浸润肺、肝和肾等。HSF1是否影响LPS所致内毒素血症的中性粒细胞浸润?目前尚未见报道。
     为了探讨HSF1对LPS所致的内毒素血症小鼠的多器官损伤的保护作用和可能机制,本研究第一章采用复制内毒素血症小鼠模型,在整体水平进行一系列组织细胞损伤指标测定和组织学分析。结果发现与野生型(wild type,WT)小鼠相比较,LPS注射4h引起HSF1-/-小鼠释放到血清的炎性介质(IL-6和G-CSF)和器官损伤酶学指标(LDH.BUN和ALT)水平明显升高,肺和肾微血管通透性和湿干比重显著升高。进一步研究发现LPS注射导致HSF1-/-小鼠肺、肝和肾等易感器官的中性粒细胞浸润明显增多,组织损伤更加明显,与LPS引起HSF1-/-小鼠的生存率显著降低相一致。上述结果表明HSF1对LPS诱导的多器官损伤具有保护作用,其机制与抑制过度的中性粒细胞浸润有关。
     中性粒细胞浸润是涉及粘附和趋化作用的、受到精细调节的一个多步骤过程。最近,本室利用HSF1-/-和WT小鼠制备内毒素血症模型,采用含384个炎症因子基因的微阵列从内毒素血症小鼠肺组织中筛选HSF1调控的炎症相关基因,首次发现HSF1可能抑制与细胞的粘附和趋化有关的两个分子的表达:即细胞粘附分子P选择素糖蛋白配体(P-selectin glycoprotein ligand1, PSGL-1)和趋化因子受体XCR1。这提示HSF1对LPS所致内毒素血症的中性粒细胞的粘附和趋化作用可能存在抑制作用。
     为了探讨HSF1对LPS所致的内毒素血症的中性粒细胞粘附作用的影响及其机制,本研究第二章采用HSF1-/-小鼠复制内毒素血症小鼠模型,运用抗粒细胞染色法在整体水平观察中性粒细胞与血管内皮细胞的粘附作用,发现LPS诱导HSF1-/-小鼠中性粒细胞与血管内皮细胞的粘附比WT小鼠中性粒细胞更强。进一步采用实时定量PCR检测骨髓中性粒细胞的PSGL-1mRNA水平,采用细胞流式术检测用或不用抗PSGL-1单抗处理的内毒素血症小鼠的循环中性粒细胞表面的PSGL-1的蛋白表达水平,采用细胞流式术和免疫组化技术分别检测循环中性粒细胞表面的CD11b和血管内皮细胞表面的ICAM-1表达水平。结果显示,在基础水平,中性粒细胞表面的PSGL-1和CDllb表达水平比较低,而在HSF1-/-小鼠中性粒细胞的表达比WT更高。经LPS刺激后,中性粒细胞表达PSGL-1和CD11b上调,与WT组比,LPS诱导HSF1-/-中性粒细胞表面的PSGL-1和CDllb表达上调更显著。PSGL-1的蛋白表达变化与mRNA水平的变化十分相似。这表明HSF1可下调中性粒细胞表面的PSGL-1和CDllb的组成型表达与LPS所致的诱导型表达。另外,LPS诱导HSF1-/--小鼠的血管内皮细胞表面表达更高的ICAM-1水平。而LPS处理对WT和HSF1-/-中性粒细胞的Hsp70表达没有显著影响。这些结果表明在内毒素血症过程中,HSF1通过抑制中性粒细胞表面的PSGL-1和CDllb的上调以及血管内皮细胞表面的ICAM-1表达,从而抑制LPS所致的中性粒细胞与内皮细胞的粘附。
     趋化性是吞噬细胞朝一些浓度递增的趋化物如细菌因子(LPS等)和趋化因子进行定向运动的特性。为了探讨HSF1对中性粒细胞趋化作用的影响及其机制,本研究第三章利用WT和HSF1-/-小鼠骨髓中性粒细胞,采用趋化实验在细胞水平观察两种不同基因型细胞对LPS或肺匀浆的趋化反应,发现HSF1-/-小鼠骨髓中性粒细胞对LPS或内毒素血症小鼠肺匀浆的趋化性比WT小鼠中性粒细胞明显增强。然后复制内毒素血症模型,在整体水平采用ELISA检测血清趋化因子MIP2和XCL1的水平,采用流式细胞术检测循环中性粒细胞表面的CXCR2的表达水平,采用实时定量PCR和细胞免疫荧光技术分别检测中性粒细胞的XCR1mRNA和蛋白表达。结果发现LPS诱导WT和HSF1-/-小鼠循环中性粒细胞的CXCR2表达降低,在LPS注射的WT和HSF1-/-小鼠之间,两组循环中性粒细胞表面的CXCR2表达无明显差异。尽管经LPS注射后,WT和HSF1-/-小鼠血清MIP2水平都显著升高,但在WT和HSF1-/-之间没有明显的差异。然而,内毒素血症时,HSF1-/-小鼠循环中性粒细胞表面的XCR1表达水平和释放到血清的XCL1水平均明显高于WT小鼠。在体外,LPS诱导HSF1-/-小鼠骨髓中性粒细胞的XCR1mRNA和蛋白水平显著增加。且随LPS处理时间的延长,HSF1-/-骨髓中性粒细胞表达的XCR1蛋白递增,而LPS对WT骨髓中性粒细胞的XCR1表达没有明显的影响。值得注意的是,在基础水平,HSF1-/-中性粒细胞的XCR1表达显著低于WT中性粒细胞。其机制目前仍不清楚。上述结果表明HSF1对LPS诱导的中性粒细胞表面的XCR1表达上调具有抑制作用。肌动蛋白细胞骨架和伪足小体形成的变化是迁移细胞的特点。为了明确HSF1-/-是否改变细胞骨架重排,我们研究了WT和HSF1-/-小鼠的循环中性粒细胞和骨髓中性粒细胞的F-actin重组。结果发现LPS诱导小鼠骨髓中性粒细胞形成富含F-actin的板状伪足。与WT小鼠相比,HSF1-/-小鼠骨髓中性粒细胞中显示富含F-actin的范围显著增加,这与HSF1-/-中性粒细胞的趋化性和迁移增强一致。此外,HSF1-/-骨髓中性粒细胞的F-actin聚合随体外LPS处理时间的延长而递增。而一旦用actin聚合的抑制剂即细胞松弛素B破坏F-actin,则WT和HSF1-/-小鼠中性粒细胞对LPS的趋化反应被完全废除。这些结果表明在内毒素血症过程中,HSF1通过抑制中性粒细胞表面的XCR1表达上调和血清趋化因子XCL1的产生,以及抑制LPS诱导的中性粒细胞的F-actin聚合,从而抑制中性粒细胞的趋化和迁移。
     此外,在前期工作中我们通过生物信息学分析发现PSGL-1和XCR1基因的启动子区上游均含有一个热休克元件,因此HSF1可能在转录水平直接抑制psgl-1和xcrl基因的表达。
     综上所述,本研究首次提出在小鼠内毒素血症过程中,HSF1对LPS诱导的多器官损伤的保护作用与抑制过度的中性粒细胞浸润有关。一方面,HSF1通过抑制LPS诱导的中性粒细胞表面的PSGL-1和CDllb的表达以及血管内皮细胞表面的ICAM-1表达而抑制中性粒细胞与血管内皮细胞的粘附;另一方面,HSF1通过抑制LPS诱导的XCL1产生,和中性粒细胞的XCR1表达以及F-actin聚合,从而抑制中性粒细胞的趋化和迁移。上述发现为揭示脓毒症的发病机制提供了新的实验依据,也为从HSF1角度探讨内毒素血症和脓毒症的防治提供新的思路与实验线索。
Sepsis is a systemic inflammatory response syndrome (SIRS) triggered by infection. Although the mechanisms of sepsis have not yet been fully elucidated, it is well established that lipopolysaccharide (LPS) or endotoxin plays an important role in the pathogenesis of sepsis by initiating the immune system in vivo. LPS can activate several signal transduction pathways and initiate the host defense response, resulting in overexpression of a large number of inflammatory mediators and activation of the systemic inflammatory cells. The key mechanism in the pathogenesis of sepsis is uncontrolled inflammatory response to infection and its main characteristics and mechanisms is excessive neutrophil (polymorphonuclear neutrophil, PMN) infiltration which ultimately results in multiple organ injury.
     Heat shock factor1(HSF1) is the major transcriptional factor that regulates the heat shock response. Our previous study found that HSF1knockout mice (HSF1-/-) were more sensitive to LPS; and when treated with LPS, these mice showed lower survival rate. This indicates that HSF1is essential in protection against the systemic inflammation induced by bacterial endotoxin. However, the protective mechanism remains obscure. Although LPS-induced endotoxemia is characterized with infiltration of PMNs in the lungs, liver, and kidneys, whether does HSF1have an effect on PMN infiltration is still unclear.
     To explore the protective effect of HSF1on the multiple organ injury in LPS-induced endotoxemia mice and underlying mechanisms, we prepared a mouse model of endotoxemia and measured a series of parameters of tissue injury and performed histology analysis at the overall animal level. The results showed that:1)4h after the injection of LPS, higher level of serum inflammatory mediators such as IL-6and G-CSF, and enzymatic indicators such as LDH, ALT and BUN were observed in HSF1-/-mice than WT mice.2)4h after the injection of LPS and comparing with WT mice, microvascular permeability and wet/dry ratio of lung and renal tissues increased significantly in HSF1-/-mice.3) Consistent with lower survival rate, PMN infiltration and histopathology in multiple susceptible organs (lungs, liver and kidneys) were significantly exacerbated in HSF1-/-mice when treated with LPS, suggesting that HSF1has a protective effect on LPS-induced multiple organ injury, which is associated with the suppression of excessive PMN infiltration.
     PMN infiltration is a highly regulated multistep process that involves adhesion and chemotaxis. Recently, we prepared an endotoxemia model to screen HSF1-regulated inflammation-related genes from the lung tissue by microarray with384inflammatory cytokine genes. We found that HSF1may inhibit the expression of P-selectin glycoprotein ligand1(PSGL-1, a cell adhesion molecule) and XCR1(a chemokine receptor), suggesting that HSF1plays a potential inhibitory role in PMN adhesion and chemotaxis in LPS-induced endotoxemia.
     Next we decided to explore the effect of HSF1on PMN adhesion in LPS-induced endotoxemia. By anti-granulocyte staining, we demonstrated that PMNs in the HSF1-/-mice after LPS challenge were more adhesive to endothelium than that in the WT mice. Then, the mRNA level of PSGL-1was measured by quantitative real-time PCR, and the protein level of PSGL-1on PMN surface was measured by flow cytometry analysis. The expression levels of CD11b on PMN surface and intercellular adhesion molecule-1(ICAM-1) on endothelium were detected by flow cytometry and immunohistochemical analysis, respectively. We found that the protein levels of PSGL-1and CD11b on HSF1-/-PMNs at baseline were higher than that of the WT PMNs. LPS induced the surface expression of PSGL-1and CD11b on the PMNs of WT and HSF1-/-mice. However, greater surface expression of PSGL-1and CD11b was shown on the PMN surface of HSF1-/-mice after LPS treatment. These results indicate that HSF1is capable of down-regulating both constitutive and inducible expressions of PSGL-1and CDllb on PMNs. In addition, LPS induced higher level of ICAM-1expression on the endothelium of HSF1-/-mice. Nevertheless, the effect of LPS treatment on Hsp70protein levels in PMNs of WT and HSF1-/-mice is minimal. These results suggest that HSF1inhibits PMN adhension to endothelium by suppressing the surface expression of PSGL-1and CD11b on PMNs as well as ICAM-1on endothelium during endotoxemia.
     Chemotaxis is the movement of phagocytes toward an increasing concentration of attractants such as bacterial factors (LPS etc.) and chemokines. To explore the effect of HSF1on PMN chemotaxis and its mechanisms, chemotactic chamber assay was conducted to evaluate the migratory capacity of WT and HSF1-/-BM PMNs to multiple migration-inducing stimuli, including LPS (0.6μg/ml) and lung homogenates from endotoxemia mice. We found that the chemotactic activities of PMNs from the HSF1-/-mice were significantly higher than that from the WT mice. The levels of serum MIP2and XCL1were measured by ELISA. CXCR2expression on PMN surface was detected by flow cytometry analysis. The mRNA level of XCR1in BM PMNs was measured by quantitative real-time PCR. The protein expression of XCR1on circulating PMNs or BM PMNs was evaluated by immunocytochemical analysis. It was found that LPS reduced CXCR2expression on PMNs from WT and HSF11-/-mice. However, the differences in CXCR2expression on circulating PMN of the WT and HSF1-/-mice after LPS injection were negligible. There was no significant difference between serum MIP2production of the WT and the HSF1-/-mice at basal levels or after LPS exposure, although the levels of serum MIP2significantly increased in WT and HSF1-/-mice after LPS treatment. However, LPS induced higher level of serum XCL1in HSF1-/-mice and greater surface expression of XCR1on circulating PMN of the HSF1-/-mice. LPS induced a marked increase in both mRNA and protein level of XCR1in PMNs of HSF1-/-, but not WT mice. XCR1expression on HSF1-/-BM PMNs increased progressively during the in vitro LPS treatment, and this effect was not observed in the WT BM PMNs. Notably, the basal expression of XCR1on HSF1-/-PMNs was lower than that on WT PMNs. This suggests an inhibitory role of HSF1in LPS-induced XCR1expression on PMNs. Changes in cytoskeleton and podosome formation are hallmarks of migrating cells. To determine whether HSF1-/-alters cytoskeleton rearrangement, F-actin reorganization was examined in circulating and BM PMNs from WT and HSF1-/-mice. Formation of lamellipodia in response to LPS was seen in the WT BM PMNs, whereas HSF1-/-cells displayed a significant increase in F-actin-rich extensions. This is in consistent with enhanced chemotaxis and migration in HSF1-/-BM PMNs. Moreover, F-actin polymerization in HSF1-/-BM PMNs increased progressively during the in vitro LPS treatment. Once F-actin was disrupted by cytochalasin B, an inhibitor of actin polymerization, the chemotactic response of WT and HSF1-/-BM PMNs to LPS was shown to be completely abolished, indicating that HSF1inhibits LPS-induced F-actin polymerization in PMNs. These results suggest that HSF1inhibits PMN chemotaxis and migration by suppressing the surface expression of XCR1on PMN and serum XCL1production, as well as F-actin polymerization in PMN during endotoxemia.
     Previously, our bioinformatic analysis found a heat shock element located at the upstream of the transcription starting sites of the psgl-1and xcr1genes. Therefore, as a transcription factor, HSF1may repress psgl-1and xcr1directly at the transcriptional level.
     In summary, this study demonstrated for the first time that, the protective role of HSF1in LPS-induced multiple organ injury is related to the suppression of excessive PMN infiltration. Mechanistically, during endotoxemia,1) HSF1inhibits PMN adhesion to vascular endothelial cells by suppressing the expression of LPS-induced PSGL-1and CD11b on PMN surface and ICAM-1on vascular endothelial cell surface;2) HSF1inhibits PMN chemotaxis and migration by suppressing XCL1production, the XCR1receptor expression and F-actin polymerization in PMN. This study has provided not only a novel model for the pathogenesis of sepsis, but also new ideas and clues for the prevention and treatment of endotoxemia and sepsis.
引文
[1]姚咏明,盛志勇主编.脓毒症防治学,ISBN:978-7-5023-5717-7/R.631. 2008-01.
    [2]伏建峰,何新建.脓毒症的发病机制及防治药物研发新思路[J].国际检验医学杂志,2011,32(1):66-68.
    [3]Nduka OO, Parrillo JE.The pathophysiology of septic shock[J]. Crit Care Clin, 2009,25(4):677-702.
    [4]Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock[J]. Clin Microbiol Rev, 2003,16(3):379-414.
    [5]余传霖,叶天星,陆德源,章谷生主编.现代医学免疫学,ISBN:75627-0387-6/R.367.1998-10.
    [6]陈淑华,肖献忠.热休克因子1与恶性肿瘤[J].国际病理科学与病理杂志,2009,29(3):207-210.
    [7]Rossi A, Trotta E, Brandi R, et al. AIRAP, a new human heat shock gene regulated by heat shock factor 1[J]. J Biol Chem,2010,285(18):13607-13615.
    [8]Zhang H, Zhang L, Yu F, et al. HSF1 is a transcriptional activator of IL-10 gene expression in RAW264.7 macrophages[J]. Inflammation,2012, 35(4):1558-1566.
    [9]Rossi A, Coccia M, Trotta E, et al. Regulation of cyclooxygenase-2 expression by heat:a novel aspect of heat shock factor 1 function in human cells[J]. PLoS One, 2012,7(2):e31304.
    [10]Singh IS, He JR, Calderwood S, et al. A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor[J]. J Biol CHem,2002,277(7):4981-4988.
    [11]Xie Y, Chen C, Stevenson MA, et al. Heat shock factor 1 represses transcription of the IL-lbeta gene through physical interaction with the nuclear factor of interleukin 6[J]. J Biol Chem,2002,277(14):11802-11810.
    [12]Takii R, Inouye S, Fujimoto M, et al. Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3[J]. J Immunol,2010, 184 (2):1041-1048.
    [13]Inouye S, Fujimoto M, Nakamura T, et al. Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor[J]. J Biol Chem,2007;282 (45):33210-33217.
    [14]于凤秀,张华莉,陈广文,等HSF1调控的炎症相关基因的筛选及SOCS3基因的实验验证[J].中南大学学报(医学版),2006,31(2):167-173.
    [15]Bouchier-Hayes L, McBride S, van Geelen CM, et al. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1[J]. Cell Death Differ,2010,17(6):1034-1046.
    [16]Zhang L, Yang M, Wang Q, et al. HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta[J]. Mol Cell Biochem,2011; 352 (1-2):11-17.
    [17]Xiao XZ, Zuo XX, Davis AA, et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice[J]. EMBO J,1999,18(21):5943-5952.
    [18]Villar J, Ribeiro SP, Mullen JBM, et al. Induction of heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model[J]. CritCare Med,1994,22(6):914-921.
    [19]Suganuma T, Irie K, Fujii E, et al. Effect of heat stress on lipopolysaccharide-induced vascular permeability change in mice[J]. J Pharmacol Exp Ther,2002,303(2):656-663.
    [20]陈广文,王慷慨,刘瑛,等HSF1基因剔除对HSR抗内毒素血症的影响[J].生物化学与生物物理进展,2008,35(4):424-430.
    [21]McMillan DR, Xiao X, Shao L,"et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis[J]. J Biol Chem,1998,273(13):7523-7528.
    [22]Wang le F, Patel M, Razavi HM, et al. Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis[J]. Am J Respir Crit Care Med,2002,165(12):1634-1639.
    [23]Lau D, Mollnau H, Eiserich JP, et al. Myeloperoxidase mediates neutrophil activation by association with CD1 lb/CD18 integrins[J]. Proc Natl Acad Sci U S A,2005,102(2):431-436.
    [24]Tian J, Lin X, Guan R, et al. The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms[J]. Anesth Analg,2004, 98(3):768-774.
    [25]Jeong YI, Jung ID, Lee CM, et al. The novel role of platelet-activating factor in protecting mice against lipopolysaccharide-induced endotoxic shock[J]. PLoS One,2009,4(8):e6503.
    [26]Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury[J]. Mol Med,2011,17(3-4):293-307.
    [27]Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury[J]. Toxicol Pathol,2007,35(6):757-766.
    [28]Brown KA, Brain SD, Pearson JD, et al. Neutrophils in development of multiple organ failure in sepsis[J]. Lancet,2006,368(9530):157-169.
    [29]Garrood T, Lee L, Pitzalis C. Molecular mechanisms of cell recruitment to inflammatory sites:general and tissue-specific pathways[J]. Rheumatology (Oxford),2006,45(3):250-260.
    [30]Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process[J]. Cardiovasc Res,1996,32(4):733-742.
    [31]Zarbock A, Ley K. Neutrophil adhesion and activation under flow[J]. Microcirculation,2009,16(1):31-42.
    [32]Blanks JE, Moll T, Eytner R, et al.Stimulation of P-selectin glycoprotein ligand-1 on mouse neutrophils activates β2-integrin mediated cell attachment to ICAM-1[J]. Eur J Immunol,1998,28 (2):433-443.
    [33]Almulki L, Noda K, Amini R, et al. Surprising up-regulation of P-selectin glycoprotein ligand-1 (PSGL-1) in endotoxin-induced uveitis[J]. FASEB J, 2009,23(3):929-939.
    '[34] Asaduzzaman M, Rahman M, Jeppsson B, et al. P-selectin glycoprotein-ligand-1 regulates pulmonary recruitment of neutrophils in a platelet-independent manner in abdominal sepsis[J]. Br J Pharmacol,2009,156(2):307-315.
    [35]Sato C, Shikata K, Hirota D, et al. P-selectin glycoprotein ligand-1 deficiency is protective against obesity-related insulin resistance[J]. Diabetes,2011, 60(1):189-199.
    [36]Farooq SM, Stillie R, Svensson M, et al. Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis[J]. J Pharmacol Exp Ther,2009,329(1):123-129.
    [37]Walzog B, Gaehtgens P. Adhesion molecules:the path to a newunderstanding of acute inflammation[J]. News Physiol Sci,2000,15(3):107-113.
    [38]Norman KE, Moore KL, McEver RP, et al. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1[J]. Blood,1995,86(12):4417-4421.
    [39]Wang HB, Wang JT, Zhang L, et al. P-selectin primes leukocyte integrin activation during inflammation[J]. Nat Immunol,2007,8(8):882-892.
    [40]Ma YQ, Plow EF, Geng JG. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils[J]. Blood,2004,104(8):2549-2556.
    [41]Christians ES, Yan LJ, Benjamin IJ. Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury[J]. Crit Care Med,2002, 30(1 Supp):S43-S50.
    [42]Hightower LE, Brown, Renfro JL, et al. Tissue-level cytoprotection[J]. Cell Stress Chaperones,2000,5(5):412-414.
    [43]Gabai VL, Meriin AB, Mosser DD, et al. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance[J]. J Biol Chem,1997, 272(29):18033-18037.
    [44]Marsik C, Mayr F, Cardona F, et al. Endotoxin down-modulates P-selectin glycoprotein ligand-1 (PSGL-1, CD162) on neutrophils in humans[J]. J Clin Immunol,2004,24(1):62-65.
    [45]An G, Wang H, Tang R, et al. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice[J]. Circulation,2008, 117(25):3227-3237.
    [46]Dold S, Laschke MW, Zhau Y, et al. P-selectin glycoprotein ligand-1-mediated leukocyte recruitment regulates hepatocellular damage in acute obstructive cholestasis in mice[J]. Inflamm Res,2010,59(4):291-298.
    [47]Tanaka K, Namba T, Arai Y, et al. Genetic evidence for a protective role for heat shock factor 1 and heat shock protein 70 against colitis[J]. J Biol Chem,2007, 282 (32):23240-23252.
    [48]Hou J, Baichwal V, Cao Z. Regulatory elements and transcription factors controlling basal and cytokine-induced expression of gene encoding ICAM-1[J]. Proc Natl Acad Sci USA,1994,91 (24):11641-11645.
    [49]Hirsh MI, Hashiguchi N, Chen Y, et al. Surface expression of HSP72 by LPS-stimulated neutrophils facilitates γδT cell-mediated killing[J]. Eur J Immunol,2006,36,712-721.
    [50]Broaddus VC, Boylan AM, Hoeffel JM, et al. Neutralization of IL-8 inhibits neutrophil influx in a rabbit model of endotoxin-induced pleurisy[J]. J Immunol, 1994,152 (6):2960-2967.
    [51]Lee J, Horuk R, Rice GC, et al. Characterization of two high affinity human interleukin-8 receptors[J]. J Biol Chem,1992,267 (23):16283-16287.□
    [52]Bozic CR, Gerard NP, von Uexkull-Guldenband C, et al. The murine interleukin 8 type B receptor homologue and its ligands:expression and biological characterization[J]. J Biol Chem,1994,269 (47):29355-29358.
    [53]Stadtmann A, Zarbock A. CXCR2:From Bench to Bedside[J]. Front Immunol, 2012,3:263.
    [54]Chishti AD, Shenton BK, Kirby JA, et al. Neutrophil chemotaxis and receptor expression in clinical septic shock[J]. Intensive Care Med,2004,30(4):605-611.
    [55]Cummings CJ, Martin TR, Frevert CW, et al. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis[J]. J Immunol,1999, 162(4):2341-2346.
    [56]Rios-Santos F, Alves-Filho JC, Souto FO, et al. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide[J]. Am J Respir Crit Care Med, 2007,175(5):490-497.
    [57]Huang H, Li F, Cairns CM, et al. Neutrophils and B cells express XCR1 receptor and chemotactically respond to lymphotactin[J]. Biochem Biophys Res Commun, 2001,281(2):378-382.
    [58]Yamazaki C, Miyamoto R, Hoshino K, et al. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice[J]. Biochem Biophys Res Commun,2010,397(4):756-761.
    [59]Crozat K, Guiton R, Contreras V, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+dendritic cells[J]. J Exp Med,2010,207(6):1283-1292.
    [60]Chen S, Zuo X, Yang M, et al. Severe multiple organ injury in HSF1 knockout mice induced by lipopolysaccharide is associated with an increase in neutrophil infiltration and surface expression of adhesion molecules[J]. J Leukoc Biol,2012, 92(4):851-857.
    [61]Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking[J]. Am J Physiol Regul Integr Comp Physiol,2002,283(1):R7-28.
    [62]Doroshenko T, Chaly Y, Savitskiy V, et al. Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2[J]. Blood,2002,100(7):2668-2671.
    [63]Kennedy J, Kelner GS, Kleyensteuber S, et al. Molecular cloning and functional characterization of human lymphotactin[J]. J Immunol,1995,155(1):203-209.
    [64]Muller S, Dorner B, Korthauer U, et al. Cloning of ATAC, an activation-induced, chemokine-related molecule exclusively expressed in CD8+T lymphocytes[J]. Eur J Immunol,1995,25 (6):1744-1748.
    [65]Yamazaki C, Miyamoto R, Hoshino K, et al. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice[J]. Biochem Biophys Res Commun,2010,397(4):756-761.
    [66]Kim M, Rooper L, Xie J, et al. The lymphotactin receptor is expressed in epithelial ovarian carcinoma and contributes to cell migration and proliferation[J]. Mol Cancer Res,2012,10(11):1419-1429.
    [67]Khurram SA, Whawell SA, Bingle L, et al. Functional expression of the chemokine receptor XCR1 on oral epithelial cells[J]. J Pathol,2010, 221(2):153-163.
    [68]Blaschke S, Middel P, Dorner BG, et al. Expression of activation-induced, T cell-derived, and chemokine-related cytokine/lymphotactin and its functional role in rheumatoid arthritis[J]. Arthritis Rheum,2003,48(7):1858-1872.
    [69]Wang CR, Liu MF, Huang YH, et al. Up-regulation of XCR1 expression in rheumatoid joints[J]. Rheumatology (Oxford),2004,43(5):569-573.
    [70]Huang H, Li F, Gordon JR, et al. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression[J]. Cancer Res,2002, 62(7):2043-2051.
    [1]Christians ES, Yan LJ, Benjamin IJ.Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury[J]. Crit Care Med, 2002,30(1 Suppl):S43-50.
    [2]Jedlicka P, Mortin MA, Wu C. Multiple functions of Drosophila heat shock trans-cription factor in vivo[J]. EMBO J,1997,16(9):2452-2462.
    [3]Xiao X, Zuo X, Davis AA, et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice[J]. EMBO J,1999,18(21):5943-5952.
    [4]Christians E, Davis AA, Thomas SD, et al. Embryonic development:Maternal effect of Hsfl on reproductive success[J]. Nature,2000,407(6805):693-694.
    [5]Calderwood SK, Khaleque MA, Sawyer DB, et al. Heat shock proteins in cancer: chaperones of tumorigenesis[J]. Trends Biochem Sci,2006,31(3):164-172.
    [6]Aghdassi A, Phillips P, Dudeja V,et al. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma[J]. Cancer Res,2007,67(2):616-625.
    [7]Vanhooren V, Liu XE, Desmyter L,et,al. Over-expression of heat shock protein 70 in mice is associated with growth retardation, tumor formation and early death[J]. Rejuvenation Res,2008,11(6):1013-1020.
    [8]Hoang AT, Huang J, Rudra-Ganguly N, et al.A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma[J]. Am J Pathol,2000,156(3):857-864.
    [9]Tang D, Khaleque MA, Jones EL, et al.Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo[J].Cell Stress Chaperones,2005,10(1):46-58.
    [10]Cen H, Zheng S,'Fang YM, et al. Induction of HSF1 expression is associated with sporadic colorectal cancer[J]. World J Gastroenterol, 2004,10(21):3122-3126.
    [11]Wang J, He H, Yu L, et al. HSF1 down-regulates XAF1 through transcriptional regulation[J]. J Biol Chem,2006,281(5):2451-2459.
    [12]Khaleque MA, Bharti A, Gong J, et al. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1[J]. Oncogene, 2008,27(13):1886-1893.
    [13]Santagata S, Hu R, Lin NU, et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A,2011,108(45):18378-18383.
    [14]Fang F, Chang R, Yang L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo.Cancer,2012,118(7):1782-1794.
    [15]Ishiwata J, Kasamatsu A, Sakuma K, et al. State of heat shock factor 1 expression as a putative diagnostic marker for oral squamous cell carcinoma.Int J Oncol, 2012,40(1):47-52.
    [16]Scott KL, Nogueira C, Heffernan TP, et al. Proinvasion metastasis drivers in early-stage melanoma are oncogenes.Cancer Cell,2011,20(1):92-103.
    [17]Meng L, Gabai VL, Sherman MY. Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene,2010,29(37):5204-5213.
    [18]Gabai VL, Meng L, Kim G, et al. Heat shock transcription factor Hsfl is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol,2012,32(5):929-940.
    [19]Dai C, Whitesell L, Rogers AB, et al. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis[J].Cell,2007,130(6):1005-1018.
    [20]Solimini NL, Luo J, El ledge SJ. Non-oncogene addiction and the stress Phenotype of cancer cells[J]. Cell,2007,130(6):986-988.
    [21]Wang Y, Theriault JR, He H, et al. Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells[J].J Biol Chem, 2004,279(31):32651-32659.
    [22]Neckers L.Using natural product inhibitors to validate Hsp90 as a molecular target in cancer[J]. Curr Top Med Chem,2006,6(11):1163-1171.
    [23]Neckers L. Heat shock protein 90:the cancer chaperone[J]. J Biosci, 2007,32(3):517-530.
    [24]Banerji U. Heat shock protein 90 as a drug target:some like it hot[J]. Clin Cancer Res,2009,15(1):9-14.
    [25]Kamal A, Kamal A, Thao L, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors[J]. Nature,2003,425:407-410.
    [26]Trepel J, Mollapour M, Giaccone G, et al. Targeting the dynamic HSP90 complex in cancer[J]. Nat Rev Cancer,2010,10:537-549.
    [27]Modi S, Stopeck AT, Gordon MS, et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer:A phase I dose-escalation study[J]. J Clin Oncol,2007;25:5410-5417.
    [28]Sato A, Asano T, Ito K, et al.17-Allylamino-17-demethoxygeldanamycin and ritonavir inhibit renal cancer growth by inhibiting the expression of heat shock factor-1[J]. Int J Oncol,2012,41(1):46-52.
    [29]Modi S, Stopeck A, Linden H, et al. HSP90 inhibition is effective in breast cancer:A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab[J]. Clin Cancer Res,2011,17:5132-5139.
    [30]Singh IS, He JR, Calderwood S, et al. A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor[J]. J Biol CHem,2002,277(7):4981-4988.
    [31]Xie Y, Chen C, Stevenson MA, et al. Heat shock factor 1 represses transcription of the IL-lbeta gene through physical interaction with the nuclear factor of interleukin 6[J]. J Biol Chem,2002,277(14):11802-11810.
    [32]Bouchier-Hayes L, McBride S, van Geelen CM, et al. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1[J]. Cell Death Differ,2010,17(6):1034-1046.
    [33]Glover DM, Hagan IM, Tavares AA. Polo-like kinases:a team that plays throughout mitosis[J]. Genes Dev,1998,12,3777-3787.
    [34]Lee YJ, Kim EH, Lee JS, et al. HSF1 as a mitotic regulator:phosphorylation of HSF1 by Plkl is essential for mitotic progression[J]. Cancer Res, 2008,8(18):7550-7560.
    [35]Kim SA, Kwon SM, Yoon JH, et al. The antitumor effect of PLK1 and HSF1 double knockdown on human oral carcinoma cells[J]. J Oncol,2010, 36(4):867-872.
    [36]Min JN, Huang L, Zimonjic DB, et al. Selective suppression of lymphomas by functional loss of Hsfl in a p53-deficient mouse model for spontaneous tumors[J]. Oncogene,2007,26(35):5086-5097.
    [37]Lee YJ, Lee HJ, Lee JS, et al. A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20[J]. Oncogene,2008,27(21):2999-3009.
    [38]Reddy SK, Rape M, Margansky WA, et al. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation[J]. Nature,2007,446(7138):921-925.
    [39]Kim EH, Lee YJ, Bae S, et al. Heat shock factor 1-mediated aneuploidy requires a defective function of p53[J].Cancer Res,2009,69(24):9404-9412.
    [40]Li Q, Feldman RA, Radhakrishnan VM, et al. Hsfl is required for the nuclear translocation of p53 tumor suppressor[J]. Neoplasia,2008,10(10):1138-1145.
    [41]Mendillo ML, Santagata S, Koeva M, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers[J]. Cell,2012,150(3):549-562.
    [42]Zhao YH, Zhou M, Liu H, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth[J]. Oncogene,2009,28(42):3689-3701.
    [43]Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy[J]. Expert Opin Ther Targets,2009,13:469-478.
    [44]Xia Y, Liu Y, Rocchi P, et al. Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer[J]. Cancer Lett,2012,318(2):145-153.
    [1]Yoshida T, Imai T, Kakizaki M, et al. Identification of single C motif-1/lymphotactin receptor XCR1[J]. J Biol Chem,1998, 273(26):16551-16554.
    [2]Yoshida T, Izawa D, Nakayama T, et al. Molecular cloning of mXCRI, the murine SCM-1/lymphotactin receptor[J]. FEBS Lett,1999,458(l):37-40.
    [3]Dorner BG, Dorner MB, Zhou X, et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ Tcells[J]. Immunity,2009,31(5):823-833.
    [4]Cairns CM, Gordon JR, Li F, et al. Lymphotactin expression by engineered myeloma cells drives tumor regression:mediation by CD4+ and CD8+ T cells and neutrophils expressing XCR1 receptor[J]. J Immunol,2001,167(1):57-65.
    [5]Huang H, Li F, Cairns CM, et al. Neutrophils and B cells express XCR1 receptor and chemotactically respond to lymphotactin[J]. Biochem Biophys Res Commun.2001,281(2):378-382.
    [6]Dorner BG, Scheffold A, Rolph MS, et al. MIP-lalpha, MIP-lbeta,RANTES and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines[J]. Proc Natl Acad Sci USA,2002,99:6181-6186.
    [7]Bachem A, Guttler S, Hartung E, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells[J]. J Exp Med,2010,207(6):1273-1281.
    [8]Contreras V, Urien C, Guiton R, et al. Existence of CD8α-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species[J]. J Immunol,2010,185(6):3313-3325.
    [9]Crozat K, Guiton R, Contreras V, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+dendritic cells[J]. J Exp Med,2010,207(6):1283-1292.
    [10]Khurram SA, Whawell SA, Bingle L, et al. Functional expression of the chemokine receptor XCR1 on oral epithelial cells[J]. J Pathol,2010, 221(2):153-163.
    [11]Yoshida T, Imai T, Takagi S, et al. Structure and expression of two highly related genes encoding SCM-1/human lymphotactin[J]. FEBS Lett,1996,395(1):82-88.
    [12]Kennedy J, Kelner GS, Kleyensteuber S, et al. Molecular cloning and functional characterization of human lymphotactin[J]. J Immunol,1995,155(1):203-209.
    [13]Miiller S, Dorner B, Korthauier U, et al. Cloning of ATAC, an activation-induced, chemokine-related molecule exclusively expressed in CD8+T lymphocytes[J]. Eur J Immunol,1995,25(6):1744-1748.
    [14]Yamazaki C, Miyamoto R, Hoshino K, et al. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice[J]. Biochem Biophys Res Commun,2010,397(4):756-761.
    [15]Boismenu R, Feng L, Xia YY, et al. Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia[J]. J Immunol,1996,157(3):985-992.
    [16]Dorner BG, Smith HR, French AR, et al. Coordinate expression of cytokines and chemokines by NK cells during murine cytomegalovirus infection[J]. J Immunol. 2004,172(5):3119-3131.
    [17]Lei Y, Ripen AM, Ishimaru N, et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development[J]. J Exp Med,2011,208(2):383-394.
    [18]Carter RW, Thompson C, Reid DM, et al. Preferential induction of CD4+T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1[J]. J Immunol,2006,177(4):2276-2284.
    [19]Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo[J]. Science,2007,315(5808):107-111.
    [20]Crozat K, Guiton R, Contreras V, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells[J]. J Exp Med,2010,207(6):1283-1292.
    [21]Baecher-Allan C, Viglietta V, Hafler DA. Human CD4+ CD25+ regulatory T cells. Semin Immunol,2004,16(2):89-98.
    [22]Nguyen KD, Fohner A, Booker JD, et al. XCL1 enhances regulatory activities of CD4+CD25(high)CD127(low/-)T cells in human allergic asthma[J]. J Immunol,2008, 181(8):5386-5395.
    [23]Blaschke S, Middel P, Dorner BG, et al. Expression of activation-induced, T cell-derived, and chemokine-related cytokine/lymphotactin and its functional role in rheumatoid arthritis[J]. Arthritis Rheum,2003,48(7):1858-1872.
    [24]Wang CR, Liu MF, Huang YH, et al. Up-regulation of XCR1 expression in rheumatoid joints[J]. Rheumatology (Oxford),2004,43(5):569-573.
    [25]Kim M, Rooper L, Xie J, et al. The lymphotactin receptor is expressed in epithelial ovarian carcinoma and contributes to cell migration and proliferation[J]. Mol Cancer Res,2012,10(11):1419-1429.
    [26]Khurram SA, Whawell SA, Bingle L, et al. Functional expression of the chemokine receptor XCR1 on oral epithelial cells[J]. J Pathol,2010, 221(2):153-63.
    [27]Lei Y, Takahama Y. XCL1 and XCR1 in the immune system[J]. Microbes Infect, 2012,14(3):262-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700