用户名: 密码: 验证码:
下肢运动模式识别及动力型假肢膝关节控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能假肢膝关节为大腿截肢者恢复正常下肢功能与重返社会活动提供有力保障。目前进入市场假肢膝关节能够实现行走功能,长时间穿戴假肢因为步态不对称会对残端肌肉与骨骼造成影响。动力型假肢膝关节能够利用动力元件提供支撑期推力与摆动期的伸展运动,因此控制信号的获取以及运动角度的高度拟人特性是动力型假肢膝关节控制精度的重要保证。本课题研究的动力型假肢膝关节将建立截肢者残肢运动信息采集系统,实现下肢典型周期性运动模式的识别,基于有限状态机对动力型假肢膝关节控制方法进行研究,本文主要研究内容如下:
     1.利用VICON三维步态运动信息采集系统,对五种典型周期性运动的运动学信息进行采集,得到下肢各标志点位置以及下肢髋关节、膝关节与踝关节在五种运动中的角度变化范围。利用AMTI与Novel Pedar-X测力系统得到五种运动中的地面反力信息,划分步态周期并定义步态典型运动。采集穿戴被动式假肢的残疾人下肢关节角度信息,通过对比五种路况健肢侧与残肢侧角度变化得出穿戴被动式假肢不仅使步态不对称而且增加了健肢侧的负担。
     2.根据人机工程学中人体分段原理,利用Solidworks软件建立人体下肢3D模型,将Vicon中测量的下肢各关节运动角度数据作为3D模型的输入数据,得到各关节角度、速度与加速度信息进行人体下肢运动学分析。将人体下肢简化为3刚体模型,以牛顿第二定律与牛顿-欧拉平衡方程为基础建立动力学计算公式,得到五种运动模式中力矩与功率信息,对人体下肢动力学进行分析。
     3.为动力型膝上假肢设计了传感器系统,包含运动信息的采集与脚底压力信息的采集,采集五种典型周期性运动的髋关节运动信息,利用KNN算法实现步态识别。在脚前掌与脚后跟安装压力传感器实现一个完整步态不同时期的检测。此传感器系统能够很好的实现下肢运动模式识别。
     4.动力型假肢膝关节要求不仅能够为穿戴者行走提供所需的动力,而且要达到与健肢侧的协调运动。所研究的五种人体下肢运动步态具有很强的重复性和周期性,本课题采用基于传感器驱动“有限状态机”(FSM)方法对动力型假肢膝关节控制方法进行研究。该方法对典型的步态进行详细规划,输入事件由系统的传感器信息提供,假肢控制器根据控制模式数据库制定的规则进行动作输出。
High-performance knee prosthesis provides a powerful guarantee for transfemoral amputee.It can help them restoring their normal function and sending them back to society. In recentdecades, transfemoral prostheses have changed from purely mechanical systems tomicroprocessor control systems. The commercial transfemoral prostheses remain limited toenergetically passive devices. The prostheses can achieve the function of level ground walking,but in the case of asymmetric gait affect stump muscle and skeleton. Active knee prosthesis canprovide assistance in stance phase and complete extension in swing phase using motor power.The control signal acquisition and joint angle anthropomorphic character is the importantguarantee in control accuracy of active knee prosthesis. Motion information acquisition systemof affected-side is established. The system is used to recognized motion pattern of typicalcyclical movement. The control method of active knee prosthesis is studied based on Finite StateMachine (FSM). The main content of the dissertation could be presented as follows:
     1. VICON MX system is used to capture five typical cyclical movements. The location ofeach mark point is obtained. The range of hip joint, knee joint and ankle joint angle is collected.3D force plates AMTI and Novel Pedar-X is used to measure ground reaction force of five gaits.The gait cycle is divided into different phases based on force data. The lower limb joint angle ofamputee who wears passive knee prosthesis is gathered. The angle of sound-side and affect-sideis compared. The result is that wearing passive knee prosthesis is not only cause asymmetricalgait, but also put extra pressure on sound side.
     2. The3D model of human is built using Solidworks, which based on theory of humansegmented in ergonomics. Kinematics of lower limb is analyzed by COSMOSMotion. The jointangle data is used in3D model as input signal. Angular velocity and angular acceleration iscalculated. The lower limb is divided into three parts and each part is rigid model. Dynamicequation is established based on Newton’s second law and Newton-Euler equation. Based on thisDynamic equation joint moment and power is computed. Kinetics of lower limb is analyzed.
     3. The sensor system of active knee prosthesis is designed. Motion information and footpressure is collected. The sensor system is composed of accelerometer and gyroscopes, whichused to obtain motion information of transfemoral amputee. The characteristic value is extractedby wavelet package. K-Nearest Neighbor (KNN) algorithm is used in motion pattern of typicalcyclical movement. Pressure sensor is placed in heel and toe, which used to detect the phases ofeach gait. The sensor can recognized motion pattern and phases quickly and precisely.
     4. The Active Knee Prosthesis not only provides power for amputee, but also coordinatesthe movements of sound-side. The five typical motions are repeatability and periodicity. Finite State Machine (FSM) is used in the control methods of Active Knee Prosthesis. The five typicalmotions are detailed planning, which contain input events and states. The input events are comefrom sensor information. The state is come from control mode database.
引文
[1]第二次全国残疾人抽样调查领导小组,中华人民共和国国家统计局.2006年第二次全国残疾人抽样调查主要数据公报.中国康复理论与实践,2006,12(12):1013.
    [2]靳尔刚.康复器具行业发展走向[R].中国康复器具协会,北京:2007.
    [3] Frank Charles Sup IV. A POWERED SELF-CONTAINED KNEE AND ANKLE PROSTHESIS FORNEAR NORMAL GAIT IN TRANSFEMORAL AMPUTEES:[Dissertation]. Nashville, Tennessee:Graduate School of Vanderbilt University,2009.
    [4] Varol Huseyin Atakan, Goldfarb Michael. Decomposition-based control for a powered knee and ankletransfemoral prosthesis. IEEE10th International Conference on Rehabilitation Robotics,2007:783-789.
    [5] F. Sup, A. Bohara, and M. Goldfarb, Design and control of a powered transfemoral prosthesis, InternationalJournal of Robotics Research,2008,27(2):263-273.
    [6] R. Unal, R. Carloni, E.E.G. et al. Koopman Conceptual Design of an Energy Efficient TransfemoralProsthesis”, The2010IEEE/RSJ International Conference on Intelligent Robots and Systems,2010:343-348.
    [7] Lawson, Brian Edward; Varol, Huseyin Atakan; Goldfarb, Michael.Standing stability enhancement with anintelligent powered transfemoral prosthesis.IEEE Transactions on Biomedical Engineering,2011,58(9):2617-2624.
    [8] Nederhand, Marc J., Van Asseldonk, Edwin H.F. et. cl. Dynamic Balance Control (DBC) in lower legamputee subjects; Contribution of the regulatory activity of the prosthesis side.Clinical Biomechanics,2012,27(1):40-45.
    [9] Vallery, Heike, Burgkart, Rainer et. cl. Complementary limb motion estimation for the control of activeknee prostheses,2011,56(1):45-51.
    [10]金德闻,王人成,白彩勤,等.电流变液智能下肢假肢摆动相控制原理与方法.清华大学学报(自然科学版),1998,38(2):40-43.
    [11] Grimes, D. L., Flowers, W. C., and Donath, M., Feasibility of an active control scheme for above kneeprostheses. ASME Journal of Biomechanical Engineering,1977,99(4):215-221.
    [12] Vallery Heike, Burgkart Rainer, et al. Complementary limb motion estimation for the control of activeknee prostheses. Biomedizinische Technik,2011,56(1):45-51.
    [13] Fite, K.B., Mitchell, J., et al. A Unified Force Controller for a Proportional-Injector Direct-InjectionMonopropellant-Powered Actuator. ASME Journal of Dynamic Systems, Measurement and Control,2006,128(1):159-164.
    [14] M. Traballesi, P. Porcacchia, T. Averna, and S. Brunelli, Energy cost of walking measurements in96subjects with lower limb amputations: A comparison study between floor and treadmill test, Gait&Posture.2008,27(1):70-75.
    [15] Goldfarb, M., Barth, E.J., et al. Design and Energetic Characterization of a Liquid-Propellant-PoweredActuator for Self-Powered Robots. IEEE/ASME Transactions on Mechatronics,2003,8(2):254-262
    [16] Prilutsky, B.I., Petrova, L.N., and Raitsin, L.M. Comparison of mechanical energy expenditure of jointmoments and muscle forces during human locomotion. Journal of Biomechanics,1996,29(4):405-415.
    [17] Riener, R., Rabuffetti, M., and Frigo, C. Joint powers in stair climbing at different slopes. Proceedings ofthe IEEE International Conference on Engineering in Medicine and Biology,1999,1:530.
    [18] Farris Dominic James, Sawicki Gregory S. The mechanics and energetics of human walking and running:A joint level perspective. Journal of the Royal Society Interface,2012,9(66):110-118.
    [19] Gazzoli M., Sardini E., et al. Human knee prosthesis equipped with force sensors. Proceedings of theInternational Conference on Biomedical Electronics and Devices,2011:349-352
    [20] Migliore Shane A., Ting Lena H., DeWeerth Stephen P. Passive joint stiffness in the hip and kneeincreases the energy efficiency of leg swinging. Autonomous Robots,2010,29(1):119-135.
    [21] Van Den Bogert Antonie J., Samorezov Sergey, et al. Modeling and optimal control of an energy-storingprosthetic knee. Journal of Biomechanical Engineering,2012,134(5):145-151.
    [22] R. Waters J., Perry D, Antonelli, et al. Energy cost of walking amputees: the influence of level ofamputation. Bone and Joint Surgery,1976,58A:42-46.
    [23] Lelas,J.;Merriman,G.;Riley,P.,et al.,Predicting peak kinematic and kinetic parameters from gaitspeed.Gait&posture2003,17(2),106-112.
    [24]Riley P., CroceU., Casey Kerrigan D.. Propulsive adaptation to changing gait speed. Journal ofBiomechanics.2001,34(2):197-202.
    [25] Hemmerich A., Brown H., et al. Hip, knee and ankle kinematics of high range of motion activities of dailyliving. Journal of Orthopaedic Research,2006,24(4):770-781.
    [26]张瑞红,金德闻.不同路况下正常步态特征研究.清华大学学报(自然科学版).2000:40(8),77-80.
    [27]郝智秀,周吉彬,金德闻,等.不同足地界面对人体三维步态的影响.清华大学学报(:自然科学版),2006,46(8):1388-1392.
    [28]胡雪艳,恽晓平.正常成人步态特征研究.中国康复理论与实践,2006,10(12):855-857.
    [29]王人成.假肢技术的研究热点及发展趋势.中国康复医学杂志,2005,20(7):483-485.
    [30]谭冠政,吴立明.国内外人工腿(假肢)研究的进展及发展趋势.机器人,2001,23(1):91-96.
    [31] B.Aeyels,L.Peeraer,J,etc. Development of an above-knee prosthesis equipped with amicrocomputer-controlled knee joint. Biomed.Eng(S1016-2356),1992,14:199-202.
    [32] Wu, Sai-Kit, Waycaster, Garrett, Shen, Xiangrong. Electromyography-based control of active above-kneeprostheses. Control Engineering Practice,2011,19(8):875-882.
    [33]王人成,沈强,金德闻.假肢智能膝关节研究进展.中国康复医学杂志.2007,22(12):1093-1094.
    [34] Tsai, P.J. Ju, M.S. Tsuei, Y.G. Development of electrohydraulic controlled above-knee prostheses. JSMEInternational Journal Dynamics, Control, Robotics, Design and Menufacturing,1993,36(3):347-352.
    [35] Popovic, D.B. Kalanovic, V.D. Output space tracking control for above-knee prosthesis. Transactions onBiomedical Engineering,1993,40(6):549-557.
    [36] Xie, Hualong. Zhu, ZongXiao, et al. The simulation research of above knee intelligent prosthesis based oncomputed torque.2012,457-458:65-68
    [37] Vargas, Javier A. Zurek, Eduardo E. et al. Methodology to develop an intelligent transfemoral prosthesis.International Instrumentation and Measurement Technology Conference, Proceedings,2012:1045-1049
    [38] Furse, Alex. Cleghorn, William; Andrysek, Jan. Development of a low-technology prosthetic swing-phasemechanism.2011,31(2):145-150.
    [39] Hsieh M.C., Fang Y.K., et al. A contact-type piezoresistive micro-shear stress sensor for above-kneeprosthesis application. Journal of Microelectromechanical Systems,2011,10(1):121-127.
    [40]喻洪流,关慎远.膝上假肢的智能控制方法.中国康复医学杂志,2008,23(2):145-147.
    [41]傅莉,谢华龙,徐心和.面向高级智能假肢的磁流变阻尼器建模方法研究.机床与液压,2009,37(10):14-16,62.
    [42] Lamming Mik, Brown Peter; et al. Design of human memory prosthesis. Computer Journal,1994,37(3):153-163.
    [43] Zlatnik Daniel, Steiner Beatrice, Schweitzer Gerhard. Finite-state control of a trans-femoral (TF)prosthesis. IEEE Transactions on Control Systems Technology,2002,10(3):408-420
    [44] Suzuki Soichiro. Analytical study on control of above-knee prosthesis in swing phase. Nippon KikaiGakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers,2004,70(7):2110-2117.
    [45] Jin Dewen, Wang Rencheng, et al. Swing phase control of intelligent lower limb prosthesis usingelectrorheological fluid. inghua Daxue Xuebao/Journal of Tsinghua University,1998,38(2):40-43
    [46] Vallery Heike, Burgkart Rainer, Hartmann Cornelia. Complementary limb motion estimation for thecontrol of active knee prostheses. Biomedizinische Technik,2011,56(1):45-51.
    [47] Hoover Carl D, Fulk George D., Fite, Kevin B.. The Design and Initial Experimental Validation of anActive Myoelectric Transfemoral Prosthesis. Journal of Medical Devices,2012,6(1)
    [48] Kahle Jason T, Highsmith M. Jason, Hubbard Sandra L. Comparison of nonmicroprocessor kneemechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stairdescent, and knee preference. Journal of Rehabilitation Research and Development,2008,45(1):1-14.
    [49] Meier Margrit R, Hansen Andrew H, et al. Obstacle course: Users' maneuverability and movementefficiency when using Otto Bock C-Leg, Otto Bock3R60, and CaTech SNS prosthetic knee joints. Journalof Rehabilitation Research and Development,2012,49(4):583-596
    [50] Orendurff Michael S, Segal Ava D, et al. Gait efficiency using the C-Leg. Journal of RehabilitationResearch and Development,2006,43(2):239-246.
    [51] Segal Ava D, Orendurff Michael S, et al. Kinematic and kinetic comparisons of transfemoral amputee gaitusing C-Leg and Mauch SNS prosthetic knees. Journal of Rehabilitation Research and Development,2006,857-870.
    [52] Martinez-Villalpando Ernesto C, Mooney Luke, et al. Antagonistic active knee prosthesis. A metaboliccost of walking comparison with a variable-damping prosthetic knee. Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine and Biology Society,2011:8519-8522.
    [53] Vallery Heike, Burgkart Rainer, et al. Complementary limb motion estimation for the control of activeknee prostheses. Biomedizinische Technik,2011,56(1):45-51.
    [54]王斌锐,徐心和.智能仿生腿的研究.控制与决策,2004,19(2):126-133.
    [55] Nosaka Toshiya, Yamakoshi Ken-Ichi, et al. Development of a new prosthetic knee joint for trans-femoralamputees and its evaluation by biomechanical gait analysis. Nippon Kikai Gakkai Ronbunshu, CHen/Transactions of the Japan Society of Mechanical Engineers, Part C,2002,68(10):3053-3060.
    [56] Wang Bin-Rui, Jin Ying-Lian, Xu Xin-He. Virtual prototype and collaborative simulation of bionic kneejoint. Journal of System Simulation,2006,18(6):1554-1557.
    [57] Johansson, Jennifer L. MS; Sherrill, Delsey M. MS; et al. A Clinical Comparison of Variable-Dampingand Mechanically Passive Prosthetic Knee Devices. American Journal of Physical Medicine&Rehabilitation,2005,84(8):563-575.
    [58] Rafael R. Torrealba, G. Fernández-López, Juan C. Grieco, Towards the development of knee prostheses:review of current researches, Kybernetes,2008,37(9/10):1561–1576.
    [59] Peng Yang, Lingling Chen, et al. Surface Electromyography Signals Processing Based on Support VectorMachine during Gait. Dynamics of continuous discrete and impulsive systems-series B-Applications andalgorithms,2006,13:236-240.
    [60]郭欣,杨鹏.肌电信号控制下肢假肢的机理研究.中南工业大学学报,2003,2(34):31-33.
    [61]龚思远,杨鹏,陈玲玲,等.智能下肢假肢的研制.中国组织工程研究与临床康复,2010,14(13):2295-2298.
    [62]龚思远,杨鹏,陈玲玲,等.智能下肢假肢传感器应用研究.中国组织工程研究与临床康复.2010,14(17),3109-3112.
    [63] Lingling Chen, Xiaoyun Xu, Peng Yang, et al.Stride Recognition in the Control Concept of Trans-femoralProsthesis.Proceedings of the7th World Congress on Intelligent Control and Automation,2008,7626-7630.
    [64] Lingling Chen, Peng Yang, et al.Above-knee Prosthesis Control Based on Posture Recognition bySupport Vector Machine.2008IEEE International Conference on Robotics, Automation and Mechatronics,Chengdu,2008,307-312.
    [65]闫炳雷,谭冠军.智能仿生人工腿CIP-ILeg性能仿真评估研究.计算机仿真,2006,23(9):231-235,310.
    [66] Tan Guanzheng, Li Anping. Optimal PID controller based on genetic algorithm and fuzzy nference and itsapplication to intelligent artificial leg. Journal of Central South University of Technology,2003,10(3):237-243
    [67] Tan Guanzheng, Xiao Hongfeng, Wang Yuechao. Optimal fuzzy PID controller with incompletederivation and its simulation research on application of intelligent artificial legs. Journal of Control Theoryand Applications.2002,19(3):462-466.
    [68]谭冠政,何胜军. CIP-I智能仿生人工腿步速测量系统研究与设计.计算机测量与控制,2005,13(11):1164-1166,1185.
    [69]喻洪流,钱省三,沈凌.基于小脑模型神经网络控制的步速跟随智能膝上假肢.中国组织工程研究与临床康复,2007.11(33):2262—2265.
    [70] YU Hong-Liu, QIAN Xing-San, LI Shou-Wei, et al., Random Re-connection Leaning Algorithm ofCMAC Model in Prosthetic Knee Control. International Conference on Wireless Communications,Networking and Mobile Computing,2007:6466-6469.
    [71]喻洪流,钱省三,沈凌.微电脑控制假肢膝关节研究.中华物理医学与康复杂志,2007,19(9):624—644.
    [72]丛德宏,徐心和.磁流变液智能假腿的摆动相控制.系统仿真学报,2006,18(2):916-918,922.
    [73]王斌锐,金英连,徐心和.仿生膝关节虚拟样机与协同仿真方法研究.2006,18(6):1554-1557.
    [74]佘青山,高云园,孟明.下肢EMG的小波支持向量机多类识别方法.华中科技大学学报,2010,38(10):75-79.
    [75]李爽,罗志增,孟明.基于加速度传感器的下肢运动信息获取方法.机电工程,2009,26(1):5-7,16.
    [76] Czerniecki J.M., Gitter A., Munro, C.. Joint moment and muscle power output characteristics of belowknee amputees during running: The influence of energy storing prosthetic feet. Journal of Biomechanics,1991,24(1):63-75
    [77] Kaminaga Hiroshi, Amari Tomoya, et al. Development of knee power assist using backdrivableelectro-hydrostatic actuator. International Conference on Intelligent Robots and Systems,2010:5517-5524.
    [78] Waycaster, Garrett, Wu Sai-Kit, Shen Xiangrong. A pneumatic artificial muscle actuated above-kneeprosthesis. Dynamic Systems and Control Conference,2010:793-800.
    [79] Flowers W.C., Mann R.W.. Electrohydraulic knee-torque controller for a prosthesis simulator. ASMEJournal of Biomechanical Engineering,1977,99(4):3-8.
    [80] Donath, M.. Proportional EMG Control for Above-Knee Prosthesis:[Dissertation]. MassachusettsBoston:MIT,1974.
    [81] Braun David J, Goldfarb Michael. A control approach for actuated dynamic walking in biped robots. IEEETransactions on Robotics.2009,25(6):1292-1303.
    [82] Lawson Brian E, Goldfarb Michael. Ground adaptive standing controller for a powered transfemoralprosthesis. IEEE International Conference on Rehabilitation Robotics,2011:511-514.
    [83] Frank Charles Sup IV. DESIGN AND CONTROL OF A POWERED TRANSFEMORAL PROSTHESIS:
    [Dissertation]. Nashville, Tennessee: Graduate School of Vanderbilt University,2009.
    [84] Lawson Brian E., Varol H. Atakan, Sup Frank, et al. Stumble detection and classification for an intelligenttransfemoral prosthesis. Annual International Conference of the IEEE Engineering in Medicine andBiology Society,2010:511-514.
    [85] Akin O. Kapti, M. Sait Yucenur. Design and control of an active artificial knee. Mechanism and MachineTheory,2006,41:1477–1485.
    [86] Varol Huseyin Atakan, Sup Frank, Goldfarb Michael. Powered sit-to-stand and assistive stand-to-sitframework for a powered transfemoral prosthesis. IEEE International Conference on RehabilitationRobotics,2009:645-651.
    [87] Frank Sup, Amit Bohara, Michael Goldfarb. Design and Control of a Powered Knee and AnkleProsthesis.IEEE International Conference on Robotics and Automation,2007:4134-1139.
    [88] Ernesto C. Martinez-Villalpando SM, Hugh Herr. Agonist-antagonist active knee prosthesis: Apreliminary study in level-ground walking. Journal of Rehabilitation Research&Development,2009,46(3):361–374.
    [89] Ernesto C. Martinez-Villalpando, Jeff Weber, et al. Design of an Agonist-Antagonist Active KneeProsthesis. Proceedings of the2nd Biennial IEEE/RAS-EMBS International Conference on BiomedicalRobotics and Biomechatronics.2008:529-534
    [90] Titley Chris. We have the technology. Engineering and Technology,2009,4(15):22-25.
    [91]王人成,金德闻.仿生智能假肢的研究与进展.中国医疗器械信息,2009,1:3-5.
    [92] Sakagami Yoshiaki, Watanabe Ryujin, et al. The intelligent ASIMO: System overview and integration.IEEE International Conference on Intelligent Robots and Systems,2002,3:2478-2483.
    [93] Chestnutt Joel, Michel Philipp, et al. Locomotion among dynamic obstacles for the Honda ASIMO. IEEEInternational Conference on Intelligent Robots and Systems,2007:2572-2573.
    [94]王启宁,麦金耿,等.一种主被动结合的弹性机械腿.2007,发明专利:20071012157.8.
    [95] Qining Wang, Long Wang. FPGA-based gait control system for passive bipedal robot.7th IEEE-RASInternational Conference on Humanoid Robots,2007:341–345.
    [96]于兑生,恽晓平著,运动疗法与作业疗法,北京:华夏出版社,2002
    [97]石敏,林碧英.基于运动学方法研究人体运动的计算机实现.现代电力,2002,19(5):82-87
    [98]金德闻,张培玉,王人成.膝上假肢使用者步态对称性分析.中国康复医学杂志,1997,12(3):112-115.
    [99] Anastasia Protopapadaki, Wendy I. Drechsler, et al. Hip, knee, ankle kinematics and kinetics during stairascent and descent in healthy young individuals. Clinical Biomechanics,2007,22,203-210.
    [100] SAMANTHA M. REID, SCOTT K. LYNN, et al. Knee Biomechanics of Alternate Stair AmbulationPatterns. Official Journal of the American College of Sports Medicine,2006:2005-2010.
    [101] Andrea N. Lay, Chris J. Hass, Robert J. Gregor.The effects of sloped surfaces on locomotion: Akinematic and kinetic analysis. Journal of Biomechanics,2006,39:1621–1628
    [102] JIN TEA HAN, YONG HYUN KWON, et al. Three-Dimensional Kinematic Analysis during UpslopeWalking with Different Inclination by Healthy Adults. J. Phys. Ter, Sci.,2009,21:385-391.
    [103] Alex Stacoff, Christian Diezi, et al. Ground reaction forces on stairs:effects of stair inclination and age.Gait and Posture,21,2005:24–38.
    [104] Robert Riener, Marco Rabuffetti, Carlo Frigo. Stair ascent and descent at different inclinations. Gaitand Posture,15,2002:32–44.
    [105]唐钢.人体典型运动生物力学仿真分析:[博士论文].上海:上海交通大学,2011.
    [106]周天健.临床实用步态分析学.北京:北京出版社,1993
    [107]吴剑,李建设.人体行走时步态的生物力学研究进展.中国运动医学杂志,2002,21(3):305–307.
    [108] HANAVAN E P. A Mathematical Model of the Human Body. AMRL-TR-64-102, AD-604-486.Aerospace Medical Research Laboratories, Wright-Patterson Air Force, Ohio.1964.102.
    [109]范毅方,岑人经,袁支润.采用40个自由度十五刚体人体模型模拟运动动作.暨南大学学报(自然科学版).2002,21(1):32-36.
    [110]中国标准化与信息分类编码研究所.中华人民共和国国家标准,GB/T17245-1998成年人人体质心.北京:国家质量监督检验检疫总局,1998.
    [111]中国标准研究中心,清华大学,北京师范大学.中华人民共和国国家标准,GB/T17245-2004成年人人体惯性参数.北京:国家质量监督检验检疫总局,2004.
    [112]卢德明.运动生物力学测量方法.北京体育出版社,2002.
    [113]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADMAS应用教程.清华大学出版社,2005.
    [114]罗炯.足底压力分布测量技术的应用特点.中国组织工程研究与临床康复,2007,11(9).
    [115]张今瑜,王岚,张立勋.基于多传感器的实时步态检测研究.哈尔滨工程大学学报.2007,28(2).
    [116]蒋鹏.小波理论在信号去噪和数据压缩中的应用研究:[博士论文].杭州:浙江大学,2004.
    [117]王煜.基于决策树和K最近邻算法的文本分类研究:[博士论文].天津:天津大学,2006.
    [118]杨建坤.大腿假肢穿戴者在滑倒过程中的平衡策略研究及其应用:[博士学位论文].北京:清华大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700