用户名: 密码: 验证码:
低氧微环境对体外培养胶质瘤干细胞增殖的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     胶质瘤是中枢神经系统最常见的原发恶性肿瘤,因其具有高增殖和侵袭性行为,病情进展迅速,预后差。胶质瘤的治疗一般是以手术切除为主,再辅以放疗和化疗等综合治疗,虽然近年来各种治疗新技术不断出现,但胶质瘤患者的总体预后仍未得到明显改善。针对胶质瘤增殖和存活的分子机制方面的研究突破有助于针对胶质瘤进行更有效的靶向治疗。
     近年来的研究强调了恶性胶质瘤中肿瘤起始细胞的重要性,这部分细胞被称为胶质瘤干细胞(glioma stem cells, GSCs),具有与大脑神经干细胞相似的生物学特性。它们在胶质瘤细胞中仅占一小部分,但是能自我更新、增殖、多潜能分化并成为与母本形态和分子表型相同的胶质瘤细胞,在胶质瘤的发生发展、侵袭、复发等过程中起着十分重要的作用,是今后胶质瘤治疗的潜在靶向目标。
     低氧微环境是实体肿瘤的重要特征,对肿瘤的发生发展起着重要的作用。低氧使得肿瘤对放化疗的抵抗性增加,而且能增强肿瘤的侵袭性和不良预后。其中低氧诱导因子-1α(hypoxia-inducible factors-1α, HIF-1α)是启动这一系列生物学改变的一个重要因子,在细胞应对低氧微环境的生理及病理过程中起着关键作用。Notch信号通路参与细胞的生长、分化、增殖,特别是神经干细胞的维持等生物学进程,异常的Notch通路调节与肿瘤发生发展密切相关。有研究表明低氧能够通过激活Notch-1信号通路共同参与肿瘤的发生发展,因此我们有理由推测缺氧及HIF-1α可能通过Notch-1信号通路的激活对胶质瘤干细胞的增殖产生影响。
     目的
     (1)检测常氧及低氧环境下培养的胶质瘤细胞球中CD133+细胞比例、细胞活力及HIF-1α表达的变化,探讨低氧微环境对胶质瘤干细胞增殖的影响。
     (2)检测低氧环境下培养的胶质瘤细胞球和HIF-1α基因敲除细胞球中CD133+细胞比例、细胞活力变化,验证HIF-1α基因是否在低氧环境下培养的胶质瘤干细胞的增殖过程中发挥重要作用。同时通过检测Notch-1通路相关基因的转录和表达水平,来分析缺氧微环境,特别是HIF-1α是否通过激活Notch-1信号通路,从而与之协同表达进而影响胶质瘤干细胞的增殖。
     方法
     (1)常氧及低氧培养胶质瘤细胞球24h.48h后,流式细胞术检测CD133+细胞比例,CCK8法检测细胞活力,Real Time-qPCR检测HIF-1α mRNA水平,Western Blot检测HIF-1α蛋白表达水平。
     (2)利用siRNA建立HIF-1α敲除胶质瘤细胞球;低氧培养两种胶质瘤细胞球24h、48h后,流式细胞术检测CD133+细胞比例,CCK8法检测细胞活力。常氧下培养胶质瘤细胞球24h,低氧培养胶质瘤细胞球及HIF-1α敲除胶质瘤细胞球24h后,流式细胞仪检测细胞周期,Real Time-qPCR及Western Blot检测Notch-1通路相关基因的转录和表达水平。
     结果
     (1)相对于常氧环境,低氧环境培养胶质瘤细胞球24h、48h后,CD133+细胞比例、细胞活力和HIF-1α蛋白表达均明显上升;HIF-1α mRNA表达无明显改变。
     (2)相对于对照组,低氧环境培养HIF-1α敲除胶质瘤细胞球24h、48h后,CD133+细胞比例、细胞活力均明显下降。
     (3)流式细胞仪检测细胞周期显示,相对于常氧细胞组,缺氧组细胞球G1期细胞比例明显下降,S期及G2期细胞比例明显升高;相对缺氧组,HIF-1β基因敲除组细胞G1期细胞比例明显下降,G2期细胞比例明显升高。
     (4)缺氧培养胶质瘤细胞球Notch-1通路基因(Notch-1,jaggad-1,HES-1)mRNA及蛋白表达较常氧培养组明显升高,HIF-1α基因敲除组Notch-1通路基因mRNA及蛋白表达较未敲除组组明显降低。
     结论
     (1)低氧微环境可以促进胶质瘤干细胞增殖和自我更新,提高胶质瘤干细胞中HIF-lα蛋白的表达,而HIF-1α的mRNA表达水平没有明显改变;通过siRNA干扰HIF-1α基因,可以显著降低低氧微环境中胶质瘤干细胞的增殖和细胞活力。提示HIF-1α基因可能在该过程中发挥关键作用。
     (2)低氧微环境可以促使胶质瘤干细胞突破G1/S阻滞点,进入S期,从而促进其增殖;而HIF-1α基因敲除以后,可能造成胶质瘤干细胞G2/M期阻滞,从而抑制细胞增殖。
     (3)缺氧微环境及其核心调控因子HIF-1α可以通过激活Notch-1信号通路来促进胶质瘤干细胞的增殖,HIF-1α基因敲除以后,Notch-1通路受到抑制,从而抑制胶质瘤干细胞的增殖。
Background:
     Gliomas are the most common primary brain tumors and confer a grave prognosis. Standard therapies, such as chemotherapy, surgery, and radiation, have had limited success in treating patients with high-grade gliomas. Despite the continuous development of new clinical therapies, the prognosis and survival of glioma patients remain dismal. It is hoped that a greater understanding of the molecular pathways involved in glioma cell proliferation and survival will lead to more effective targeted therapies.
     Recent researches highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells have been referred to as glioma stem cells, as they share similarities to normal neural stem cells in the brain. There is increasing evidence that malignant gliomas arise from and contain these minority tumor cells with stem cell-like properties. This subpopulation of tumor cells with the potential for self-renewal and multi-lineage differentiation that recapitulates the phenotype of the original glioma, plays an important role in glioma initiation, growth, and recurrence. Glioma stem cells seem the potential target of glioma therapy in future.
     Hypoxic regions are common in malignant tumors such as glioma, and are thought to play an important role in several facets of tumor pathobiology. Hypoxia has been associated with resistance to radiation and chemotherapies in tomor, as well as tumor invasion and poor patient survival. One well-characterized mechanism of the cellular response to reduced oxygen availability involves the enhanced expression of the hypoxia-inducible factor-la (HIF-1α). The Notch pathway, a highly conserved signaling network, is critical for a series of processes, including cell fate specification, differentiation, proliferation, and survival, and especially maintenance of neural stem cells. Dysregulated Notch signaling has been implicated in tumorigenesis.
     Objectives:
     (1) By testing the CD133+phenotype, cell vitality and gene expression of HIF-1α of glioma spheres cultured under normoxic and hypoxia microenvironment, we explored the impact of hypoxia on the proliferation of GCSs.
     (2) By testing the CD133+phenotype, cell vitality of glioma spheres and HIF-1α knockdown glioma spheres under hypoxia microenvironment, we validated the role of HIF-la on the proliferation of GCS cultured under hypoxia microenvironment. Also, by testing the transcription and expression of Notchl signal pathway relative genes, we investigate whether hypoxia, especially HIF-1α modulate Notch signaling to impact the proliferation of GCSs.
     Methods:
     (1) Glioma spheres were cultured in normoxic and hypoxia microenvironment for24and48h. Then CD133+phenotype was measured with flow cytometry, cell vitality was measured with CCK8method, mRNA expression of HIF-1α was measured with Real Time-qPCR and protein expression of HIF-1α was measured with Western Blot.
     (2) We constructed HIF-1α knockdown glioma spheres by silence RNA, then the two glioma spheres were cultured in hypoxia microenvironment for24and48h. CD133+phenotype was measured with flow cytometry, cell vitality was measured with CCK8method. Glioma spheres were cultured in normoxic and hypoxia microenvironment for24h, HIF-1α knockdown glioma spheres were cultured in hypoxia microenvironment for24h. Then cell cycle was evaluated by flow cytometry. The mRNA and protein expression of Notchl signal pathway relative genes were measured with Real Time-qPCR and Western Blot, respectively.
     Results:
     (1) Compared to normoxic group, CD133+phenotype, cell vitality and mRNA expression of HIF-1α were significantly elevated in glioma spheres cultured under hypoxia microenvironment.
     (2) Compared to hypoxia group, CD133+phenotype and cell vitality were significantly reduced in HIF-1α knockdown glioma spheres.
     (3) Compared to normoxic group, the percentage of G1cell of hypoxia group was significantly reduced, and the percentage of S and G2cell were significantly elevated. Compared to hypoxia group, the percentage of G1cell of HIF-1α knockdown glioma spheres was significantly reduced, and the percentage of G2cell were significantly elevated.
     (4) Compared to normoxic group, the mRNA and protein expression of Notchl signal pathway relative genes (Notch-1, jaggad-1, HES-1) were significantly elevated in glioma spheres cultured under hypoxia microenvironment. Compared to hypoxia group, the mRNA and protein expression of Notchl signal pathway relative genes were significantly reduced.
     Conclusions:
     (1) Hypoxia could promote the proliferation and cell vitality of GCSs and the protein expression of HIF-1α. The silence of HIF-1α could reduce the proliferation and cell vitality of GCSs. It suggested that HIF-1α may play an important role in this process.
     (2) Hypoxia could induce GCSs enter S phase, and promote the proliferation of GCSs. The silence of HIF-1α induced GCSs cycling arrest at G2/M phases and reduced the proliferation of GCSs.
     (3) Hypoxia and HIF-1α modulate Notch signaling to promote the proliferation of GCSs. The silence of HIF-1α inhabit the Notch signaling, therefore, the proliferation of GCSs was inhabited either.
引文
[1]. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin.2009; 59(4):225-49
    [2]. Kanu 00, Mehta A, Di C, et al. Glioblastoma multiforme:a review of therapeutic targets. Expert Opin Ther Targets.2009;13(6):701-18.
    [3]. Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol.2010; 67(3):279-83.
    [4]. Stewart LA. Chemotherapy in adult high-grade glioma:A systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet.2002; 359(9311):1011-8.
    [5]. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N Engl J Med.2005; 352(10):987-96.
    [6]. Erpolat OP, Akmansu M, Goksel F, et al. Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide:A long-term analysis. Tumori.2009; 95(2):191-7
    [7]. Fukushima T, Takeshima H, Kataoka H. Anti-glioma therapy with temozolomide and status of the DNA-repair gene mgmt. Anticancer Res.2009; 29(11):4845-54
    [8]. McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer.2003;98(8):1745-8.
    [9]. Rock K, McArdle O, Forde P, et al. A clinical review of treatment outcomes in glioblastoma multiforme-the validation in a non-trial population of the results of a randomised Phase Ⅲ clinical trial:has a more radical approach improved survival? Br J Radiol.2012; 85(1017):e729-33.
    [10].Medisetti A, Jampana R, Warner N, et al. Treatment of glioblastoma multiforme-the Oxford Cancer Centre experience. Clin Oncol (R Coll Radiol). 2012;24(2):149-50.
    [11].Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol. 2003;13(1):52-61.
    [12].Pierce GB, Wallace C. Differentiation of malignant to benign cells. Cancer Res. 1971; 31(2):127-34.
    [13].Pierce GB, Speers WC. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res.1988; 48(8):1996-2004.
    [14].Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature.2008; 456(7222):593-8.
    [15].Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature.2001(6859); 414:105-11.
    [16].Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006; 6(6):425-36.
    [17].Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.1997; 3(7):730-7.
    [18].Al-Hajj M, Wieha MS, Benito-Hemandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA.2003;100(7):3983-8.
    [19].Diek JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA. 2003;100(7):3547-9.
    [20].Mumm JS, Schroeter EH, Saxena M'T, et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell.2000; 5(2):197-206.
    [21].Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005; 65(23):10946-51.
    [22].Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA.2003;100(25):15178-83.
    [23].Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003;63(18):5821-8.
    [24].Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene.2004;23(58):9392-400.
    [25].Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(9):7011-21.
    [26].Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA.2007;104(3):973-8.
    [27].Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors.Cancer Res.2003;63(18):5821-8.
    [28]. Singh SK, Hawkins C,Clarke ID, et al. Identification of human brain tumor initiating cells. Nature.2004; 432(7015):396-401.
    [29].Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma.Cancer Res.2004; 64(9):7011-21.
    [30].Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem like cells in the C6 glioma cell line. Proc Natl Acad Sci USA.2004;101(3):781-6.
    [31].姜晓兵,周凤,姚东晓等。人脑胶质瘤干细胞的培养及鉴定[J]。脑与神经疾病杂志。2005;13(1):6-8。
    [32].尹昌林,吕胜青,唐莉等。免疫磁珠法分选人脑胶质瘤干细胞及其培养和鉴定[J]。中国神经肿瘤杂志。2007;5(4):251-6。
    [33].Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature.2001(6859); 414:105-11.
    [34].Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer.2003; 3(12):895-902.
    [35].Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature.2006; 444(7120): 756-60.
    [36].Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006; 6(6):425-36.
    [37].Park DM, Li J, Okamoto H, et al. N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle 2007; 6(4):467-70.
    [38].Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol.2009; 220(3):562-8.
    [39].Ligon KL, Alberta JA, Kho AT, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol.2004; 63(5):499-509.
    [40].Hopfl G, Ogunshola O, Gassmann M. HIFs and tumors-causes and consequences. Am J Physiol Regul Integr ComP Physiol.2004; 286(4):R608-23.
    [41].Ezashi T, Das P, Roberts RM. Low 02 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA.2005; 102(13):4783-8.
    [42].Studer L, Csete M, Lee SH, et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000;20(19):7377-83.
    [43].Morrison SJ, Csete M, Groves AK, et al. Culture in reduced levels of oxygen promotes clonogenic sympathoa-drenal differentiation by isolated neural crest stem cells. J Neurosci.2000; 20:7370-6.
    [44].Semenza GL; Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2010; 29:625-34.
    [45].Gu YZ, Moran SM, Hogenesch JB,et al. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit. HIF3alpha. Gene Expr 1998; 7:205-13.
    [46].Park SK, Dadak AM, Haase VH, et al. Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor lalpha (HIF-lalpha):role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol 2003; 23:4959-71.
    [47].Semenza GL, Wang GL. A nuelear factor induced by hypoxia via denovo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol.1992; 12(12):5447-54.
    [48].Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem.1995; 270(3):1230-7.
    [49].Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor lalpha is mediated by an 02-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA.1998; 95(14):7987-92.
    [50].Kallio PJ, WilsonWJ, O'Brien S, et al. Regulation of the hypoxia-inducible transcription factor lalpha by the ubiquitin-proteasome pathway. J Biol Chem. 1999;274(10):6519-25.
    [51].Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer.2003; 3(10):721-32.
    [52].Kaur B, Khwaja FW, Severson EA, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol.2005; 7(2):134-53.
    [53].Zagzag D, Zhong H, Scalzitti JM, et al. Expression of hypoxia-inducible factor 1alpha in brain tumors:association with angiogenesis, invasion, and progression. Cancer.2000; 88(11):2606-18.
    [54].Chen HL, Pistollato F, Hoeppner DJ, et al. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells. 2007; 25(9):2291-301.
    [55].Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development.Science.1999; 284(5415):770-6.
    [56].Schroeder T, Just U. Notch signaling via RBP-J promotes myeloid differentiation. EMBO J.2000; 19(11):2558-68.
    [57].Fortini ME. Notch signaling:the core pathway and its posttranslational regulation. Dev Cell.2009; 16(5):633-47.
    [58].Hitoshi S, Alexson T, Tropepe V, et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 2002;16(7):846-58
    [59].Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci.2006; 7(2):93-102.
    [60]. Jiang L, Wu J, Chen Q, et al. Notchl expression is upregulated in glioma and is associated with tumor progression. J Clin Neurosci.2011; 18(3):387-90.
    [61].Zhang X, Chen T, Zhang J, et al. Notchl promotes glioma cell migration and invasion by stimulating b-catenin and NF-jB signaling via AKT activation. Cancer Sci.2012; 103(2):181-90.
    [62].Purow BW, Haque RM, Noel MW,et al. Exp ressionof Notch-1 and its ligands, Delta21ike21 and Jagged-1,is critical for glioma cell survival and proliferation. Cancer Res.2005; 65(6):2353-63.
    [63].Stockhausen MT, Sjolund J, Manetopoulos C, et al. Effects of the histone deacetylase inhibitor valp roic acid on Notch signal lingin human neuroblastoma cells. Br J Cancer.2005; 92(4):751-9.
    [64].Cuevas IC, Slocum AL, Jun P, et al. Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res.2005; 65(12):5070-5.
    [65].Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev cell.2005; 9(5):617-28.
    [66].Andersen S, Donnem T, Al-Saad S, et al. Correlation and Coexpression of HIFs and NOTCH Markers in NSCLC. Anticancer Res.2011;31 (5):1603-6.
    [67].Pistollato F, Rampazzo E, Persano L, et al. Interaction of Hypoxia-Inducible Factor-la and Notch Signaling Regulates Medulloblastoma Precursor Proliferation and Fate. Stem Cells.2010;28(11):1918-29
    [1]. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin.2009; 59(4):225-49.
    [2]. Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol.1993;3(3):255-68.
    [3]. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.2007;114(2):97-109.
    [4]. Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol.2010; 67(3):279-83.
    [5]. Stewart LA. Chemotherapy in adult high-grade glioma:A systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet.2002; 359(9311):1011-8.
    [6]. Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature.2008; 456(7222):593-8.
    [7]. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature.2001(6859); 414:105-11.
    [8]. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer.2006; 6(6):425-36.
    [9]. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature.2006; 444(7120): 756-60.
    [10].Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006; 6(6):425-36.
    [11].Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem.1995; 270(3):1230-7.
    [12].Pierce GB, Wallace C. Differentiation of malignant to benign cells. Cancer Res. 1971;31(2):127-34.
    [13].Pierce GB, Speers WC. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res.1988; 48(8):1996-2004.
    [14].Chang CJ, Hsu CC, Yung MC, et al. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knock-down of SirTl expression. Biochem Biophys Res Commun.2009; 380(2):236-42.
    [15].Chiou SH, Kao CL, Chen YW, et al. Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS One.2008; 3(5):e2090.
    [16].Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature.2009; 458(7239):780-3.
    [17].Hambardzumyan D, Becher OJ, Rosenblum MK, et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev.2008; 22(4):436-48.
    [18].Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+breast cancer-initiating cells to radiation. J Natl Cancer Inst.2006; 98(24):17/7-85.
    [19].Singh SK, Clarke ID, Terasaki M, et al.Identification of a cancer stem cell in human brain tumors. Cancer Res.2003; 63(18):5821-8.
    [20].Singh SK, Hawkins C,Clarke ID, et al. Identification of human brain tumor initiating cells. Nature.2004; 432(7015):396-401.
    [21].Galli R. Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma.Cancer Res.2004; 64(9):7011-21.
    [22].Evers P, Lee PP, DeMarco J, et al.Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC cancer.2010; 10:384.
    [23].Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev.2007; 26(2):319-31.
    [24].Chen HL, Pistollato F, Hoeppner DJ, et al. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells. 2007; 25(9):2291-301.
    [25].Qiang L, Yang Y, Ma YJ, et al. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett.2009; 279(1):13-21.
    [26].Mahller YY, Williams JP, Baird WH, et al. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One.2009; 4(1):e4235.
    [27].Mendez O, Zavadil J, Esencay M, et al. Knock down of HIF-1 a in glioma cells reduces migration in vitro and invasion in vivo and impair their ability to form tumor spheres. Mol Cancer.2010;9:133.
    [28].Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15(6):501-13.
    [29].McCord AM, Jamal M, Shankavarum UT, et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res.2009; 7(4):489-97.
    [30].Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade fglioma. Stem Cells.2009; 27(1):7-17.
    [1]. Ruizi Altaba A, Stecca B, Sanchez P. Hedgehog-gil signaling in brain tumors:stem cells and paradevelopmental programs in cancer. Cancer Lett.2004; 204(2):145-57.
    [2]. Stockhausen MT, Kristoffersen K, Poulsen HS. The functional role of notch signaling in human gliomas. Neuro Oneol.12(2):199-211.
    [3]. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development. Science.1999; 284(5415):770-6.
    [4]. Bigas A, Martin DI, Milner LA. Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol.1998; 18(4):2324-33.
    [5]. Fortini ME. Notch signaling:the core pathway and its posttranslational regulation. Dev Cell.2009; 16(5):633-47.
    [6]. Hitoshi S, Alexson T, Tropepe V, et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 2002:16(7):846-58
    [7]. Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci.2006; 7(2):93-102.
    [8]. Politi K, Feirt N, Kitajewski J. Notch in mammary gland development and breast cancer. Semin Cancer Biol.2004; 14(5):341-7.
    [9]. Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med.2002; 8(9):979-86.
    [10].Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notchl in the development of mouse mammary tumors. Oncogene 1999; 18(44):5973-81.
    [11].Jiang L, Wu J, Chen Q, et al. Notchl expression is upregulated in glioma and is associated with tumor progression. J Clin Neurosci.2011; 18(3):387-90.
    [12].Zhang X, Chen T, Zhang J, et al. Notchl promotes glioma cell migration and invasion by stimulating b-catenin and NF-jB signaling via AKT activation. Cancer Sci.2012; 103(2):181-90.
    [13].Purow BW, Haque RM, Noel MW,et al. Exp ressionof Notch-1 and its ligands, Delta21ike21 and Jagged-1,is critical for glioma cell survival and proliferation. Cancer Res.2005; 65(6):2353-63.
    [14]. Andersen S, Donnem T, Al-Saad S, et al. Correlation and Coexpression of HIFs and NOTCH Markers in NSCLC. Anticancer Res.2011;31(5):1603-6.
    [15].Pistollato F, Rampazzo E, Persano L, et al. Interaction of Hypoxia-Inducible Factor-la and Notch Signaling Regulates Medulloblastoma Precursor Proliferation and Fate. Stem Cells.2010;28(11):1918-29
    [16].Grimm D. Small silencing RNAs:state-of-the-art. Adv Drug Deliv Rev.2009; 61(9):p.672-703.
    [17].Lage H. Therapeutic potential of RNA interference in drug-resistant cancers. Future Oncol.2009; 5(2):p.169-85.
    [18].Gu YZ, Moran SM, Hogenesch JB,et al. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998; 7(3):205-13.
    [19]. Park SK, Dadak AM, Haase VH, et al. Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor lalpha (HIF-1 alpha):role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol 2003; 23(14):4959-71.
    [20].Li L, Xie T. Stem cell niche:structure and function. Annu Rev Cell Dev Biol.2005;21:605-31
    [21].Mendez O, Zavadil J, Esencay M, et al. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impair their ability to form tumor spheres. Mol Cancer.2010;9:133.
    [22]. Wang J, Wang C, Meng Q, et al. siRNA targeting Notch-1 decreases glioma stem cell proliferation and tumor growth. Mol Biol Rep.2012; 39(3):2497-503.
    [23].Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5):617-28.
    [1]. Jensen RL. Brain tumor hypoxia:tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol.2009; 92:317-35.
    [2]. Sathornsumetee S, Cao Y, Marcello JE, et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol.2008; 26:271-8.
    [3]. Vaupel P, Mayer A. Hypoxia in cancer:significance and impact on clinical outcome. Cancer Metastasis Rev.2007; 26:225-39.
    [4]. Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol.2009; 220:562-8.
    [5]. Bar EE, Lin A, Mahairaki V, et al. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres.2010; 1491-502.
    [6]. Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell.2009; 15:501-13.
    [7]. McCord AM, Jamal M, Shankavaram UT, et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res.2009; 7:489-97.
    [8]. Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIFlalpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells.2009; 27:7-17.
    [9]. Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain.2010; 133:983-95.
    [10].Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-lalpha. Oncogene.2009; 28:3949-59.
    [11]. Gu YZ, Moran SM, Hogenesch JB, et al. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr.1998; 7:205-13.
    [12]. Park SK, Dadak AM, Haase VH, et al. Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha):role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol.2003; 23:4959-71.
    [13].Huang LE, Gu J, Schau M. et al. Regulation of hypoxia-inducible factor lalpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA.1998; 95:7987-92.
    [14].Kallio PJ, WilsonWJ, O'Brien S, et al. Regulation of the hypoxia-inducible transcription factor lalpha by the ubiquitin-proteasome pathway. J Biol Chem. 1999; 274:6519-25.
    [15].Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer.2003; 3:721-32.
    [16].Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene.2010; 29:625-34.
    [17].Dewhirst MW, Kimura H, Rehmus SW, et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer.1996; 27:S247-51.
    [18].Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors:a review. Cancer Res.1989; 49:6449-65.
    [19].Evans SM, Judy KD, Dunphy I, et al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res.2004; 10:8177-84.
    [20].Evans SM, Judy KD, Dunphy I, et al. Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res.2004; 64:1886-92.
    [21].Evans SM, Jenkins KW, JenkinsWT, et al. Imaging and analytical methods as applied to the evaluation of vasculature and hypoxia in human brain tumors. Radiat Res.2008; 170:677-690.
    [22].Collingridge DR, Piepmeier JM, Rockwell S, et al. Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol.1999; 53:127-31.
    [23]. Fuller GN. The WHO Classification of Tumours of the Central Nervous System, 4th edition. Arch Pathol Lab Med.2008; 132:906.
    [24].Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med.2005; 352:997-1003.
    [25].Stupp R, MasonWP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med.2005; 352:987-96.
    [26].Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.2004; 64:7011-21.
    [27].Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA.2003; 100:15178-83.
    [28].Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature.2004; 432:396-401.
    [29].Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005; 5:275-84.
    [30].Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst.2008; 100:672-79.
    [31]. Oliver TG, Wechsler-Reya RJ. Getting at the root and stem of brain tumors. Neuron. 004; 42:885-88.
    [32].Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells.2007; 25:2524-33.
    [33].Fan X, Khaki L, Zhu TS, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells.2010; 28:5-16.
    [34].Fan X, MatsuiW, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res.2006; 66:7445-52.
    [35].Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature.2006; 444:761-5.
    [36].Zhou J, Zhang H, Gu P, et al. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat.2008; 111:419-27.
    [37].Ligon KL, Alberta JA, Kho AT, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol.2004; 63:499-509.
    [38].Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.2007; 67:4010-5.
    [39].Clement V, Dutoit V, Marino D, et al. Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer.2009; 125:244-8.
    [40].Jaksch M, Munera J, Bajpai R, et al. ell cycle-dependent variation of a CD 133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res.2008; 68:7882-6.
    [41].Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest.2008; 88:808-15.
    [42].Kelly JJ, Stechishin O, Chojnacki A, et al. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens. Stem Cells.2009; 27: 1722-33.
    [43].Nishide K, Nakatani Y, Kiyonari H, et al. Glioblastoma formation from cell population depleted of Promininl-expressing cells. PLoS ONE.2009; 4:e6869.
    [44].Ogden AT, Waziri AE, Lochhead RA, et al. Identification ofA2B5+CD133-tumor-initiating cells in adult human gliomas. Neurosurgery.2008; 62:505-14.
    [45].Piccirillo SG, Combi R, Cajola L, et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene.2009; 28:1807-11.
    [46].Stupp R, MasonWP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med.2005; 352:987-96.
    [47]. Wang J, Sakariassen PO, Tsinkalovsky O, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD 133 positive cells. Int J Cancer.2008; 122:761-8.
    [48].Griguer CE, Oliva CR, Gobin E,, et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE.2008; 3:e3655.
    [49].Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell.2005; 9:617-28.
    [50].Roy S, Khanna S, Bickerstaff AA, et al. Oxygen sensing by primary cardiac fibroblasts:a key role of p21(Wafl/Cipl/Sdil). Circ Res.2003; 92:264-71.
    [51].Tomasevic G, Shamloo M, Israeli D, et al. Activation of p53 and its target genes p21(WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning. Brain Res Mol Brain Res.1999; 70:304-13.
    [52]. Sahlgren C, Gustafsson MV, Jin S, et al. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA.2008; 105:6392-7.
    [53]. Wang J, Wakeman TP, Lathia JD, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells.2010; 28:17-28.
    [54].Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature.2006; 444:756-60.
    [55].Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133-cells, and the CD133+sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys.2007; 67:1-5.
    [56].Chiou SH, Kao CL, Chen YW, et al. Identification of CD 133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS ONE.2008; 3:e2090.
    [57].McCord AM, Jamal M, Williams ES, et al. CD 133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin Cancer Res.2009; 15:5145-53.
    [58].Zhao S, Lin Y, XuW, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-lalpha. Science.2009; 324:261-5.
    [59].Hirota K, Fukuda R, Takabuchi S, et al. Induction of hypoxia-inducible factor 1 activity by muscarinic acetylcholine receptor signaling. J Biol Chem.2004; 279:41521-8.
    [60].Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer.2008; 8:705-13.
    [61].Gillespie DL, Whang K, Ragel BT, et al. Silencing of hypoxia inducible factor-lalpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res.2007; 13:2441-8.
    [62].Heddleston JM, Li Z, McLendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell. Cell Cycle.2009 Oct 15;8(20):3274-84
    [63].Zhang H, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-lalpha synthesis and block tumor growth. Proc Natl Acad Sci USA.2008; 105: 19579-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700