用户名: 密码: 验证码:
鼻咽癌转移的线粒体蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:分析和鉴定鼻咽癌转移中线粒体蛋白质组的改变,筛选与鼻咽癌转移相关的线粒体蛋白质,为进一步揭示它们参与鼻咽癌转移的分子机制和找寻与鼻咽癌转移相关的特异性分子标志物提供基础。
     方法:分别从鼻咽癌5-8F和6-10B细胞中分离线粒体,鉴定其纯度,提取线粒体蛋白质。经2D-DIGE技术找出两种细胞的线粒体差异蛋白质,进行MALDI-TOF和ESI-Q-TOF质谱分析,查询数据库鉴定。同时采用生物信息学方法对线粒体差异蛋白质进行GO功能富集分析和蛋白质相互作用网络构建。并对鼻咽癌5-8F细胞中表达上调的部分线粒体差异蛋白质进行siRNA瞬时干扰,Transwell迁移实验观察细胞运动能力的变化。
     结果:包括PRDX3和SOD2在内的16种线粒体差异蛋白质得到鉴定。在鼻咽癌5-8F细胞中抑制PRDX3的表达能够提高细胞的运动能力。GO功能富集分析显示生物学过程主要表现在细胞对活性氧应答反应、过氧化氢代谢过程、线粒体膜电势调控、细胞氧化还原动态平衡和氧化还原作用等5个方面;分子功能主要表现在氧化还原酶活性、半胱氨酸蛋白酶抑制剂活性、过氧化物酶活性、质膜通道蛋白活性和抗氧化剂活性等5个方面。经过数据挖掘,构建了一个线粒体差异蛋白质相互作用的网络。结合肿瘤-间质共演变假说的观点进行分析,初步揭示了PRDX3、PRDX6、SOD2、ECH1、SERPINB5、COX5A、 PDIA5、EIF5A、IDH3B和PSMC4等10种线粒体差异蛋白质参与鼻咽癌转移的可能分子机制,为氧化应激直接促进肿瘤转移的观点提供了实验证据。
     结论:共鉴定了16种线粒体差异表达蛋白质,初步揭示了其中10种参与肿瘤转移的可能分子机制。在鼻咽癌5-8F细胞中抑制PRDX3的表达能够提高细胞的运动能力。它们有可能成为鼻咽癌转移的分子标志,在线粒体氧化应激诱导的鼻咽癌转移过程中发挥重要作用。
Background:Mitochondrial proteomic alterations of nasopharyngeal carcinoma metastasis remain unknown. Our purpose is to screen mitochondrial proteins for the elucidation of the molecular mechanisms of nasopharyngeal carcinoma metastasis and the discovery of metastasis-related biomarkers.
     Methods:Mitochondria were isolated from nasopharyngeal carcinoma metastatic (5-8F) and nonmetastatic (6-1OB) cell lines, respectively. After characterization of isolated mitochondria, mitochondrial differentially expressed proteins (DEPs) were quantified by two-dimensional difference in-gel electrophoresis (2D-DIGE), and identified by peptide mass fingerprint (PMF) and tandem mass spectrometry (MS/MS). A functional enrichment analysis and a protein-protein interaction network analysis for DEPs were carried out with bioinformatics. Furthermore, siRNAs transient transfections were used to suppress expressions of some up-regulated DEPs in metastatic cells (5-8F), followed by Transwell Migration assay.
     Results:Sixteen mitochondrial DEPs including PRDX3and SOD2were identified. Those5-8F cells with suppression of PRDX3showed an increased mobility potential. The functional enrichment analyses of DEPs discovered five significant biological processes including cellular response to reactive oxygen species, hydrogen peroxide metabolic process, regulation of mitochondrial membrane potential, cell redox homeostasis and oxidation reduction, and five significant molecular functions including oxidoreductase activity, caspase inhibitor activity, peroxiredoxin activity, porin activity and antioxidant activity. A protein-protein interaction network of DEPs was generated with literature data. Ten mitochondrial DEPs including PRDX3, PRDX6, SOD2, ECH1, SERPINB5, COX5A, PDIA5, EIF5A, IDH3B, and PSMC4were rationalized in the tumor-stroma co-evolution model that mitochondrial oxidative stress directly contributes to tumor metastasis.
     Conclusions:Sixteen mitochondrial DEPs were identified with mass spectrometry and ten of them were rationalized in the tumor-stroma co-evolution model. Those5-8F cells with suppression of PRDX3showed an increased mobility potential. These data suggest that those mitochondrial DEPs are potential biomarkers for NPC metastasis, and their dysregulation would play important roles in mitochondria oxidative stress-mediated NPC metastatic process.
引文
[1]吴荫棠,汪慧民,杨小平,李满枝,陈军,方嬿,简少文,张玲,吴秋良,张万团:鼻咽癌裸鼠移植瘤及其相应体外细胞株的建立与特性研究。癌症1995,14(2):83-86。
    [2]宋立兵,汪慧民,曾木圣,李满枝,简少文:鼻咽癌细胞株SUNE-1异质性研究。癌症1998,17(5):324-327。
    [3]宋立兵,鄢践,简少文,张玲,李满枝,李端,汪慧民:鼻咽癌细胞亚株不同成瘤与转移潜能的分子机制。癌症2002,21(2):158-162。
    [4]Yang XY, Ren CP, Wang L, Li H, Jiang CJ, Zhang HB:Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol 2005, 27(4):215-223.
    [5]Li J, Fan Y, Chen J, Yao KT, Huang ZX:Microarray analysis of differentially expressed genes between nasopharyngeal carcinoma cell lines 5-8F and 6-10B. Cancer Genet Cytogenet 2010,196(1):23-30.
    [6]向亚莉,易红,李萃,张鹏飞,李茂玉,陈主初,肖志强:鼻咽癌细胞系5-8F和6-10B的差异蛋白质组学研究。中南大学学报(医学版)2007,32(6):978-984。
    [7]向亚莉,易红,李茂玉,张鹏飞,李萃,彭芳,阮林,陈主初,肖志强:鼻咽癌转移相关的分泌蛋白质的筛选。国际病理科学与临床杂志2007,27(3):369-375。
    [8]Frezza C, Gottlieb E:Mitochondria in cancer:not just innocent bystanders. Semin Cancer Boil 2009,19(1):4-11.
    [9]Fogg VC, Lanning NJ, Mackeigan JP:Mitochondria in cancer:at the crossroads of life and death. Chin J Cancer 2011,30(8):526-539.
    [10]Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A:Understanding the "lethal" drivers of tumor-stroma co-evolution:emerging role (s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 2010, 10(6):537-542.
    [11]Bonuccelli G, Tsirigos A. Whitaker-Menezes D. Pavlides S, Pestell RG. Chiavarina B:Ketones and lactate "fuel" tumor growth and metastasis:Evidence that epithelial cancer cells use oxidative mitochondria metabolism. Cell Cycle 2010.9(17):3506-3514.
    [12]Pavlides S. Vera I, Gandara R, Sneddon S. Penstell RG, Mercier I:Warburg Meets Autophagy:Cancer Associated Fibroblasts Accelerate Tumor Growth and Metastasis Via Oxidative Stress. Mitophagy and Aerobic Glycolysis. Antioxid Redox Signal 2012,16(11):1264-1284.
    [13]Sotgia F, Martinez-Outschoorn UE, Lisanti MP:Mitochondria oxidative stress drives tumor progression and metastasis:should we use antioxidants as a key component of cancer treatment and prevention? BMC Med 2011.9:62.
    [14]Pani G. Galeotti T, Chiarugi P:Metastasis:cancer cell's escape from oxidative stress. Cancer Metastasis Rev 2010.29(2):351-378.
    [15]Murayama K. Fujimura T. Morita M. Shindo N:One-step subcellular fractionation of rat liver tissue using a Nycodenz gradient prepared by freezing-thawing and two-dimensional sodium dodecyl sulfate electrophoresis profiles of the main fraction of organelles. Electrophoresis 2001, 22(14):2872-2880.
    [16]Yang YX, Xiao ZQ, Chen ZC, Zhang GY, Yi H, Zhang PF:Proteome analysis of multidrug resistance in vincristine-resistant human gastric cancer cell line SGC7901/VCR. Proteomics 2006.6(6):2009-2021.
    [17]Graham JM, Higgins JA. Membrane Analysis 1997. Bios. Sci. Publisher. Oxford.
    [18]Weinberg F,Chandel NS:Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 2009,66(23):3663-3673.
    [19]Miller TW, Isenberg JS. Roberts DD:Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009,109(7): 3099-3124.
    [20]Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P:Rodox regulation of cell survival. Antioxid Redox Signal 2008,10(8):1343-1374.
    [21]Ralph SJ:Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 2008,260146.
    [22]Thongwatchara P, Promwikorn W, Srisomsap C, Chokchaichamnankit D, Boonyaphiphat P, Thongsuksai P:Differential protein expression in primary breast cancer and matched axillary node metastasis. Oncol Rep 2011, 26(1):185-191.
    [23]Ho JN, Lee SB, Lee SS, Yoon SH, Kang GY, Hwang SG:Phospholipase A2 activity of peroxiredoxin 6 promotes invasion and metastsis of lung cancer cells. Mol Cancer Ther 2010,9(4):825-932.
    [24]Chang XZ, Li DQ, Hou YF, Wu J, Lu JS, Di GH:Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res 2007.9(6):R76.
    [25]Hempel N, Carrico PM, Melendez JA:Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem 2011.11(2):191-201.
    [26]Nozoe T, Honda M, Inutsuka S, Yasuda M, Korenaga D:Significance of immunohistochemical expression of manganese superoxide dismutase as a marker of malignant potential in colorectal carcinoma. Oncol Rep 2003, 10(1):39-43.
    [27]Mohr A, Buneker C, Gough RP, Zwacka RM:MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 2008,27(6):763-774.
    [28]Liu X, Wang A, Lo Muzio L. Kolokythas A, Sheng S, Rubini C:Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma. BMC Cancer 2010,10:365.
    [29]Salzman R, Kankova K, Pacal L, Tomandl J, Horakova Z, Kostrica R:Increased activity of superoxide dismutase in advanced staged of head and neck squamous cell carcinoma with locoregional metastases. Neoplasma 2007,54(4):321-325.
    [30]Zhang J, Song M, Wang J, Sun M, Wang B, Li R:Enoyl coenzyme A hydratase 1 is an important factor in the lymphatic metastasis of tumors. Biomed Pharmacother 2011,65(3):157-162.
    [31]Chou RH, Wen HC, Liang WG, Lin SC. Yuan HW. Wu CW:Suppression of the invasion and migration of cancer cells by SERPINB family genes and their derived peptides. Oncol Rep 2012.27(1):238-245.
    [32]Goulet B. Kennette W. Ablack A. Postenka CO. Hague MN, Mymryk JS: Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Lab Invest 2011,91 (8):1181-1187.
    [33]Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL:HIF-1 regulate cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007,129(1):111-122.
    [34]Tang DJ, Dong SS, Ma NF,Xie D, Chen L, Fu L:Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepotology 2010,51(4):1255-1263.
    [35]Kim YO, Koh HJ, Kim SH, Jo SH, Huh JW, Jeong KS:Identification and functional characterization of a novel, tissue-specific NAD+-dependent isocitrate dehydrogenase beta subunit isoform. J Biol Chem 1999.274(52):36866-36875.
    [36]Lee MS, Moon EJ, Lee SW, Kim MS, Kim KW, Kim YJ:Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models. Cancer Res 2001, 61(8):3290-3293.
    [37]Mayer RJ, Ciechanover A, Rechsteiner M:Protein degradation:the ubiquitin-proteasome system and disease (volume 4). Weinheim:Wiley-VCH Verlag GmbH & Co. KgaA:2008:1-228.
    [38]Rahimi N:The ubiquitin-proteasome system meets angiogenesis. Mol Cancer Ther 2012, 11(3):538-548.
    [39]Finocchiaro G. Ito M, Ikeda Y. Tanaka K:Molecular cloning and nucleotide sequence of cDNAs encoding the alpha-subunit of human electron transfer flavoprotein. J Biol Chem 1988,263(30):15773-15780.
    [40]Sato T, Sakamoto T, Takita K, Saito H, Okui K, Nakamura Y:The human prohibitin (PHB) gene family and its somatic mutations in human cancers. Genomics 1993,17(3):762-764.
    [41]Coates PJ, Nenutil R, McGregor A, Picksley SM, Crouch DH, Hall PA: Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res 2001,265(2):262-273.
    [42]Marty L, Fort P:A delayed-early response nuclear gene encoding MRPL12, the mitochondrial homologue to the bacterial translational regulator L7/L12 protein. J Biol Chem 1996,271 (19):11468-11476.
    [43]Tang T, Zheng B, Chen SH, Murphy AN, Kudlicka K, Zhou H:hNOA1 interacts with complex Ⅰ and DAP3 and regulates mitochondrial respiration and apoptosis. J Biol Chem 2009,284(8):5414-5424.
    [44]Yu WH, Wolfgang W, Forte MA:Subcellular localization of human voltage-dependent anion channel isoforms. J Biol Chem 1995.270(23): 13998-14006.
    [45]Balchly-Dyson E, Zambronicz EB, Yu WH, Adams V, McCabe ER, Adelman JP:Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J Biol Chem 1993,268(3):1835-1841.
    [46]Vorum H, Hager H, Christensen BM, Nielsen S, Honore B:Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 1999,248(2):473-481.
    [47]Nimnual, A. S., Taylor, L. J.,& Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology,5,236-241.
    [48]Sanz-Moreno, V., Gadea, G., Ahn. J., Paterson, H., Marra, P., Pinner, S., et al. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell,135,510-523.
    [49]Diaz, B., Shani, G., Pass, I., Anderson, D., Quintavalle, M.,& Courtneidge, S. A. (2009). Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal,2, ra53.
    [1]Josephine S, Modica-Napolitano, Keshav K. Singh:Mitochondria as targets for dection and treatment of cancer. Expert reviews in molecular medicine 2002. Apri 11:1-13.
    [2]Ellen perry M. Dang CV. Hockenbery D. Moll U:Highlights of the national cancer institute workshop on mitochondrial function and cancer. Cancer Research 2004,64:7640-7644.
    [3]Frezza C, Gottlieb E:Mitochondria in cancer:not just innocent bystanders. Semin Cancer Boil 2009,19(1):4-11.
    [4]Fogg VC. Lanning NJ, Mackeigan JP:Mitochondria in cancer:at the crossroads of life and death. Chin J Cancer 2011.30(8):526-539.
    [5]Pani G. Galeotti T. Chiarugi P:Metastasis:cancer cell's escape from oxidative stress. Cancer Metastasis Rev 2010.29(2):351-378.
    [6]Jung SY, Kim YJ:C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Letters 2013,331 (1):76-83.
    [7]Trachootham D, Lu W, Ogasawara MA. Nilsa RD, Huang P:Rodox regulation of cell survival. Antioxid Redox Signal 2008,10(8):1343-1374.
    [8]Ralph SJ:Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 2008,260146.
    [9]Miller TW, Isenberg JS, Roberts DD:Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009,109(7): 3099-3124.
    [10]Pavlides S, Vera I, Gandara R, et al. Warburg meets autophagy: cancer-associated fibroblast accelerate tumor growth and metastasis via oxidative stress, mitophage. and aerobic glycolysis. Antioxid Redox Signal 2012, 16(11):1264-1284.
    [11]Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, et al. Mitochondrial metabolism in cancer metastasis:visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue. Cell Cycle 2012. 11(7):1445-1454.
    [12]Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, et al. Using the "reverse Warburg effect" to identify high-risk breast cancer patients:stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012, 11(6):1108-1117.
    [13]Whitaker-Menezes D, Martinez-OutschoornUE, Flomenberg N, et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ:visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 2011,10(23):4047-4064.
    [14]Sotgia F. Martinez-Outschoorn UE, Pavlides S, et al. Understanding the warburg effects and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenviroment. Breast Cancer Res 2011,13(4):213.
    [15]Martinez-Outschoorn UE. Pavlides S. Howell A. et al. Stromal-epithelial metabolic coupling in cancer:integrating autophagy and metabolism in the tumor microenviroment. Int J Biochem Cell Biol 2011.43(7):1045-1051.
    [16]Pavlides S, Tsirigos A, Migneco G, et al. The autophagic tumor stroma model of cancer:Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2010,9(17):3485-3505.
    [17]Witkiewicz AK, Kline J, Queenan M, et al. Molecular profiling of a lethal tumor microenviroment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 2011,10(11):1794-1809.
    [18]Pavlides S, Tsirigos A, Vera I, et al. Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging 2010,2(4):185-199.
    [19]Frezza C and Gottlieb E. Mitochondria in cancer:Not just innocent bystanders. Seminars in Cancer Biology 2008.
    [20]Lisanti MP, Martinez-OutschoornUE. Palides S, et al. Accelerated aging in the tumor microenviorment:connecting aging, inflammation and cancer metabolism with personalized medicine. Cell Cycle 2011.10(13):2059-2063.
    [21]Lisanti MP, Martinez-Outschoorn UE. Chiavarina B, et al. Understanding the "lethal" drivers of tumor-stroma co-evolution:emerging roles for hypoxia. oxidative stress and autophagy/mitophagy in the tumor microenviroment. Cancer Biol Ther 2010.10(6):537-542.
    [22]Balliet RM, Capparelli C, Guido C, et al. Mitochondrial oxidative stress in cancer-associated fibroblast drives lactete production, promoting breast cancer tumor growth:understanding the aging and cancer connection. Cell Cycle 2011, 10(23):4065-4076.
    [23]Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors:MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 2011. 10(11):1772-1783.
    [24]Bonuccelli G, Tsirigos A. Whitaker-Menezes D. et al. Ketones and lactate "fuel" tumor growth and metastasis:Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010.9(17):3506-3514.
    [25]Goswami PC. Mutant mitochondria and cancer cell metastasis:quest for a mechnism. Cancer Biol Ther 2009,8(14):1386-1388.
    [26]Huang J, Yan J, Zhang J, et al. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nature communication 2012.3:911.
    [27]Sotgia F. Martinez-OutschoornUE. Lisanti MP. Mitochondrial oxidative stress dirves tumor progression and metastasis:should we use antioxidants as a key component fo cancer treatment and prevention? BMC Med 2011,9:62.
    [28]Goh J. Enns L, Fatemie S, et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 2011,11:191.
    [29]Martinez-Outschoorn UE. Balliet RM, Rivadeneira DB, et al. Oxidative stress in cancer-associated fibroblasts drives tumor-stroma co-evolution:A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 2010,9(16):3256-3276.
    [30]Martinez-Outschoorn UE, Prisco M, Ertel A, et al. Ketones and lactate increase cancer cell "sternness" driving recurrence, metastasis and poor clinical outcome in breast cancer:achieving personalized medicine via Metabolo-Genomics. Cell Cycle 2011,10(8):1271-1286.
    [31]Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease:the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011, 32(4-6):234-246.
    [32]Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T. Mitochondrial defect drives non-autonomous tumor progression through Hippo signalling in Drosophila. Nature 2012,490(7421):547-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700