用户名: 密码: 验证码:
基于介电润湿的数字微流控系统中液滴运动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴技术,数字微流控凭借试剂用量小、可配置、可并行处理和易实现自动化等优势在生物、医药、化学和检测等领域展现出良好的应用前景。本文通过理论分析、建模仿真、实验验证和模型改进四个步骤,探讨了在基于介电润湿的封闭式数字微流控系统的基本性能和液滴的运动特性。论文的主要内容包括:
     1)研究了介电润湿的基础理论,对液滴的运动过程进行了受力分析;
     2)为系统建立流体力学的数学模型,通过二维仿真研究了电场的分布情况、介质层厚度的影响和接触角随驱动电压的变化等系统基本特性;
     3)建立三维模型,分析了液滴移动和分裂过程中接触角的变化、液滴的压强和速度、液滴的拉伸情况,讨论了电极形状、电极尺寸和上下极板间隙对液滴动态过程的影响;
     4)搭建了系统平台对系统的基本性能和动态性能进行验证,包括接触角的变化、介质层厚度的影响、疏水层的影响、接触角的滞后、阈值电压、液滴运动速度、液滴运动的可重复性和介质层的击穿现象等。然后验证了介质层厚度、不同电极形状和不同液滴半径对运动的影响。
     5)根据实验数据求出了接触线摩擦系数和极板剪切阻力的系数,并将改进后模型的预测值和实验数据进行对比。
     本文的主要创新点包括:
     1)在对液滴运动进行受力分析的基础上推导了液滴运动的最优体积,得出在理想状态下,当液滴半径r与方形电极的边长L之间满足r≤2L时,液滴所受到的驱动力随半径r增加而变大;当r>2L时,液滴所受到的驱动力保持不变。因为随着液滴半径的增长,液滴之间的互相干扰会增加,不容易准确控制,因此当r=2L,液滴的驱动效果最好。
     2)据作者所查文献,目前已见采用VOD方法进行仿真,采用水平集方法对开放式系统的仿真,采用水平集方法的二维模型对接触角变化的仿真,未见采用水平集方法对液滴运动和分裂过程的研究报道。本文采用有限元仿真软件、水平集动态界面追踪方法,以Navier-Stoke方程为基本模型对基于介电润湿的封闭式数字微流控系统进行了仿真,研究了系统的静态和动态特性。
     3)通过三维模型的仿真,讨论了电极形状和上下极板间隙对液滴运动的影响,得出结论:与方形电极相比,叉指型电极可以降低液滴运动的阈值电压,但对液滴运动的平均速度无明显影响;液滴分裂时,液滴体积越小分裂速度越快;当体积固定时,在液滴直径R与上下极板间隙h比例大约为6-17的范围内,电极尺寸越大,上下板间隙约小越容易分裂,小于此比值范围会分裂失败,大于此比值范围会出现细碎液滴,影响分裂效果。
     4)根据实验数据改进模型,将接触线摩擦力和上下极板的剪切阻力考虑在内,利用两组实验结果求出相应的摩擦系数,使仿真结果与实验数据更吻合。
     5)采用激光雕刻PCB板作为下极板的电极阵列,线间间距可以精确到50μm左右,用ITO导电玻璃作为上极板的导电层,上下极板上沉积一层最薄为0.5μm的派瑞林作为介质层和疏水层,该方式制作芯片相对于无尘室的芯片加工,大大降低了实验成本,同时又明显改善了常规PCB制版方式的精度,降低了驱动电压,对低成本高精度的实验芯片进行了探索。
As an emerging technology, digital microfluidics has a good prospect in the field of biology,medicine, and chemical with the advantage of less reagent consumption, configurable, parallelprocessing and easy to automate. The basic performance and dynamic characteristics of closedelectrowetting on dielectric(EWOD) digital microfluidic system was studied through theoreticalanalysis, modeling and simulation, experimental validation and model improvement. The majorcontent includes:
     1) Research on the basic theory and stress analysis of the droplet motion.
     2) The hydrodynamic model was established and basic performances such as distributionof the electric field, effect of the dielectric layer thickness and the contact angle change withvariation of driving voltage were discussed based on the two-dimensional model.
     3) Dynamic characteristics including the changes of contact angle, the pressure and speedof the droplets, the stretch of droplet, the impact of electrode shape, electrode size and gasbetween plate were studied based on three-dimensional model.
     4) The experimental system was set up and the characteristics including the contact anglechanges with variation of applied voltage, saturation of the contact angle, the effect of dielectriclayer thickness, the influence of the hydrophobic layer, contact angle hysteresis, the thresholdvoltage, velocity under different voltages, repeatability of movement and the breakdownphenomenon of dielectric layer were validated.
     5) With experimental data, the coefficient of the contact line friction and shear resistancewith plates was calculated. Then the predictive value based on improved model was comparedwith experimental data.
     The main innovatin points including:
     1) Derivation of the optimal initial volume for droplet movement based on force analysis.In ideal situation, when the radius r of droplet and the length L of square electrode satisfied therelationship of r≤2L, driving force increased with r, while r>2L, the driving force isconstant. With increasing of radius, the droplets might interfere each other and couldn’t becontrolled accurately. In a word, the driving efficient was the best when r=2L.
     2) In most simulation reported about digital microfluidic system based on EWOD, VODwas adopted to tracking the interface of droplet. Some researchers used level set method to studythe open system and some others discussed the contact angle change with2D model. To theknowledge of author, it hadn’t been reported about simulating the moving and splitting processof droplet with level set method.
     3) Influence of electrode shape, electrode size and gas between plates were discussed with3D model, and some conclusions were drawn, including: while the threshold voltage ofinterdigital electrodes was a little lower than the square electrodes’, the shape of electrode didn’taffect the average velocity obviously. The splitting velocity grew faster with the decreasing ofdroplet volume. When the volume was fixed and the ratio of droplet the diameter R to gapbetween plates was in the range of6-17, the smaller of ratio, the easier to split. Out this range,splitting would fail if the ratio was smaller and broken daughter droplets were produced if theratio was bigger.
     4) The contact line friction and shear resistance with plates were taken into account inimproved model, which increased the accuracy of simulation result greatly.
     5) Laser engraving PCB board was adopted in chip fabrication and the smallest distancebetween lines was about50μm. ITO glass was used as top plate, and a thin film of paryleneabout0.5μm was coating as dielectric layer. Laser engraving PCB method reduced the costgreatly comparing with the clean room processing. Also, the fabrication precision was improvedsignificantly comparing with conventional PCB. It might lead a new way to relative low-cost andhigh-precision experiment method.
引文
[1]方肇伦.微流控分析芯片的制作及应用[M].北京:化学工业出版社.2005:20-40.
    [2] Petra S. Dittrich, Andreas Manz. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews DrugDiscovery,2006, Vol.5:210–218.
    [3] Jean Berthier. Microdrops and digital microfluidics[M]. Norwich, NY, USA: William Andrew Inc.2008:1-5.
    [4] Krishnendu Chakrabarty, Tao Xu. Digital MicrofluiDic Biochips: Design Automation andOptimization[M]. CRC Press.2010:1-18.
    [5] Mohamed Abdelgawad, Aaron R. Wheeler. The Digital Revolution: A New Paradigm for Microfluidics[J].Advanced materials,2009,21:920-925.
    [6] Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integrationof separation techniques into monitoring systems[J]. Chromatogr,1992,593:253-258.
    [7] Jacobson S C, Hergenroeder R, Koutny L B, et al. Effects of injection schemes and column geometry onthe performance of microchip electrophoresis devices[J]. Anal. Chem.1994,66:1107-1113.
    [8] Jacobson S C, Hergenroder R, Moore A W, et al. Precolumn reactions with electro-phoretic analysisintegrated on a microchip[J]. Anal. Chem.,1994,66:4127-4132..
    [9] Jacobson S C, Ramsey J M. Microchip electrophoresis with sample stacking. Electophoresis[J].1995,16(4):481-486
    [10] Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis device[J].Science,1998,282:484-487.
    [11]林炳承.微流控芯片实验室及其功能化[J].中国药科大学学报,2003,34(1):1-6.
    [12] Michael C. Mitchell, Valerie Spikmans, Andreas Manz, et al. Microchip-based synthesis and totalanalysis systems (mSYNTAS): Chemical microprocessing for generation and analysis of compoundlibraries[J]. Chem. Soc. Perkin Trans.2001,1:514-518.
    [13]周小棉,戴忠鹏,林炳承.第五届全国毛细管电泳及相关微分离分析学术报告会文集[C].上海,2002
    [14]周小棉,罗勇,戴忠鹏等.一种激光诱导荧光芯片分析仪[P/OL].中国专利: CN02340741.7,2002-10-08.
    [15]周小棉,梅晓丹,刘大渔等. SARS病毒的微流控芯片实验室系统检测[J].现代科学仪器,2003,4:13-16.
    [16]张鹏.微流控芯片中多物理场耦合问题的数值模拟研究【D】.吉林大学,2006.6.
    [17] Thorsen, T, Maerkl, S J, Quake, S R, Microfluidic large-scale integration[J]. Science,2002,298(5593):580-4.
    [18]李海芳,张倩云,林金明.近期微流控芯片疾病诊断技术的研究进展[J].色谱,2011.4, Vol.29No.4:284-292.
    [19] Shia-Yen Teh, a Robert Lin, a Lung-Hsin Hungb, etal. Droplet microfluidics[J]. Lab Chip,2008,8,198–220.
    [20]马晓东.十字交叉沟通微通道芯片的微液滴生成研究[D].重庆大学,2010.4.
    [21] Schwartz J A, Vykoukal J V, Gascoyne P R C. Droplet-based chemistry on a programmable micro-chip[J].Lab on a Chip.2004;4(1):11-17.
    [22] Singh P, Aubry N. Transport and deformation of droplets in a microdevice using dielectro-phoresis[J].Electrophoresis.2007;28(4):644-657.
    [23] Kazuo Hosokawa, Teruo Fujii, Endo, I. Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device[J]. Anal. Chem.1999;71(20):4781-4785.
    [24] Darhuber A A, Valentino J P, Troian S M, et al. Thermocapillary actuation of droplets on chemicallypatterned surfaces by programmable microheater arrays[J]. Journal of Microelectro-mechanicalSystems.2003;12(6):873-879.
    [25] Achim Wixforth. Acoustically Driven Programmable Microfluidics for Biological and ChemicalApplications[J].The Association for Laboratory Automation,2006,12:399-405
    [26]宋满仓,王敏杰.微成型技术的现状与发展[J].中国机械工程,2003,14(15):1.
    [27]于同敏,宫德海.微型模具制造技术研究与发展[J].中国机械工,2005,16:2.
    [28]谢延敏,于沪平,阮雪榆.微成形技术的研究现状[J].中国机械工程,2005(5):935-939.
    [29]蒋炳炎,谢磊,杜雪.微注射成型机发展现状与展望[J].中国塑料,2004(9):6-11.
    [30]王雷刚,倪雪峰,黄瑶,等.微注射成型技术的发展现状与展望[J].现代塑料加工应用,2007,19(1):55-58.
    [31]蒋炳炎,沈龙江,彭华建.微注塑成型中变温控制技术[J].中国塑料,2006,20(3):99-102.
    [32] Muck A, Wang J, Jacobs M, et al. Fabrication of poly (methylmethacrylate) microfluidic chips byatmospheric molding[J]. Anal Chem,2004,76:2290-2297.
    [33] Dang F, Tabata O, Kurokaw a M, et a.l High performance genetic analysis onmicro fabricated capillaryarray electrophores is plastic chips fabricated by injection molding [J]. Anal Chem,2005,77:2140-2146.
    [34] A Mair, Emi l Geiger, Albert P Pisano. Injection molded microf lu idic chips featuring integratedinterconnects [J]. Lab Chip,2006(6):1346-1354.
    [35] Rean Der Chien. Micro molding of biochip devices designed with microchannels[J]. Sensors andActuators,2006,128:238-247.
    [36]周小棉,戴忠鹏,罗勇,等.注塑型聚甲基丙烯酸甲酯多通道微流控芯片的研制及其性能考察[J].高等学校化学学报,2005,1(1):52-54.
    [37]庞中华,宋满仓,刘莹,等。微流控芯片技术的现状与发展[J].塑料,2010年39卷第3期:11-13
    [38] M G Pollack, R B Fair, D Shenderov. Electrowetting-based actuation of liquid droplets for microfluidicapplications[J]. Applied Physics Letters,2000,Vol.77, no.11:1725–1726.
    [39] Frieder Mugele, Jean-Christophe Baret. Electrowetting: from basics to applications[J]. Institute of physicspublisics publishing, Matter17,2005: R705–R774.
    [40] Brochard-Wyart F. Motions of droplets on solid surfaces induced by chemical or thermal gradients[J].Langmuir,1989, Vol.5:432-438.
    [41] Kuo J S, Spicar-Mihalic P, Rodriguez I,et al. Electrowetting-induced droplet movement in an immisciblemedium[J]. Langmuir,2003, Vol.19:250-260
    [42] Ren H, Fair R B, Pollack M G, et al. Dynamics of electro-wetting droplet transport[J]. Sensors ActuatorsB.2002, Vol.87:201-206.
    [43] Blake T D, Clarke A and Stattersfield E H. An investigation of electrostatic assist in dynamic wetting[J].Langmuir,2000,Vol.16:2928-2934.
    [44] J. Lee, H. Moon, J. Fowler, et al. Addressable micro liquid handling by electric control of surfacetension[J]. MEMS,2001,:499-502.
    [45] C.-J.Kim. Micropumping by electrowetting[C]. International Mechanical Engineering Congress andExposition,New York,United States,2001.
    [46] Berge Band, Peseux J. Variable focal lens controlled by an external voltage: an application ofelectrowetting[J] Eur. Phys. J. E,2000, Vol.3:159-163.
    [47] S KuiPer, B H Hendriks. Variable-foucus liquid lens for miniature cameras[J]. Appl.Phys. Lett.,2004,85(7):1128-1130.
    [48] S KuiPer, B H Hendriks, L J Huijbregets, etal. Variable-foucus liquid lens for portable applications[C].Proc. of SPIE,2004,5523:100-109,.
    [49] S KuiPer, B H Hendriks, R A Hayes, etal. Electrowetting-based optics[C]. Proc. of SPIE,2005,5908:59080R.
    [50] B H Hendriks,S KuiPer,M A Vanss,et al. Variable liquid lenses for electronic products[C]. Proc. ofSPIE,2006,6034:603402.
    [51] J Crassous,C Gabay,G Liogier,et al. Liquid lens based on electrowetting: a new adaptive component forimaging applications in consumer electronics[C]. Proc. of SPIE,2004,5639:143-148.
    [52] H C Yu, T Y lee, S J Wang, et al. Low power consumption focusing actuator for a mini video camera[J].Appl. Phy,2006, Vol.99:08R901.
    [53] R Dav,E Laeot,F. Stoeckel and B. Berge. Three-dimensional sensing based on a dynamically focusedlaser optical feedback imaging technique[J]. Appl. OPt.,2001,40(12):1921-1924,.
    [54] C. Gabay,B. Berge,G. Dovillaire,S. Bucourt. Dynamic study of a Varioptic variable focal lens[C].Proc. of SPIE,2002,4767:159-165.
    [55] L. Saurei,G. Mathieu,B. Berge. Design of an autofocus lens for VGA1/4’’ CCD and CMOS sensors[C].Proc. of SPIE,2004,5249:288-296..
    [56]詹珍贤.非球面液滴微透镜及其阵列的制作和应用研究[D].中国科技大学,2010.4
    [57] F. Wippermann,P. Schreiber,A. Brauer, et al. Mechanically assisted liquid lens zoom System for mobilephone cameras[C]. Proc. of SPIE,2006,6289:62890T.
    [58]从露珠中窥见LCD的未来电润湿显示器技术谈,http://www.cnki.net.
    [59] Cho S, Moon H, Kim C. Creating, transporting, cutting, and merging liquid droplets byelectrowetting-based actuation for digital microfluidic circuits[J]. J. MEMS,2003,12:70-80.
    [60]凌明祥.基于介电润湿效应的微液滴操控研究【D】。哈尔滨工业大学,2011.6
    [61] R. B. Fair. Digital microfluidics: is a true lab-on-a-chip possible?[J]. Microfluid Nanofluid,2007,3:245–281
    [62]杜克大学.用于在印刷电路板上操作液滴的装置和方法:中国,CN101146595A [P/OL].2008-3-19.
    [63] Mohamed Abdelgawad, Aaron R. Wheeler Low-cost, rapid-prototyping of digital microfluidics devices[J].Microfluid Nanofluid,2008,4:349–355.
    [64] Abdelgawad M, Wheeler AR. Rapid prototyping in copper substrates for digital microfluidics[J]. AdvMater,2007,19:133–137
    [65] Watson M W L, Abdelgawad M, Ye G, et al. Microcontact printing-based fabrication of digitalmicrofluidic devices[J]. Anal Chem,2006,78:7877–7885
    [66] Chuang KC, Fan SK. Direct handwriting manipulation of droplets by self-aligned mirror-EWOD across adielectric sheet[C]. In: Proceedings of IEEE International Conference on Micro Electro MechanicalSystems (MEMS),2006, IEEE Inc., Piscataway,538–541
    [67] Moon Hye-jin, Cho Sung-kwon. Low voltage electrowetting-on-dielectri[J]. Journal of Applied physics,2002,92:4080-4087.
    [68]赵平安,周嘉,刘冉.一种单平面电极阵列结构的介质上电润湿数字微流控器件[J].复旦学报:自然科学版,2010,4:185-189.
    [69] Mais J Jebrail and Aaron R Wheeler. Let’s get digital: digitizing chemical biology with microfluidics[J].Current Opinion in Chemical Biology,2010,14:574–581.
    [70] Luk V N, Wheeler A R. A digital microfluidic approach to proteomic sample processing[J]. AnalChem,2009,81:4524-4530.
    [71] Griffith EJ, Srinivas A, Goldberg MK. Performance characterization of a reconfigurable planar-arraydigital microfluidic system[C]. IEEE Trans Comput Aided Des Integr Circuits and Syst.2006,25:345–357.
    [72] Pollack MG, Paik PY, Shenderov AD, Pamula VK, Dietrich FS, Fair RB. Investigation ofelectrowetting-based microfluidics for real-time PCR applications[C]. In:7thSeventh Internationalconference on miniaturized chemical and biochemical analysis systems (lTAS2003),2003,Lake Tahao.
    [73] Fair RB. Dynamically reconfigurable surfaces for microfluidic applications[C]. MRS Spring Meeting, SanFrancisco, CA.2005.
    [74] Rastogi V, Velev OD. Development and evaluation of realistic microbioassays in freely suspendeddroplets on a chip[J]. Biomicrofluidics,2007,1:014107.
    [75] Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt AE, Pollack MG, Pamula VK.Development of a digital microfluidic platform for point of care testing[J]. Lab Chip,2008,8:2091–2104.
    [76] Elizabeth M. Miller, Alphonsus H. C. Ng, Uvaraj Uddayasankar, Aaron R. Wheeler. A digitalmicrofluidic approach to heterogeneous immunoassays Microdrops and digital microfluidics[J]. AnalBioanal Chem,2011,399:337–345.
    [77] Yi-Hsien Chang, Gwo-Bin Lee, Fu-Chun Huang,Yi-Yu Chen, Jr-Lung Lin.Integrated polymerase chainreaction chips utilizing digital microfluidics[J]. Biomed Microdevices,2006,8:215–225.
    [78] Ronaghi M. Pyrosequencing sheds light on DNA Sequencing[J]. Genome Res,2001,11:3–11.
    [79] Fair R B, Khlystov A, Tailor T, et al. Chemical and biological applications of digital-microfluidicdevices[C].2007,IEEE Des Test (in press).
    [80] Barbulovic-Nad I, Yang H, Park P S, et al. Digital microfluidics for cell-based assays[J]. Lab Chip,2008,8:519-526.
    [81] Shah G J, Ohta A T, Chiou E P Y, et al. EWOD-driven droplet microfluidic device integrated withoptoelectronic tweezers as an automated platform for cellular isolation and analysis[J]. Lab Chip,2009,9:1732-1739.
    [82] Barbulovic-Nad I, Au SH, Wheeler AR: A microfluidic platform for complete mammalian cell culture[J].Lab Chip,2010,10:1536-1542.
    [83] Jing Liu, Nam, Trung et al. Numerical Simulation of Droplet-Based Microfluidics-A Review[J].Micro and Nanosystems,2010Vol.2, No.3:193-201
    [84] Cristini, V.; Bawzdziewicz, J.; Loewenberg, M. Drop breakup in three-dimensional viscous flows[J].Phys. Fluids,1998,10(8),1781-1783.
    [85] Janssen, P. A.; Anderson, P. D. Boundary-integral method for drop deformation between parallel plates[J].Phys. Fluids,2007,19(4).
    [86] Zinchenko, A.Z.; Davis, R.H. Boundary-integral algorithm for drop squeezing through a granularmaterial[C]. In:9th International Conference on Multiscale and Functionally Graded Materials, FGM IX,Oahu Island, HI, October15-18,2008.
    [87] Chra bi H, Lasseux D, Arquis E, et al. Stretching and squeezing of sessile dielectric drops by the opticalradiation pressure[J]. Phys. Rev. E-Statistic. Nonlinear, Soft Matter Phys.,2008,77(6).
    [88] Glimm, J.; Grove, J.W.; Li, X.L.; Shyue, K.M.; Zeng, Y.; Zhang, Q. Three-dimensional front tracking[J].SIAM J. Sci. Comput.,1998,19(3),703-727.
    [89] Torres, D.J.; Brackbill, J.U. The point-set method: front-tracking without connectivity[J]. Comput. Phys.,2000,165(2),620-644.
    [90] Esmaeeli, A.; Tryggvason, G. Computations of explosive boiling in microgravity. J. Sci. Comput.,2003,19(1-3),163-182.
    [91] Dijkhuizen W, Roghair I, Annaland M V S, et al. DNS of gas bubbles behaviour using an improved3Dfront tracking model-Model development[J]. Chem. Eng. Sci.,2010,65(4),1427-1437.
    [92] Gueyffier D, Li J, Nadim A, et al. Volume-of-fluid interface tracking with smoothed surface stressmethods for three-dimensional flows[J]. Comput. Phys.,1999,152(2),423-456.
    [93] Kim J, Kang K, Lowengrub J. Conservative multigrid methods for Cahn-Hilliard fluids[J]. Comput. Phys.,2004,193(2),511-543.
    [94] Kim C H, Shin S H, Lee H G, et al. Phase-field model for the pinchoff of liquid-liquid jets[J]. KoreanPhys. Soc.,2009,55(4),1451-1460.
    [95] Kim J. A generalized continuous surface tension force formulation for phase-field models formulti-component immiscible fluid flows[J]. Comput. Meth. Appl. Mech. Eng.,2009,198(37-40),3105-3112.
    [96] Sankaranarayanan K, Kevrekidis I G, Sundaresan S, et al. A comparative study of lattice Boltzman andfronttrancking finite-difference methods for bubble simulations[J]. Int. J.Multiphase Flow,2003,29(1),109-116.
    [97] Yap, Y. F.; Chai, J. C.; Wong, T.N, et al. A procedure for the motion of particleencapsulated droplets inmicrochannels[J]. Numer. Heat Transfer, Part B,2008,53(1),59-74.
    [98] Nochetto, R.H.; Walker, S.W. A hybrid variational front trackinglevel set mesh generator for problemsexhibiting large deformations and topological changes[J]. Comput. Phys.,2010,229(18),6243-6269.
    [99] Tanguy, S.; Berlemont, A. Application of a level set method for simulation of droplet collisions[J]. Int. J.Multiphase Flow,2005,31(9),1015-1035.
    [100] Croce, R.; Griebel, M.; Schweitzer, M.A. Numerical simulation of bubble and droplet deformation by alevel set approach with surface tension in three dimensions[J]. Numer. Methods Fluids,2010,62(9),963-993.
    [101] S. K. Cho, H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets byelectrowetting-based actuation for digital microfluidic circuits[J]. Microelectromech. Syst.,2003, vol.12,no.1, pp.70–80.
    [102] H. J. J. Verheijen and W. J. Prins. Reversible electrowetting and trapping of charge: Model andexperiments[J]. Langmuir,1999, vol.15, pp.6616–6620.
    [103] B. Shapiro, H. Moon, R. Garrell, et al. Equilibrium behavior of sessile drops under surface tension,applied external fields, and material variations[J]. Appl. Phys.,2003, vol.93,.
    [104] T. B. Jones. On the relationship of dielectrophoresis and electrowetting[J]. Langmuir,2002, vol.18, pp.4437–4443.
    [105] K.-L.Wang and T. B. Jones. Electrowetting dynamics of microfluidic actuation[J]. Langmuir,2005,vol.21, no.9, pp.4211–4217.
    [106] C. Decamps and J. D. Coninck. Dynamics of spontaneous spreading under electrowetting conditions[J].Langmuir,2000, vol.16, no.26, pp.10150–10153.
    [107] H.-W. Lu, K. Glasner, A. L. Bertozzi, et al. A diffuse interface model for electrowetting droplets in ahele-shaw cell[J]. Fluid Mech.,2007,590:411-435.
    [108] Shawn W. Walker, Benjamin Shapiro. Modeling the Fluid Dynamics of Electrowetting on Dielectric(EWOD)[J]. Journal of microelectromechanical system.2006, Vol.15, NO.4,:986-1000
    [109] L. Clime D, Brassard T. Veres. Numerical modeling of electrowetting transport processes for digitalmicrofluidics[J]. Microfluid Nanofluid,2010,8:599–608.
    [110] Poorya A. Ferdowsi, Markus Bussmann. Numerical treatment of contact line motion near a sharpcorner[C]. V European Conference on Computational Fluid Dynamics ECCOMAS CFD2010J. C. F.Pereira and A. Sequeira (Eds) Lisbon, Portugal,14-17June2010.
    [111] Su F,Chakrabarty K. Module placement for fault-tolerant microfluidics-based biochips[J]. ACMTransactions on Design Automation of Eleetronie Systems,2006,11(3):682-710.
    [112] Su F,Chakrabarty K. Unified high-level synthesis and module placement for defect-tolerant microfluidicBiochips[C].42nd Design Automation Conferenee,2005
    [113] Yuh P H, Yang C L, Chang Y W. Placement of digital microfluidic biochips using the T-treeformulation[C].43rd Design Automation Conference, July24-28,2006, San Francisco: ACM.
    [114] Yuh P H, Yang C L, Chang Y W. Placement of defect-tolerant digital microfluidic biochips using theT-tree formulation[J]. ACM Journal on Emerging Technologies in Computing Systems,2007,3(3):13-45.
    [115]杨敬松.数字微流控生物芯片的布局及调度问题研究[D].吉林大学,2008.12
    [116] Karl F,Bohringer. Towards Optimal Strategies for Moving Droplets in Digital Microfluidic SystemS
    [C]. IEEE International Conference on Roboties and Automation,2004.
    [117] Karl F,Bohringer. Modeling and controlling parallel tasks in droplet based microfluidic systems[J].Comaputer-Aided Design of Integrated Circuits and Systems,2006,25(2):334-344.
    [118] Griffith E J,Akellas, Goldberg M K. Performance characterization of a reconfigurable planar-arraydigital microfluidic system[J]. Comaputer-Aided Design of Integrated Circuits and Systems,2006,25(2):345-357.
    [119] Su F,Hwang W,Chakrabarty K. Droplet routing in the synthesis of digital microfluidic biochips[C].Design,Automation and Test in Europe,2006. DATE apos:06. Munieh: European Design andAutomation Assoeiation.
    [120] Xu T, Chakrabarty K. Integrated Droplet Routing in the Synthesis of microfluidic Biochips[C]. DesignAutomation ConferenCe,June4-8,2007. SanFraneiseo: ACM.
    [121]覃昭君.开放体系下电介质上的电润湿的研究[D].暨南大学,2011.6
    [122] http://baike.baidu.com/view/263802.htm
    [123] Vijay Srnivasan, et al. An integrated digital microfluidic lab on chip for clinical diagnostics on humanphysiological fluids[J]. Lab on a Chip,2004:310-315..
    [124] Krishnendu Chakrabarty, Fei Su. System-level design automation tools for digital microfluidicbiochips[C]. ISSS’05, Jersey City, New Jersey, USA, Sept,2005:19-21
    [125] P G deGennes, F Brochart-Wyart, D Qu′er′e. capillarity and wetting phenomena:Drops, Bubbles, Pearlsand Waves[M]. Springer,2005.
    [126] J Y Wang, S Betelu, B M Law. Line tension approaching a first-order wetting transition: Experimentalresults from contact angle measurements[J]. Physical Review E,2001, Vol.63, pp.031601-1–031601-10.
    [127] T B Jones, J D Fowler, Young Soo Chang, et al. Frequency-based relationship of electrowetting anddielectrophoretic liquid microactuation[J]. Langmuir,2003, Vol.19, pp.7646–7651.
    [128] T B Jones. An electromechanical interpretation of electrowetting,[J]. Micromech. Microeng,2005, Vol.15, pp.1184–1187.
    [129] Kwan Hyoung Kang. How electrostatic fields change contact angle in electrowetting[J]. Langmuir,2002Vol.18, pp.10318–10322,.
    [130] Jun Zeng, T Kors. Meyer. Principles of droplet electrohydrodynamics for lab-on-a-chip[J]. Lab. Chip.,2004Vol.4, pp65–277,.
    [131] C.C. Meek and P. Pantano. Spatial confinement of avidin domains in microwell arrays[J]. Lab on a Chip,2001,Vol.1:158163.
    [132] Kang K H, Kang I S, Lee C M. Electrostatic contribution to line tension in a wedge-shaped contactregion[J]. Langmuir,2003, Vol.19:9334.
    [133] Buehrle J, Herminghaus S, Mugele F. Interface profiles near three-phase contact lines in electric fields[J].Phys. Rev. Lett.,2003, Vol.91:086101.
    [134] Jones T. An electromechanical interpretation of electrowetting[J]. Micromech. Microeng.2005,15:1184-1187.
    [135] Frieder Mugele, Jean-Christophe Baret. Electrowetting: from basics to applications[J]. Journal of physics:condensed matter,2005,17: R705–R774.
    [136] Vallet M, Vallade M, Berge B. Limiting phenomena for the spreading of water on polymer films byelectrowetting[J]. Eur. Phys. J. B,1999,11:583.
    [137] Shapiro B, Moon H, Garrell R L, et al. Equilibrium behaviour of sessile drops under surface tension,applied external fields, and material variations[J]. Appl. Phys.2003,93:5794.
    [138] Peykov V,Qulnn A, Ralston J. Electrowetting: A model for contact-angle saturatlon[J]. Collold Polym.Sel.2000,278:789-793.
    [139] Moon H, Cho S K. Garrell, R, et al. Low voltage electrowetting-ondielectric[J]. Applied Phys.,2002,92(7):4080-4087.
    [140] Shaun Berry. Electrowetting Phenomenon for Microsized Fluidic Devices[D]. Tufts University,2008.3
    [141] J. Berthier, Ph Clementz, O Raccurt, et al. Computer aided design of an EWOD microdevice[J], Sensorsand Actuators A: Physical,2006, Vol.127, pp.283–294.
    [142] J Berthier, Ph Clementz, D Jary, et al. Mechanical behavior of micro-drops in EWOD systems: dropextraction, division, motion and constraining[C], Proceedings of the Nanotech2005Conference,Anaheim,8–12May,2005.
    [143] Hsiang-Wei Lu. Fluid Dynamics of an Electrowetting Drop: Theories, imulations, and Experiments[D].University of California,2007
    [144] Barry W finger. Application of capillary fluid management techniques to the design of a phaseseparating microgravity bioreactor[R].1993,SAE932165.
    [145]胡文瑞,徐硕昌.微重力流体力学[M].北京:科学出版社,1999:19.
    [146] B Shapiro, H Moon, R L Garrel, et al. Equilibrium behavior of sessile drops under surface tension,applied external fields, and material variations[J]. Appl. Phys.,2003,93:5794-5811.
    [147] F Blanchette and T P Bigioni, Partial coalescence of drops at liquid interfaces[J], Nature Physics,2006,Vol.2, pp.254–257.
    [148] P G deGennes. Wetting: statics and dynamics[J]. Rev. Mod. Phys,1985,57:827–863.
    [149] A Paterson and M Fermigier. Wetting on Heterogeneous surfaces: Influence of defect interactions[J].Phys. Fluids,1997.,9:2210–2216.
    [150] A Paterson, M Fermigier, L Limat. Wetting on Heterogeneous surfaces: Experiments in an imperfectHele-Shaw cell[J]. Phys. Rev. E,1995,51:1291–1298.
    [151] L Carrillo, J Soriano, J Ortin. Radial displacement of a fluid annulus in a rotating Hele-Shaw cell[J].Phys. Fluids,1999,11:778–785.
    [152] L Carrillo, J Soriano, J Ortin. Interfacial instabilities of a fluid annulus in a rotating Hele-Shaw cell[J].Phys. Fluids,2000,12:1685–1698.
    [153] E B Dussan. On the spreading of liquid on solid surfaces: static and dynamic contact lines[J]. Ann. Rev.Fluid Mech.,1979,11:371–400.
    [154] C Huh, L E Scriven. Hydrodynamic model of steady movement of a solid-liquid-fluid contact line[J].Coll. Int. Sci.,1971,35:85–101.
    [155] H P Greenspan. On the motion of a small viscous droplet that wets a surface[J]. Fluid Mech.,1978,84:125–143,.
    [156] L M Hocking. A moving fluid interface. part2. the removal of the force singularity bu a slip flow[J].Fluid Mech.,1977,79:209–229.
    [157] J A Diez, L Kondic, A Bertozzi. Global models for moving contact lines[J]. Phys. Rev. E,2000,63:179–206..
    [158] J. B. Freund. The atomic detail of a wetting/dewetting flow[J]. Phys. Fluids,2003,15:L33–L36.
    [159] N G Hadjiconstantinou. Hybrid atomistic-continuum formulations and the moving contact lineproblem[J]. Comp. Phys.,1999,154:245–265.
    [160] Y. Pomeau. Recent progress in the moving contact line problem: a review[J]. C. R. Mechanique,2002,330:207–222.
    [161] L M Pismen, Y Pomeau. Mobility and interactions of weakly nonwetting droplets[J]. Phys. Fluids,2004,16:2604–2612.
    [162] Kuo J S, Spicar-Mihalic P, Rodriguez I, et al. Electrowetting-induced droplet movement in animmiscible medium[J]. Langmuir2003,19:250.
    [163] Blake T D, Clarke A, Stattersfield E H. An investigation of electrostatic assist in dynamic wetting[J].Langmuir,2000,16:2928.
    [164] V Bahadurg, S V Garimella. Energy-based model for electrowetting-induced droplet actuation[J].Journal of Micromechanics and Microengineering,2006,16:1494-1503.
    [165] Ren H, Srinivasan V, Fair R B. Design and testing of an interpolating mixing architecture forelectrowetting-based droplet on-chip chemical dilution[C]. In:12th International conference-Inter Confon solid-state sensors, actuators and microsystems. Digest of Technical Papers,2003:pp619–622
    [166] Ren H, Srinivasan V, Fair R B. Automated electrowettingbased droplet dispensing with goodreproducibility[C]. Proceedings of MicroTAS,2003:993–996
    [167] Cho S-K, Kim C-J. Particle separation and concentration control for digital microfluidic systems[C].Proc IEEE Micro Electro Mech Syst (MEMS),2003,686–689
    [168] Srinivasan V. A digital microfluidic lab-on-a-chip for clinical applications[D]. Duke University,2005.
    [169] Srinivasan V, Pamula V K, Paik P Y, et al. Protein stamping for MALDI mass spectrometry using anelectrowetting-based microfluidic platform[C]. In: Smith LA, Sobek D (eds) in lLab-on-a-chip: platforms,devices, and applications. Proc. Of SPIE,2004,5591, pp26–34
    [170] Srinivasan V, Pamula V K, Fair RB. A droplet-based microfluidic lab-on-a-chip for glucose detection[J].Anal Chim Acta,2004,507:145–150
    [171] Ren H. Electrowetting-based sample preparation: an initial study for droplet transportation, creation andon-chip digital dilution[D]. Duke University,2004.
    [172] Cho S-K, Fan S-K, Moon H, etal. Towards digital microfluidic circuits: creating, transporting, cuttingand merging liquid droplets by electrowetting-based actuation. In: TechDig MEMS2002IEEE Inter Confon Micro Electro Mechanical Systems,2002, vol11, pp454–61
    [173]刘建军,章宝华.流体力学[M].北京:北京大学出版社,2006:49-72
    [174] Shawn W Walker. Modeling, simulating and controlling the fluid dynamics of electro-wetting ondielectric [D]. University of Maryland, College Park,2007.
    [175] Bahadur V, Garimella S V. An Energy-Based Model for Electrowetting-Induced Droplet Actuation,Journal of Micromechanics and Microengineering,2006, vol.16, no.8, pp.1494–1503,
    [176] Michael John Schertzer. Characterization of the Motion and Mixing of Droplets in Electrowetting onDielectric Devices[D]. University of Toronto,2010.
    [177]王振海. level set算法研究及其在拓扑优化设计中的应用[D].西北工业大学,2006.8
    [178] Tsai Richard, Osher Stanley. Level Set Methods and their Application in Image Science[J], comm.math. Sci.2003,Vol.1, No.4:623-656.
    [179] Elin Olsson, Gunilla Kreiss. A conservative level set method for two phase flow[J]. Journal ofComputational Physics,2005,210:225–246
    [180] Osher, S. and Sethian, J. A. Fronts propagating with curvature-dependent speed: Algorithms based onHamilton-Jacobi formulations[J]. Comput. Phys,1988,79: P.12–49.
    [181]张玉宝,李强.基于COMSOL Multiphysics的MEMS建模及应用[M].北京:冶金工业出版社,2007.
    [182]高一娟.微通道内两相流界面追踪的数值模拟[D].天津大学,2009.5.
    [183]周琳.涂敷技术用于赝复硅橡胶表面改性的研究[D].第四军医大学,2010.4.
    [184] H Tavana, A W Neumann. On the question of rate-dependence of contact angles[J], Colloids Surf. A:Physiochem. Eng. Aspects,2006, Vol.282–283, pp.256–262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700