用户名: 密码: 验证码:
阵列波导器件耦合封装机理及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列波导器件是下一代光纤通信技术发展的基础支撑,具有广阔应用前景。它采用半导体制造工艺制作波导芯片,将常规分立光学元件的各种功能集成到同一光学衬底表面,完成常规由多个分立光学元件所构成的庞大光学系统的光信息处理能力,实现光信号分配、开关、滤波等功能,具有结构紧凑、抗干扰、性能一致性好、便于自动化批量生产等突出优势,是目前光电子器件发展的前沿。阵列波导器件的种类、结构形式十分丰富,随着光纤通信对器件质量要求的迅速提高,目前普遍使用的制造技术、装备和工艺都难以适应,迫切需求更深层次的认识阵列波导器件封装制造过程中的机理性、规律性科学问题,以期在制造技术上取得突破。
     本文以下一代阵列波导器件封装制造过程中的对准耦合与固接为核心展开研究,通过理论分析、试验测试以及有限元仿真等方法,对阵列波导器件对准耦合、耦合界面光波传输与畸变规律、自动化对准工艺与算法、固接强度生成与微位移控制、装备集成进行了研究,建立了光波传输原理与器件结构参数、制造精度与工艺参数的融合模型并找到了其中的量值规律,实现了阵列波导器件自动化封装装备集成,从而提升我国阵列波导器件自动化封装制造水平。论文的主要研究内容及研究结果如下:
     (1)针对阵列波导器件对准耦合及耦合界面光波传输特性,以平面光波导分路器为例,基于波导光学建立波导芯片与光纤对准耦合模型,分析讨论模场空间分布对耦合损耗的影响规律,并进行试验验证。基于Fresnel反射原理,建立波导芯片与阵列光纤固接界面光波传输模型,分析讨论光波在固接界面上的传输行为,并进行试验验证。
     (2)提出了阵列波导器件对准耦合优化工艺;针对爬山法因采样点较多且对准时间较长的缺点,综合考虑阵列波导芯片和光纤的模场空间分布、对准耦合平台的运动特性以及对准误差与耦合损耗的关系,提出基于多项式拟合的阵列波导器件自动精密对准耦合算法,对准速度、精度以及可靠性均大大提高;针对多通道对准,提出基于虚拟旋转轴法与多项式拟合的复合对准算法,对准速度快、精度高;最后分析讨论光功率通道均衡原理和方法,并进行试验验证。
     (3)针对阵列波导器件固接微位移生成与控制技术,基于表面物理化学理论,分析讨论固化胶液在阵列波导器件耦合界面的润湿规律;基于有限元法分析讨论阵列波导器件固接界面残余应力与微位移生成机制;针对微位移,分析讨论胶液固化收缩与热作用生成微位移机制,及其对器件光学性能的影响规律;建立固结强度与刚度分布的理论模型与设计方法,提出胶液固化等技术的固结强度与刚度调控方法。
     (4)针对阵列波导器件自动化封装装备集成,基于多体系统动力学理论,构建对准耦合平台的精度传递模型,对敏感误差源、误差补偿的基本原理以及误差补偿量计算方法进行分析与讨论。根据波导芯片与阵列光纤自动化对准要求,构建波导芯片与阵列光纤相对位置检测与调整的机器视觉系统,提出图像预处理和分级快速Hough变换的直线检测技术。构建点胶与紫外光固化系统。综合上述各单元技术,实现了阵列波导器件自动化封装装备的集成,并开发了自动化的封装工艺软件。
     (5)综合利用前面的研究成果,以1×8、1×16和1×32的平面光波导分路器为例,进行了批量封装试验,并对器件性能进行了测试,结果表明,可实现单点耦合光功率损耗<0.1dB,波长相关损耗<0.2dB,均匀性<0.2dB,偏振相关损耗<0.15dB,温度相关损耗<0.22dB,表明基于本课题开发的阵列波导器件自动化封装装备与工艺制造的阵列波导器件明显优于目前国内外商用器件的水平,体现本课题具有很好的技术优势和实际工程适应性。
Arrayed waveguide devices are the foundations of the next generation optical fiber communication technology development, which have bright and wide application prospects. These arrayed waveguide chips, similar in many ways to their electronic counterparts, are fabricated using wafer-level processing techniques and use optical waveguides to route photons, the same way that metal traces are used to route electrons in an electronic chip. These devices include optical beam splitters/combiners for branching/combining optical signals, optical switchers for changing optical paths, optical filtering for introducing multiple optical channels into a single optical fiber, and so on. These devices have many features, such as compact structure, strong noise immunity, excellent property, and easy automation production, which are the developing frontiers of optoelectronic devices at present. Arrayed waveguide devices are rich in theirs categories and structures. With the rapid increasing demands for the quality devices of optical fiber communication system, many problems about mechanisms and rules of manufacturing process for arrayed waveguide devices packaging must be investigated more profoundly, in order to make a breakthrough in the manufacturing technologies, processes and equipment of arrayed waveguide devices.
     This dissertation focused on the aligning coupling and bonding of arrayed waveguide devices packaging. To address the problems about aligning coupling, the light-wave transmission and aberrance rules on the coupling interface, automatic aligning process and aligning algorithms, residual stress and micro displacement, and equipment integration are studied systematically by theoretical analysis, experimental study and finite element analysis, the syncretic models and numerical-value rules between light-wave transmission and structure parameters, aligning precision and technologic parameters of arrayed waveguide device are established. The automated packaging equipment for arrayed waveguide devices is realized. It can raise the level of the arrayed waveguide devices automation manufacturing. The main research contents and results are listed as follows:
     (1) The aligning coupling and light-wave transmission on the coupling interface of arrayed waveguide device are researched. The aligning coupling model between waveguide chip and single mode fiber is established based on the waveguide optics theory. The influence rule of the mode field distribution and coupling loss has been analyzed and discussed; meanwhile the experimental verification has been adopted. Base on the Fresnel principle, the light-wave transmission model of waveguide chip and single mode fiber is established. The theoretical analyses of light-wave transmission behavior and test results are given.
     (2) Aiming at the aligning coupling process, the5RS techniques for arrayed waveguide devices packaging are put forward, which are real6freedom controllability, real parallelism controllability, real seamless coupling, real gap controllability and real performance controllability. Aiming at the disadvantages of climbing algorithm, such as much more sampling points and time consuming are used in aligning. The mode field distribution of waveguide chip and single mode fiber, the motion characteristics and the relation between aligning error and optical power coupling loss are comprehensively considered. The aligning algorithm base on polynomial fitting is put forward. The experimental results verify the rapidness, precision and highly reliability of the proposed approach. The complex algorithm of virtual pivot, polynomial fitting is adopted to align multi-channels; the experimental results indicate that the complex algorithm can align rapidly and effectively. The principle and method of optical channel balance are discussed, and the experimental results are given.
     (3) Aiming at the generation and controlling technology of arrayed waveguide devices micro-displacement, base on the surface physical chemistry theory, the wetting rule of curing adhesive in the alignment of arrayed waveguide devices is analyzed and discussed. Base on the finite element method, the micro-displacement mechanism and residual stress of arrayed waveguide devices in curing layer is analyzed and discussed. Aiming at micro-displacement, the mechanism by curing adhesive contraction and thermal effect is analyzed and discussed, and the impact towards optical performance. The theoretical model and designing method of consolidation of strength and stiffness distribution is established, and the method of consolidation of strength and stiffness is developed for the technology of curing adhesive.
     (4) Aiming at the automated packaging equipment for arrayed waveguide devices, base on the theory of multi-body system dynamics, the accuracy transfer model of aligning and coupling is established. The basic principles of sensitive error source, error compensation and computation of the value of error compensation are analyzed and discussed. According to the automated alignment requirements of waveguide chip and fiber array, the machine visual system of measurement and adjustment of waveguide chip and fiber array is established, the linear measurement technology of image preprocessing and grading rapid Hough Transform is proposed, and the curing system of adhesive and UV is established. Summarization above the technologies of each unit mentioned, the arrayed waveguide devices automated packaging equipment is realized, and the automated packaging process software is developed.
     (5) Comprehensive utilization of the research results mentioned above,1×8,1×16and1×32planar optical waveguide splitter are taken as examples, a lot of packaging experiments are taken, and the performance of device is measured. The results indicate that the optical power loss of single point lower than0.1dB, the wavelength dependent loss lower than0.2dB, the uniformity lower than0.2dB, the polarization dependent loss lower than0.15dB, and the temperature dependent loss lower than0.22dB, which indicates that the arrayed waveguide devices base on automated packaging equipment and processing mechanism of the subject are better than other commercial devices apparently, and reflects that the subject has many technical advantages and practical engineering adaptability.
引文
[1]L. Thylen, S.L. He, L. Wosinski, et al. The moore's law for photonic integrated circuits [J]. Journal of Zhejiang University SCIENCE A,2006,7(12):1961-1967
    [2]Z.Q. Pan, C.Y. Yu, A.E. Willner. Optical performance monitoring for the next generation optical communication networks [J]. Optical Fiber Technology,2010,16(1): 20-45
    [3]K. Masao. Silica waveguides on silicon and their application to integrated-optic components [J]. Optical and Quantum Electronics,1990,22(5):391-416
    [4]J. Masahiko, K. Hideaki, H. Yoshinori, et al. Towards ultrahigh-speed high-capacity networks [J]. NTT Technical Review,2009,7(5):1-8
    [5]S.M. Ojha, C. Cureton, T. Bricheno, et al. Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices [J]. Electronics Letters,1998,34(1):78-79
    [6]Y. Inoue, M. Ishii, Y. Hida, et al. PLC Components used in FTTH access networks [J]. NTT Technical Review,2005,3(7):22-26
    [7]M. Stephen. Communication network demand drives growth of the planar waveguide market [J]. Market Watch,2002,45(9):34-35
    [8]Y. Yamada, F. Hanawa, T. Kitoh, et al. Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive [J]. IEEE Photonics Technology Letters, 1992,4(8):906-908
    [9]H. Ehlers, M. Biletzke, B. Kuhlow, et al. Optoelectronic packaging of arrayed-waveguide grating modules and their environmental stability tests [J]. Optical Fiber Technology,2000,6(4):344-356
    [10]Y. Hibino, F. Hanawa, H. Nakagome, et al. High reliability optical splitters composed of silica-based planar lightwave circuits [J]. Journal of Lightwave Technology,1995,13(8):1728-1735
    [11]E.J. Murphy. Fiber attachment for guided wave devices [J]. Journal of Lightwave Technology,1988,6(6):862-871
    [12]S.I. Hosain, J.P. Meunier, Z.H. Wang. Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset [J]. Journal of Lightwave Technology,1996,15(5):901-907
    [13]M. A. Uddin, H. P. Chan, T. O. Tsun, et al. Uneven curing induced interfacical delamination of UV adhesive-bonded fiber array in Ⅴ-groove for photonic packaging [J]. Journal of Lightwave Technology,2006,24(3):1342-1349
    [14]M. Norio, N. Kouzaburo. UV-Curable Adhesives for optical communications [J]. The Journal of Adhesion,1991,35(4):251-267
    [15]郑煜,段吉安.平面光波导与阵列光纤耦合分析[J].中南大学学报(自然科学版),2009,40(3):681-686
    [16]王启明.光网络中关键性光子集成器件的研究进展[J].中国科学(E辑),2002,32(4):516-522
    [17]张彤,崔一平.集成光学国际研究进展[J].电子器件,2004,27(1):196-201
    [18]W.W. Anderson. Mode confinement and gain in junction lasers [J]. IEEE Journal of Quantum Electronics,1965,1(6):228-236
    [19]S.E. Miller. Light propagation in generalized lenslike media [J]. Bell System Technical Journal,1965,44(11):2017-2064
    [20]S.E. Miller. Integrated optics:an introduction [J]. Bell System Technical Journal,1969, 48(9):2059-2069
    [21]T. Miya. Silica-based planar lightwave circuits:passive and thermally active devices [J]. IEEE Journal of Selected Topics in Quantum Electronics,2000,6(1):38-45
    [22]Y. Yamada, A. Takagi, I. Ogawa, et al. Silica-based optical waveguide on terraced silicon substrate as hybrid integration platform [J]. Electronics Letters,1993,29(5): 444-445
    [23]M. Kawachi, M. Yasu, T. Edahiro. Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition [J]. Electronics Letters,1983,19(15): 583-584
    [24]C. Laurent-Lund, M.R. Poulsen, M. Beukema, et al. PECVD grown multiple core planar waveguides with extremely low interface reflections and losses [J]. IEEE Photonics Technology Letters,1998,10(10):1431-1433
    [25]R.V. Ramaswamy, R. Srivastava. Ion-exchanged glass waveguides:a review [J]. Journal of Lightwave Technology,1988,6(6):984-1000
    [26]J.P. Reithmaier. Focused ion-beam implantation induced thermal quantum-well intermixing for monolithic optoelectronic device integration [J]. IEEE Journal of Selected Topics in Quantum Electronics,1998,4(4):595-605
    [27]S. Miyazawa, S. Fushimi, S. Kondo. Optical waveguide of LiNbO3 thin film grown by liquid phase epitaxy [J]. Applied Physics Letters,1975,26(1):8-10
    [28]A.J. Steckl, J.C. Heikenfeld, L. Dong-Seon, et al. Rare-earth-doped GaN:growth, properties, and fabrication of electroluminescent devices [J]. IEEE Journal of Selected Topics in Quantum Electronics,2002,8(4):749-766
    [29]D.L. Zhou, L.J. Mawst. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers [J]. IEEE Journal of Quantum Electronics,2002,38(12):1599-1606
    [30]M. Hoffmann, P. Kopka, E. Voges. Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems [J]. IEEE Photonics Technology Letters,1997,9(9):1238-1240
    [31]H.Y. Ou. Different index contrast silica-on-silicon waveguides by PECVD [J]. Electronics Letters,2003,39(2):212-213
    [32]G. Grand, J.P. Jadot, H. Denis, et al. Low-loss PECVD silica channel waveguides for optical communications [J]. Electronics Letters,1990,26(25):2135-2137
    [33]A. Piccirillo, G. Zaffiro, T. Tambosso, et al. Reliability of optical branching devices [J]. IEEE Journal of Selected Topics in Quantum Electronics,1999,5(5):1413-1417
    [34]B.E. Little, S.T. Chu, H.A. Haus, et al. Microring resonator channel dropping filters [J]. Journal of Lightwave Technology,1997,15(6):998-1005
    [35]H. Takahashi, S. Suzuki, K. Kato, et al. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution [J]. Electronics Letters,1990, 26(2):87-88
    [36]N. Yoneda, R. Miyazaki, I. Matsumura, et al. A design of novel grooved circular waveguide polarizers [J]. IEEE Transactions on Microwave Theory and Techniques, 2000,48(12):2446-2452
    [37]E.L. Wooten, K.M. Kissa, E.J. Murphy. A review of lithium niobate modulators for fiber-optic communications systems [J]. IEEE Journal of Selected Topics in Quantum Electronics,2000,6(1):69-82
    [38]B.J. Li, S.J. Chua. Two-mode interference photonic waveguide switch [J]. Journal of Lightwave Technology,2003,21(7):1685-1690
    [39]X.J. Ke, M.R. Wang, D. Li. All-optical controlled variable optical attenuator using photochromic sol-gel material [J]. IEEE Photonics Technology Letters,2006,18(9): 1025-1027
    [40]N.Q. Ngo, L.N. Binh. Synthesis of tunable optical waveguide filters using digital signal processing technique [J]. Journal of Lightwave Technology,2006,24(9): 3520-3531
    [41]I. Baumann, S. Bosso, R. Brinkmann, et al. Er-doped integrated optical devices in LiNbO3 [J]. IEEE Journal of Selected Topics in Quantum Electronics,1996,2(2): 355-366
    [42]小林功郎.光集成器件[M].崔凤林译.北京:科学出版社,2002,1-12
    [43]R.A. Boudreau, S.M. Boudreau. Passive micro-optical alignment methods [M]. New York:CRC Press,2005,1-25
    [44]Y. Zheng, J.A. Duan. Materials and fabrication issues of micro Ⅴ-groove for optoelectronic packaging [J]. Advanced Materials Research,2011,295-297: 1330-1334
    [45]Z. Tang, R. Zhang, S.K. Mondal, et al. Optimization of fiber-optic coupling and alignment tolerence for coupling between a laser diode and a wedged single-mode fiber [J]. Optics Communication,2001,199(1-4):95-101
    [46]J. Chun, Y.L. Wu, Y.F. Dai, et al. Fiber optic active alignment method based on a pattern search algorithm [J]. Optical Engineering,2006,45(4):045005.1-045005.6
    [47]淳静.光纤有源器件激光焊接封装的关键技术研究[D].长沙:国防科技大学,2006
    [48]M. Mizukami, M. Hirano, K. Shinjo. Simultaneous alignment of multiple optical axes in a multistage optical system using Hamiltonian algorithm [J]. Optical Engineering, 2001,40(3):448-454
    [49]R. Zhang, F.G. Shi. Novel fiber optic alignment strategy using Hamiltonian algorithm and Matlab/Simulink [J]. Optical Enginerring,2003,42(8):2240-2245
    [50]D.T. Pham, M. Castellani. Intelligent control of fibre optic components assembly [J]. Journal of Engineering Manufacture,2001,215(9):1177-1189
    [51]R. Zhang. Study of novel algorithms for fiber-optic alignment and packaging automation [D]. Irvine:University of California,2003
    [52]M. Masahiro, N. Yoshihiro, H. Tetsuya. An automatic fiber alignment system using genetic algorithms [J]. System and Computers in Japan,2004,35(11):80-90
    [53]李亚娟.基于遗传算法的集成光子器件对准研究[D].长沙:中南大学,2009
    [54]T. Hashimoto, Y. Nakasuga, Y. Yamada, et al. Multichip optical hybrid integration technique with planar lightwave circuit platform [J]. Journal of Lightwave Technology, 1998,16(7):1249-1258
    [55]M. J. Wild, A. Gillner, R. Poprawe. Locally selective bonding of silicon and glass with laser [J]. Sensors and Actuator,2001,93(1):63-69
    [56]E.J. Murphy, T.C. Rice, L. Mccaughan, et al. Permanent attachment of single-mode fiber arrays to waveguides [J]. Journal of Lightwave Technology,1985,3(4):795-799
    [57]K. Nakamura, N. Murata, T. Maruno. Design and development of optical adhesives for optical communication [J]. Review of Electronical Communications Laboratories, 1989,37(2):127-132
    [58]K.W. Lam, H.P. Chan, M.A. Uddin. Failure analysis of adhesive bonded plarar lightwave circuit (PLC) based optical splitter packages [J]. Optoelectronics and Advanced Materials-Rapid Communications,2009,3(10):998-1004
    [59]J.H. Song, H.N.J. Fernando, B. Roycroft, et al. Practical Design of Lensed Fibers for Semiconductor Laser Packaging Using Laser Welding Technique [J]. Journal of Lightwave Technology,2009,27(11):1533-1539
    [60]C.A. Edwards, H.M. Presby, C. Dragone. Ideal microlenses for laser to fiber coupling [J]. Journal of Lightwave Technology,1993,11(2):252-257
    [61]T. Nishimura, Y. Nakagawa. Analysis of stress due to shrinkage in a hardening process of liquid epoxy resin [J]. Heat Transfer-Asian Research,2002,31(3):194-211
    [62]A. Priyadarshi, L.H. Fen. Misalignment of the optical fibers in multi-channel V-grooves [J]. Thin Solid Films,2006,504(1-2):341-345
    [63]A. Priyadarshi, L.H. Fen. Fiber misalignment in silicon V-groove based optical modules [J]. Optical Fiber Technology,2006,12(2):170-184
    [64]H. Magata, M. Shiroishi. Evaluation of new UV-Curable adhesive material for stable bonding between optical fibers and waveguide devices:problems in device packaging [J]. Optical Fiber Technology,1995,1(3):283-288
    [65]G.Z. Xiao, Z.Y. Zhang, C.P. Grover. Adhesives in the packaging of planar lightwave circuits [J]. International Journal of Adhesion &Adhesives,2004,24(4):313-318
    [66]J.A. Soons, F.C. Theuws, P.H. Schellekens. Modeling the errors of multi-axis machines: a general methodology [J]. Precision Engineering,1992,14(1):5-19
    [67]K.F. Eman, B.T. Wu, M.F. Devries, A generalized geometric error model for multi-axis machines [J]. Manufacturing Technology,1987,36(1):253-256
    [68]Y.X. Su, B.Y. Duan, C.H. Zheng, et al. Disturbance-rejection high-precision motion control of a stewart platform [J]. IEEE Transactions on Control Systems Technology, 2004,12(3):364-374
    [69]S.K. Kuo, C.H. Menq. Modeling and control of a six-axis precision motion control stage [J]. IEEE/ASME Transactions on Mechatronics,2005,10(1):50-59
    [70]A.E. Hatheway. Optomechanical and precision instrument design [C]. A.E. Hatheway. SPIE Optomechanical Design and Precision Instruments. San Diego:SPIE, 1995:60-85
    [71]国分泰雄.光波工程[M].王友功译.北京:科学出版社,2002,206-220
    [72]A.W. Snyder, J.D. Love. Optical waveguide theory [M]. London:Chapman and Hall Ltd,1983,121-208
    [73]J. Sakai, T. Kimura. Design of a miniature lens for semiconductor laser to single-mode fiber coupling [J]. IEEE Journal of Quantum Electronics,1980,16(10):1059-1067
    [74]M. Saruwatari, K. Nawata. Semiconductor laser to single-mode fiber coupler [J]. Applied Optics,1979,18(11):1847-1856
    [75]H. Kogelnik. Coupling and conversion coefficients for optical modes [C]. J. Fox. Proceedings of the Symposium on Quasi-Optics. New York:Polytechnic Press. 1964:333-346
    [76]M. Born, E. Wolf. Principles of Optics [M]. Cambridge:Cambridge University Press, 1999,412-516
    [77]H. Osanai, T. Shioda, T. Moriyama, et al. Effect of dopants on transmission loss of low-OH-content optical fibers [J]. Electronics Letters,1976,12(21):549-550
    [78]J.W. Fleming. Dispersion in GeO2-SiO2 glasses [J]. Applied Optics,1984, 23(24):4486-4493
    [79]T. Scherzer, A. Tauber, R. Mehnert. UV curing of press sensitive adhesives studied by real-time FTIR-ATR spectroscopy [J]. Vibrational Spectroscopy,2002, 29(1-2):125-131
    [80]T. Scherzer, U. Decker. Real-time FTIR-ATR spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light [J]. Vibrational Spectroscopy,1999,19(2):385-398
    [81]N. Murata. Adhesives for optical devices [C]. Institute of Electronic and Electronics Engineers.1998 48th Electronic Components and Technology Conference. New York: IEEE Standards,1998:1178-1185
    [82]K.S. Mobarhan, M. Hagenhbuchle, R. Heyler. Automated assembly of planar waveguide devices [R]. Newport Corportation,2002
    [83]Y. Shoji. Face aligning device for optical components. Japan:JP2000162484[P], 2000-06-16
    [84]YD/T 2000.1-2009,平面光波导集成光路器件第1部分:基于平面光波导(PLC)的光功率分路器[S].北京:中国标准出版社,2009
    [85]D.A. D'esope. A convex programming procedure [J]. Naval Research Logistics Quarterly,1959,6(1):33-42
    [86]Zheng Yu, Chen Zhuang-zhuang, Li Ya-juan, Duan Ji-an, A new automatic alignment technology for single mode fiber-waveguide based on improved genetic algorithm [J]. Optoelectronics Letters,2009,5(3):165-168
    [87]李亚娟,郑煜,段吉安.基于遗传算法的集成光子器件对准[J].光子学报,2009,38(10):2520-2524
    [88]郑煜,李罡.用于平面光波导器件自动对准的复合搜索算法研究[J].光学技术,2009,35(12):127-130
    [89]Z. Tang, R. Zhang, F.G Shi. Effects of angular misalignment on fiber-optic alignment automantion [J]. Optics Communications,2001,196(1-6):173-180
    [90]L. Wei, L.H. Choo, L.Y. Peng, et al. High-speed precision alignment of optical components [R]. Singapore:Singapore Institute of Manufacturing Technology,2002
    [91]SURUGA SEIK CO., LTD. Non-contact measurement instrument for optical core pitch [EB/OL]. Tokyo:SURUGA SEIK CO., LTD,2000-04-01 [2012-04-23]. www.spectracore.com/Merchant2/pdf/optcore.pdf
    [92]G. Kumar, K.N. Prabhu. Review of non-reactive and reactive wetting of liquids on surfaces [J]. Advances in Colloid and Interface Science,2007,133(2):61-89
    [93]A.N. Genta, J. Schultzab. Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Material [J]. The Journal of Adhesion,1972,3(4):281-294
    [94]J. Bicoa, U. Thieleb, D. Querec. Wetting of textured surfaces [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1-3):41-46
    [95]I. Hayashi. Optoelectronic devices and material technologies for photo-electronic integrated systems [J]. Japanese Journal of Applied Physics,1993,32(1B):266-271
    [96]K.K. Choi, J.R. Condon, J.L. Ferracane. The effects of adhesive thickness on polymerization contraction stress of composite [J]. Journal of Dental Research,2000, 79(3):812-817
    [97]J.H. Moon, Y.G. Shui, H.S. Hong, et al. A study on UV-curable adhesives for optical pick-up:Ⅰ. Photoinitiator effects [J]. Internation Journal of Adhesion and Adhesives, 2005,25(4):301-312
    [98]P.S. He, Z.Q. Zhang, C.Y. Pan, et al. An epoxy resin copolymer with zero shrinkage Part 1 Volume change on cure [J]. Journal of Materials Science,1989,24(5): 1528-1532
    [99]A. Bachmann, J. Arnold, N. Langer. Controlling stress in bonded optics [R]. DYMAX Corportion,2001
    [100]NTT Advanced Technology Corporation. Adhesives for optical Path Link-up [EB/OL], Tokyo:NTT Advanced Technology Corporation,2012-01-01 [2012-04-30]. http://www.ntt-at.com/product/adhesive_oplu/
    [101]M. Koshiba, Y. Tsuji. A wide-angle finite-element beam propagation method [J]. IEEE Photonics Technology Letters,1996,8(9):1208-1210
    [102]Y. Chung, N. Dagli. An assessment of finite fifference beam propagation method [J]. IEEE Journal of Quantum Electronics,1990,26(8):1335-1339
    [103]M. Huang. Stress effects on the performance of optical waveguide [J]. International Journal of Solids and Structures,2003,40(7):1615-1632
    [104]E. Lea, B.L. Weiss. Photoelectronic waveguides in silicon [J]. Electronics Letters, 1996,32(17):1577-1579
    [105]粟时平.多轴数控机床精度建模与误差补偿方法研究[D].长沙:国防科技大学,2002
    [106]朱建忠.精密超精密机床精度分析、建模与精度控制技术研究[D].长沙:国防科技大学,1997
    [107]杨建国.数控机床误差综合补偿技术及应用[D].上海:上海交通大学,2002
    [108]粟时平,李圣怡,王贵林.基于多体系统理论的数控机床空间误差建模[J].长沙电力学院学报,2001,16(4):75-78
    [109]粟时平,李圣怡,王贵林.多轴数控机床的通用运动学综合空间误差模型[J].国防科技大学学报,2001,23(4):45-50
    [110]陆敬舜.型架双经纬仪三维测量法.南京航空航天大学学报[J],1994,26(5):628-634
    [111]杨世锡,胡小平,吴昭同.数控机床径向运动误差的形成机理及补偿方法研究[J].中国机械工程,2001,12(2):178-184
    [112]李小力,周云飞,周济.数控机床位置误差建模与补偿[J].机械设计与制造工程,1993,3:48-50
    [113]王清明,卢泽声,梁迎春.亚微米数控车床误差补偿技术研究[J].中国机械工程,1998,9(12):48-52
    [114]J. Sauvola, M. Pietikainen. Adaptive document image binarization [J]. Pattern Recognition,2000,33(2):225-236
    [115]B. Wang, X.F. Li, F. Liu, et al. Color text image binarization based on binary texture analysis [J]. Pattern Recognition letters,2005,26(11):1650-1657
    [116]Y. Yitzhaky. A method for objective edge detection evaluation and detector parameter selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003, 25(8):1027-1033
    [117]S.M. Bhandarkar, Y.Q. Zhang, W.D. Potter. An edge detection technique using genetic algorithm-based optimization [J]. Pattern Recognition,1994,27(9):1159-1180
    [118]M. Heath, S. Sarkar, T. Sanocki, et al. A Robust Visual Method for Assessing the Relative Performance of Edge Detection Algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(12):1338-1359
    [119]R. Maini. Study and comparison of various image edge detection techniques [J]. International Journal of Image Processing,2009,3(1):1-12
    [120]V. Torre, T.A. Poggio. On edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, PAMI-8(2):187-163
    [121]W. Frei, C.C. Chen. Fast boundary detection:A generalization and a new algorithm [J]. IEEE Transactions on Computers,1977, C-26(10):988-998
    [122]W.E. Grimson, E.C. Hildreth. Comments on Digital step edges from zero crossings of second directional derivatives [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1985, PAMI-7(1):121-129
    [123]J.F. Canny. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698
    [124]N. Guil, J. Villalba, E.L. Zapata. A fast Hough transform for segment detection [J]. IEEE Transactions on Image Processing,1995,4(11):1541-1548
    [125]R.K. Satzoda, S. Suchitra, T. Srikanthan. Parallelizing the Hough Transform Compution [J]. IEEE Signal Processing Letters,2008,15:297-300
    [126]D.M. Shi, L.Y. Zheng, J.G Liu. Advanced Houth transform using a multilayer fractioanal Fourier method [J]. IEEE Transactions on Image Processing, 19(6):1558-1566
    [127]A.L. Kesidis, N. Papamarkos. On the inverse Hough transform [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(12):1329-1343
    [128]S.R. Deans. Hough transform from the radon transform [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1981, PAMI-3(2):185-188
    [129]NICHIA Corporation. NC4U133A (T) Specifications for UV LED [EB/OL]. Tokushima:NICHIA Corporation,2010-05-01 [2012-04-26]. www.nichia.co.jp/specification/en/product/led/NC4U133A-E.pdf
    [130]Lumen Dynamics Group Inc. Ultraviolet Omnicure S2000 Brochure [EB/OL]. Ontario:Lumen Dynamics Group Inc,2010-07-05 [2012-04-26]. www.ldgi-omnicure.com/downloads/brochures/LDGI-OrnniCure-S2000-Brochure.pdf
    [131]H. Ehlers, M. Biletzke, B. Kuhlow, et al. Optoelectronic packaing of arrayed waveguide grating modules and their environmental stability tests [J]. Optical Fiber Technology,2000,6(4):344-356
    [132]M. Yan, T.S. Tarter, J. Weaver, et al. Integrated thin film heater and sensor with planar lightwave circuits [J]. IEEE Transactions on Components and Packaing Technologies, 2005,28(4):667-673
    [133]M. Lshii, Y. Hibino, F. Hanawa, et al. Packaging and enviromental stability of thermally controlled arrayed waveguide grating multiplexer module with thermoelectric device [J]. Journal of Lightwave Technology,1998,16(2):258-264
    [134]Bellcore GR-1221-CORE, Generic Reliability Assurance Requirements for Passive Optical Components [S]. New Jersey:Bellcore,1999
    [135]S. Mitachi, T. Nakamura, M. Shimizu, et al. Reliability test results for optical devices assembled with a non-smell & highly moisture durable new optical adhesive [C]. Lasers and Electron-Optics Society. Annual Meeting of the 19th IEEE Lasers and Electron-Optics Society. New York:IEEE,2006:170-171
    [136]S. Mitachi. Development of highly moisture durable optical adhesives for optical devices [C]. IEEE.58th Electronic Components and Technology Conference. New York: IEEE,2008:207-212
    [137]M. P. Immonen, M. Karppinen, J.K. Kivilahti. Investigation of environment reliability of optical polymer waveguides embedded on printed circuit boards [J]. Microelectronics Reliability,2007,47(2-3):363-371
    [138]M. Ishii, Y. Hibino, F. Hanawa, et al. Packaing and environmental stability of thermally controlled arrayed waveguide grating multiplexer module with thermoelectronic device [J]. Journal of Lightwave Technology,1998,16(2):258-264
    [139]L.G. Peralta, A.A. Bernussi, V. Gorbounov, et al. Temperature insensitive reflective arrayed waveguide grating multiplexers [J]. IEEE Photonics Technology Letters,2004, 16(3):831-833
    [140]L.G. Peralta, A.A. Bernussi, V. Gorbounov, et al. Contral of center wavelength in reflective arrayed waveguide grating multipexers [J]. IEEE Journal of Quantum Electronics,2004,40(12):1725-1731
    [141]T.H. Rhee, H.J. Lee, T.H. Kim. Packaging method of temperature insecsitive arrayed waveguide grating. USA:US20080135169A1[P],2008-06-12
    [142]朱大庆,许振鄂,陆冬生.温度不敏感型阵列波导光栅.中国:CN02139128.9[P],2002-09-30
    [143]N. Hideki, M. Koichi, T.Satoru, et al. Methoc for connecting temperature independent quartz base arrayed grating type optical waveguide element to optical fiber. Japan:JP11304014[P],1999-10-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700