用户名: 密码: 验证码:
空间部分相干激光冷却原子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冷却和俘获原子的研究中,一般认为激光是空间完全相干和时间完全相干的光源。本文的工作主要是探究空间部分相干激光与中性原子之间的相互作用,以及冷却激光的空间相干性对冷原子特性的影响。我们分别在理论和实验上研究了空间部分相干激光冷却铷原子的动力学过程。
     实验上,利用铌酸锂晶体对激光电光相位调制,改变调制电压和频率的大小,来控制调制后激光的空间相干度,并且通过杨氏双孔干涉实验来度量激光的空间相干度。另一方面,利用调制激光和另一参考激光拍频,得到的信号带宽反映调制激光的时间相干性。实验结果和理论分析都证明:电光相位调制可以非常有效地改变激光的空间相干性,但它对激光的时间相干性的影响很小,在很多情况下可忽略。晶体的电光相位调制越大,调制后激光的空间相干性越低。
     在三维磁光阱和偏振梯度冷却实验中,我们使用空间相干度不同的激光去冷却原子,然后测量冷原子团的特性。实验测量结果发现:冷原子团的原子数目和高斯型的密度分布不随冷却激光的空间相干度变化,但是原子团的温度随着冷却激光空间相干度的减小而升高。
     理论上,本论文分析了空间部分相干激光与原子的相互作用,定性解释了冷却激光的空间相干度对冷原子团特性造成的影响。限制冷原子数目和原子空间密度分布的主要因素是平均光子散射率。因为光子散射率的平均值与冷却激光的空间相干度无关,所以冷原子数和原子密度分布不随冷却激光的空间相干度变化。但是空间部分相干激光作用在原子上的散射力在时间空间上都存在明显的涨落,这种涨落会使冷原子的速率分布增宽,从而导致原子团温度随着冷却激光的空间相干度的减小而升高。
The laser beams used in atom cooling and trapping are generally regarded as fully coherent both temporally and spatially. The main aim of the thesis is to explore the interaction between the partially spatially coherent laser and neutral atoms and investigate the influence of the spatial coherence of the cooling lasers on the cold atoms. The atom cooling and trapping by partially spatially coherent lasers is investigated both experimentally and theoretically.
     The degree of the spatial coherence of the laser beams is controlled by changing the applied voltage and frequency of the electro-optic phase modulation of LiNbO,(LN) crystal. The Young's double pinhole experiment is used to quantify the degree of the spatial coherence of the modulated laser beam. The temporal coherence of the laser can be reflected by the measurement of the beat note bandwidth between the modulated laser and another reference laser. Both the experimental results and theoretical analysis prove that the phase modulation can effectively degrade the spatial coherence of the laser beam, but has very weak influence on the temporal coherence of the laser. When a higher phase modulation is applied on the laser beam, the corresponding degree of spatial coherence can be lower.
     In both three dimensional magneto-optical trap (MOT) and polarization gradient cooling (PGC) experiments, the characteristics of the atoms cooled by lasers with various degrees of spatial coherence are measured. The experimental results indicate that the atom number and atomic Gaussian density distribution keep unchanged with various degrees of spatial coherence of the cooling lasers, while the measured temperature of the atomic cloud increases as the degree of the spatial coherence of the cooling lasers decreases.
     A theoretical analysis of the interaction between the partially spatially coherent lasers can be used to explain the influence of the spatial coherence of the cooling lasers on the cold atoms. The unchanged atom number and atomic Gaussian density distribution is mainly due to the average photon scattering rate independent on the spatial coherence of the laser beams. For the increase of temperature with decreasing degree of spatial coherence of the cooling lasers, the reason is that the scattering force of the partially spatially coherent lasers acting on the atoms fluctuates temporally and spatially, which broadens the speed distribution of the cold atoms.
引文
[1]T. W. Hansch, A. L. Schawlow, Cooling of gases by laser radiation. Opt. Commun.13,68(1975).
    [2]D. B. Pearson, R. R. Freeman, J. E. Bjorkholm, A. Ashkin, Focusing and defocusing of neutral atomic-beams using resonance-radiation pressure. Appl. Phys. Lett.36,99 (1980).
    [3]W. D. Phillips, H. Metcalf, Laser deceleration of an atomic-beam. Phys. Rev. Lett.48,596 (1982).
    [4]J. E. Bjorkholm, R. R. Freeman, A. Ashkin, D. B. Pearson, Observation of focusing of neutral atoms by the dipole force of resonance radiation pressure. Phys. Rev. Lett.41,1361 (1978).
    [5]S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett.55,48 (1985).
    [6]E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett.59,2631 (1987).
    [7]C. Monroe, W. Swann, H. Robinson, C. Wieman, Very cold trapped atoms in a vapor cell. Phys. Rev. Lett.65,1571 (1990).
    [8]K. Lindquist, M. Stephens, and C. Wieman, Experimental and theoretical study of the vapor-cell Zeeman optical trap. Phys. Rev. A 46,4082 (1992).
    [9]P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, Optical molasses. J. Opt. Soc. Am. B 6,2084 (1989).
    [10]Y. M. Li, D. H. Yang, Y. Q. Wang. Laser cooling in phase fluctuating laser field. Acta Phys. Sin. (Overseas Edn) 7,414(1998).
    [11]Y.C. Chen, W. B. Lin, H. C. H, L. Hsu and I. A.Yu, Effect of the trapping laser linewidth on the atom number in a Magneto-Optical Trap. Chinese J Phys 38,920 (2000).
    [12]H. D. Cheng, W. Z. Zhang, H. Y. Ma, L. Liu, Y. Z. Wang, Laser cooling of rubidium atoms from background vapor in diffuse light. Phys. Rev. A 79, 023407 (2009).
    [13]W. Ketterle, A. Martin, M. A. Joffe, D. E. Pritchard, Slowing and cooling atoms in isotropic laser light. Phys. Rev. Lett.69,2483 (1992).
    [14]E. Guillot, P. E. Pottie, N. Dimarcq, Three-dimensional cooling of cesium atoms in a reflecting copper cylinder. Opt. Lett.26,1639 (2001).
    [15]X. C. Wang, H. D. Cheng, B. C. Zheng, Y. L. Meng, L. Xiao, L. Liu, et al. Integrating sphere cold atom clock with cylindrical microwave cavity, in Proceedings of 2011 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum, p.1 (2011).
    [16]F. X. Esnault, D. Holleville, N. Rossetto, S. Guerandel, N. Dimarcq, High-stability compact atomic clock based on isotropic laser cooling. Phys. Rev. A 82,033436 (2010).
    [17]F. X. Esnault, N. Rossetto, D. Holleville, J. Delporte, N. Dimarcq, Horace:a compact cold atom clock for galileo. Adv. Space Res.47,854 (2011).
    [18]W. Zhang, H. Cheng, L. Liu, Y. Wang. Observation of recoil-induced resonances and electromagnetically induced absorption of cold atoms in diffuse light. Phys. Rev. A 79,053804 (2009).
    [1]D. A. Steck. Rubidium 87 D line data.
    [2]A. Ashkin, Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett.40,729(1978).
    [3]V. I. Balykin, V. G. Minogin, V. S. Letokhov, Electromagnetic trapping of cold atoms. Rep. Prog. Phys.63,1429 (2000).
    [4]R. J. Cook, Atomic motion in resonant radiation an application of ehrenfest's theorem. Phys. Rev. A 20,224 (1979).
    [5]R. J. Cook, Theory of resonance-radiation pressure. Phys. Rev. A 22,1078 (1980).
    [6]王义遒.原子的激光冷却与陷俘.北京大学出版社,p101(2007).
    [7]J. D. Miller, R. A. Cline, D. J. Heinzen, Far-off-resonance optical trapping of atoms. Phys. Rev. A 47, R4567 (1993).
    [8]N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, S. Chu, Long atomic coherence times in an optical dipole trap. Phys. Rev. Lett.74,1311 (1995).
    [9]L. Guidoni, P. Verkerk, Optical lattices:cold atoms ordered by light. J. Opt. B-Quantum S. O.1, R23 (1999).
    [10]P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, Optical molasses. J. Opt. Soc. Am. B 6,2084 (1989).
    [11]J. Dalibard, C. Cohentannoudji, Laser cooling below the doppler limit by polarization gradients-simple theoretical-models. J. Opt. Soc. Am. B 6, 2023 (1989).
    [12]A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohentannoudji, Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping-theoretical-analysis. J. Opt. Soc. Am. B 6, 2112(1989).
    [13]A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohentannoudji, Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett.61,826 (1988).
    [14]J. Hack, L. Liu, M. Olshanii, H. Metcalf, Velocity-selective coherent population trapping of two-level atoms. Phys. Rev. A 62,13405 (2000).
    [15]N. Davidson, H. J. Lee, M. Kasevich, S. Chu, Raman cooling of atoms in two or three dimensions. Phys. Rev. Lett.72,3158 (1994).
    [16]M. Kasevich, S. Chu, Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett.69,1741 (1992).
    [17]J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, T. Pfau, Continuous loading of a magnetic trap. Phys. Rev. A 64,031405(2001).
    [18]J. D. Weinstein, K. G. Libbrecht, Microscopic magnetic traps for neutral atoms. Phys. Rev. A 52,4004 (1995).
    [19]E. Henn, J. A. Seman, E. Ramos, A. H. Iavaronni, T. Amthor, V. S. Bagnato, Evaporation in atomic traps:a simple approach. Am. J. Phys.75,907 (2007).
    [20]M. Yamashita, M. Koashi, T. Mukai, M. Mitsunaga, N. Imoto, Dynamics of evaporative cooling in magnetically trapped atomic hydrogen. Phys. Rev. A 62,33602 (2000).
    [21]C. A. Sackett, C. C. Bradley, R. G. Hulet, Optimization of evaporative cooling. Phys. Rev. A 55,3797 (1997).
    [1]马科斯·玻恩,埃米尔·沃耳夫.光学原理.电子工业出版社,p466(2005).
    [2]林强,叶兴浩.现代光学基础与前沿.科学出版社,p78(2010).
    [3]A. Singer, F. Sorgenfrei, A. P. Mancuso, N. Gerasimova, O. M. Yefanov, J. Gulden, et al, Spatial and temporal coherence properties of single free-electron laser pulses. Opt. Express 20,17480 (2012).
    [4]R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, et al, Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297,376 (2002).
    [5]M. Haney, D. Psaltis, Measurement of the temporal coherence properties of pulsed single-mode laser-diodes. Appl. Optics 24,1926 (1985).
    [6]张旭,薛冬峰.铌酸锂晶体的结构与性能关系研究.功能材料p51(2005).
    [7]张勇发,许京军,张光寅,刘思敏,陆猗.多功能光电材料—铌酸锂晶体.科学出版社(2005).
    [8]R. S. Weis, T. K. Gaylord, Lithium-niobate-summary of physical-properties and crystal-structure. Appl. Phys. A-Mater.37,191 (1985).
    [9]G. E. Peterson, A. A. Ballman, P. V. Lenzo, P. M. Bridenbaugh, Electrooptic properties of LiNbO3. Appl. Phys. Lett.5,62 (1964).
    [10]Q. Lin, L. G. Wang, Generation of partially coherent laser beam directly from spatial-temporal phase modulated optical resonators. J. Mod. Optic.50, 743 (2003).
    [11]E. H. Turner, High-frequency electro-optic coefficients of lithium niobate. Appl. Phys. Lett.8,303 (1966).
    [12]G. D. Boyd, K. Nassau, R. C. Miller, W. L. Bond, A. Savage, LiNbO3:an efficient phase matchable nonlinear optical material. Appl. Phys. Lett.5,234 (1964).
    [13]W. Kinase, K. Ohi, K. Harada, H. Yagi, M. Inoue, M. Tashiro, et al, Theory of optical property in LiNbO3. Elastooptic and electrooptic effects. Ferroelectrics 218,389 (1998).
    [14]K. F. Hulme, P. H. Davies, V. M. Cound, Signs of electro-optic coefficients for lithium niobate. J. Phys. C:Solid State Phys.2,855 (1969).
    [15]P. V. Lenzo, E. G. Spencer, K. Nassau, Electro-optic coefficients in single-domain ferroelectric lithium niobate. J. Opt. Soc. Am.56,633 (1966).
    [16]T. A. Maldonado, T. K. Gaylord, Electrooptic effect calculations-simplified procedure for arbitrary cases. Appl. Optics 27,5051 (1988).
    [17]S. R. Seshadri, Partially coherent Gaussian schell-model electromagnetic beams. J. Opt. Soc. Am A 16,1373 (1999).
    [18]A. T. Friberg, R. J. Sudol, The spatial coherence properties of Gaussian schell-model beams. Optica Acta 30,1075 (1983).
    [19]A. Starikov, E. Wolf, Coherent-mode representation of Gaussian schell-model sources and of their radiation-fields. J. Opt. Soc. Am 72,923 (1982)
    [1]K. B. Macadam, A. Steinbach, C. Wieman, A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for cs and rb. Am. J. Phys.60,1098 (1992).
    [2]C. E. Wieman, L. Hollberg, Using diode-lasers for atomic physics. Rev. Sci. Instrum.62,1 (1991).
    [3]韩顺利.拉曼脉冲型原子干涉仪的研究[博士学位论文].浙江大学理学院,2010.
    [4]D. W. Preston, Doppler-free saturated absorption:laser spectroscopy. Am. J. Phys.64,1432(1996).
    [5]张靖,陶桦,等.Rb原子饱和吸收稳频半导体激光器系统.光学学报.23,197(2003).
    [6]C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, Polarization spectroscopy of a closed atomic transition:applications to laser frequency locking. J. Phys. B-At. Mol. Opt.35,5141 (2002).
    [7]马杰,赵延霆,赵建明,贾锁堂.利用偏振光谱对外腔式半导体激光器实现无调制锁频.中国激光32,1605(2005).
    [8]T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, G. M. Tino, Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor:a new scheme for laser frequency locking. Eur. Phys. J. D 22,279 (2003).
    [9]K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, Frequency-stabilized diode laser with the zeeman shift in an atomic vapor. Appl. Optics 37,3295(1998).
    [10]马红玉,徐震,王育竹.采用zeeman效应与饱和吸收法的激光器稳频.光电工程33,123(2006).
    [11]S. L. Han, B. Cheng, J. F. Zhang, Y. F. Xu, Z. Y. Wang, Q. Lin, Polarization gradient cooling by zeeman-effect-assisted saturated absorption. Chinese Phys. Lett.26,123702(2009).
    [12]S. L. Han, B. Chen, J. F. Zhang, Y. F. Xu, Z. Y. Wang, Q. Lin, Stabilization and shift of frequency in an external cavity diode laser with solenoid-assisted saturated absorption. Chinese Phys. Lett.26,063201(2009).
    [13]S. Pradhan, B. N. Jagatap, Measurement of temperature of laser cooled atoms by one-dimensional expansion in a magneto-optical trap. Rev. Sci. Instrum. 79,013101(2008).
    [14]A. Vorozcovs, M. Weel, S. Beattie, S. Cauchi, A. Kumarakrishnan, Measurements of temperature scaling laws in an optically dense magneto-optical trap. J. Opt. Soc. Am. B 22,943 (2005).
    [15]H. C. Zhang, P. F. Zhang, X. P. Xu, F. Cheng, Y. Z. Wang, Optimized temperature measurement with time-of-flight method. Opt. Commun.282, 3278 (2009).
    [16]P. Arora, S. B. Purnapatra, A. Acharya, R. Kumar, A. Sen Gupta, Measurement of temperature of atomic cloud using time-of-flight technique. Mapan-Journal Of Metrology Society of India 27,31 (2012).
    [17]T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, W. Gawlik, Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances. J. Opt. B-Quantum S. O.4,62 (2002).
    [18]H. Hagman, P. Sjolund, S. Petra, M. Nylen, A. Kastberg, H. Ellmann, et al, Assessment of a time-of-flight detection technique for measuring small velocities of cold atoms. J. Appl. Phys.105,083109(2009).
    [1]M. Haw, N. Evetts, W. Gunton, J. Van Dongen, J. L. Booth, K. W. Madison, Magneto-optical trap loading rate dependence on trap depth and vapor density. J. Opt. Soc. Am. B 29,475 (2012).
    [2]K. E. Gibble, S. Kasapi, S. Chu, Improved magneto-optic trapping in a vapor cell. Opt. Lett.17,526 (1992).
    [3]A. M. Steane, M. Chowdhury, C. J. Foot, Radiation force in the magneto-optical trap.9,2142 (1992).
    [4]S. K. Choi, S. E. Park, J. Chen, V. G. Minogin, Three-dimensional analysis of the magneto-optical trap for (1+3)-level atoms. Phys. Rev. A 77,015405 (2008).
    [5]D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, N. Kolachevsky, V. Sorokin, Sub-doppler laser cooling of thulium atoms in a magneto-optical trap. Jetp Lett 92,703(2010).
    [6]M. Walhout, J. Dalibard, S. L. Rolston, W. D. Phillips, Sigma+-sigma-optical molasses in a longitudinal magnetic-field. J. Opt. Soc. Am. B 9,1997 (1992).
    [7]M. Walhout, U. Sterr, S. L. Rolston, Magnetic inhibition of polarization-gradient laser cooling in sigma+-sigma-optical molasses. Phys. Rev. A 54,2275 (1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700