用户名: 密码: 验证码:
新型光微流体光器件的设计、制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控光学是光学和微流控技术的结合。相对于传统的固体器件,微流控光学器件在尺寸上微型化、可调谐手段上更多样化、可集成于芯片实验室中用于化学生物分析检测。本论文研究了基于PDMS芯片的微流控光学器件及拓展了其应用,对微流控光学器件的光学特性进行表征及探讨。
     磁流体在磁场作用下显示出比较显著的磁光效应。我们首次制备了磁流体液芯光纤,液芯为磁性颗粒半径为10nm的石蜡基Fe3O4磁流体。在不同磁场下对光纤出射光强进行调谐及理论计算了光纤中光波模式。实验结果与理论计算相吻合,并给出了磁流体液芯光纤的传输损耗。
     集成型光源对于微全分析系统中生物化学分析检测有着深远的意义。在上述背景下,我们展开了微型染料激光器的研究。采用传统的光刻及PDMS快速原型复制制备了微环形谐振腔结构。因其损耗较大,泵浦阈值较高,通过结构设计上的改进,大大降低了激光泵浦阈值。
     我们运用两种相溶液体的层流机制进行了微型干涉仪的研究。结果表明,改变两相液体注入的流速比时,干涉曲线发生变化,干涉峰个数逐渐增加。为了更清晰表征微通道中的液体的扩散情况,在理论上进行了折射率分布的模拟。同时,我们也记录了在不同流速比情况下,两相液体交界面位置的变化。基于干涉现象的折射率计在传感器中应用比较广泛。
     随着近期微流控液滴的应用方面的广泛研究,我们利用产生微液滴的机制制备了微型信号发生器,并拓展了其应用。实验结果表明,产生的信号频率及波形通过改变液体的流速比来控制,给出了信号频率与流速比不变情况下的关系曲线。在信号发生器的基础上,设计双T结构实现信号编码器。微流控光学器件的研究促使了集成光学的发展,也对芯片实验室提供更多更便携化的功能。
Optofluidics, where optics and microfluidics are working together, is defined as a newfield and technology. Compared with traditional rigid optical devices, optofluidic elementsshow features due to the miniaturization in the size, various tunable mechanisms andintegration for analysis and detection of biochemistry. This dissertation is mainly concernedwith the optofluidic devices and its applications based on PDMS. Moreover, the opticalproperties of optofluidic devices are characterized and discussed.
     We firstly report the fabrication of magnetic fluid core optical fiber. Paraffin-basedFe3O4magnetic fluid is selected as the liquid and filled in a hollow core fiber. The magneticparticle size is10nm. Transmitted intensity of magnetic fluid core optical fiber dependent onmagnetic field is studied. The theoretical about mode calculation is in accordance with theexperimental results and the optical loss is also given.
     The integration of dye lasers with microfluidics facilitates the implementation of“lab-on-a-chip” for analysis of biochemistry. We studied microring dye laser in the abovecontext. The PDMS chip is fabricated through conventional lithography and the rapidprototyping. The threshold is relatively high resulting from cavity loss. A reduced threshold isrealized by the unique design of the bus waveguide across the center of the microringstructure.
     We experimentally demonstrated a tunable interferometer controlled by diffusion throughthe laminar flow of two miscible liquids. The results show that the peak numbers of theinterference curves are increasing with the flow rate ratio. A program is written in COMOSL to calculate the refractive index gradient at different flow rates. Micrographs of the differentlocation of the interface under the different flow rate ratio are given. Such an interferometerpaves the way for biochemical tests in sensing system.
     Droplet microfluidics has drawn much attention due to its intensive applications. A signalgenerator is realized by droplet grating which is generated through a typical microfluidicT-junction. Experimental results show that the frequency and waveforms of signals can bemodulated by flow rate ratio. The coding device serves as an example for applications byintegrating the signal generator with another T-junction. The investigation of optofluidicdevices facilitate the development of integrated optics and also offer more functionalities to“Lab-on-a chip”.
引文
[1]. Manz, A.,Harrison, D. J.,Verpoorte, E. M., etc. Planar chips technology forminiaturization and integration of separation techniques into monitoring systems: Capillaryelectrophoresis on a chip[J]. Journal of Chromatography A,1992,593(1):253-258.
    [2]. Whitesides, G. M. The origins and the future of microfluidics[J]. Nature,2006,442(7101):368-373.
    [3].林炳承,秦建华.微流控芯片实验室[M].科学出版社,2006.
    [4]. Harrison, D. J.,Seiler, K.,Manz, A., etc. Chemical analysis and electrophoresis systemsintegrated on glass and silicon chips[A]. In Solid-State Sensor and Actuator Workshop,1992.5th Technical Digest., IEEE[C],1992;110-113.
    [5]. Jacobson, S. C.,Hergenroder, R.,Koutny, L. B., etc. High-speed separations on amicrochip[J]. Analytical Chemistry,1994,66(7):1114-1118.
    [6]. Jacobson, S. C.,Hergenroder, R.,Koutny, L. B., etc. Effects of injection schemes andcolumn geometry on the performance of microchip electrophoresis devices[J]. AnalyticalChemistry,1994,66(7):1107-1113.
    [7]. Woolley, A. T.,Hadley, D.,Landre, P., etc. Functional integration of PCR amplificationand capillary electrophoresis in a microfabricated DNA analysis device[J]. AnalyticalChemistry,1996,68(23):4081-4086.
    [8]. Woolley, A. T.,Mathies, R. A. Ultrahigh-speed DNA sequencing using capillary arrayelectrophoresis chips[A]. In Photonics West'95[C],1995;36-44.
    [9]. Thorsen, T.,Maerkl, S. J.,Quake, S. R. Microfluidic large-scale integration[J]. Science,2002,298(5593):580-584.
    [10]. Stroock, A. D.,Whitesides, G. M. Components for integrated poly (dimethylsiloxane)microfluidic systems[J]. Electrophoresis,2002,233461-3473.
    [11]. Whitesides, G. M.,Stroock, A. D. Flexible methods for microfluidics[J]. Physics today,2001,5442.
    [12]. Czaplewski, D. A.,Kameoka, J.,Mathers, R., etc. Nanofluidic channels with ellipticalcross sections formed using a nonlithographic process[J]. Applied physics letters,2003,83(23):4836-4838.
    [13]. Mijatovic, D.,Eijkel, J.,Van Den Berg, A. Technologies for nanofluidic systems:top-down vs. bottom-up—a review[J]. Lab on a Chip,2005,5(5):492-500.
    [14]. Weibel, D. B.,Kruithof, M.,Potenta, S., etc. Torque-actuated valves for microfluidics[J].Analytical Chemistry,2005,77(15):4726-4733.
    [15]. Hong, J. W.,Quake, S. R. Integrated nanoliter systems[J]. Nature biotechnology,2003,21(10):1179-1183.
    [16]. Günther, A.,Jhunjhunwala, M.,Thalmann, M., etc. Micromixing of miscible liquids insegmented gas-liquid flow[J]. Langmuir,2005,21(4):1547-1555.
    [17]. Nguyen, N.-T.,Wu, Z. Micromixers—a review[J]. Journal of micromechanics andmicroengineering,2004,15(2): R1.
    [18]. Laser, D.,Santiago, J. A review of micropumps[J]. Journal of micromechanics andmicroengineering,2004,14(6): R35.
    [19]. Anderson, J. R.,Chiu, D. T.,Wu, H., etc. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis,2000,2127-40.
    [20]. Beebe, D. J.,Mensing, G. A.,Walker, G. M. Physics and applications of microfluidics inbiology[J]. Annual review of biomedical engineering,2002,4(1):261-286.
    [21]. Stone, H. A.,Stroock, A. D.,Ajdari, A. Engineering flows in small devices[J]. Annu. Rev.Fluid Mech.,2004,36381-411.
    [22]. Squires, T. M.,Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale[J].Reviews of modern physics,2005,77(3):977.
    [23]. Santiago, J. Electroosmotic flows in microchannels with finite inertial and pressureforces[J]. Analytical Chemistry,2001,73(10):2353-2365.
    [24]. Karnik, R.,Castelino, K.,Majumdar, A. Field-effect control of protein transport in ananofluidic transistor circuit[J]. Applied physics letters,2006,88(12):123114-123114-3.
    [25]. Zheng, B.,Tice, J. D.,Roach, L. S., etc. A Droplet‐Based, Composite PDMS/GlassCapillary Microfluidic System for Evaluating Protein Crystallization Conditions byMicrobatch and Vapor‐Diffusion Methods with On‐Chip X‐Ray Diffraction[J].Angewandte chemie international edition,2004,43(19):2508-2511.
    [26]. Hansen, C. L.,Skordalakes, E.,Berger, J. M., etc. A robust and scalable microfluidicmetering method that allows protein crystal growth by free interface diffusion[J]. Proceedingsof the National Academy of Sciences,2002,99(26):16531-16536.
    [27]. Shim, J.-u.,Cristobal, G.,Link, D. R., etc. Using Microfluidics to Decouple Nucleationand Growth of Protein Crystals [J]. Crystal Growth and Design,2007,7(11):2192-2194.
    [28]. Smith, R. D.,Shen, Y.,Tang, K. Ultrasensitive and quantitative analyses from combinedseparations-mass spectrometry for the characterization of proteomes[J]. Accounts of chemicalresearch,2004,37(4):269-278.
    [29]. Broach, J. R.,Thorner, J. High-throughput screening for drug discovery[J]. Nature,1996,384(6604Suppl):14.
    [30]. White, R. E. High-throughput screening in drug metabolism and pharmacokineticsupport of drug discovery[J]. Annual review of pharmacology and toxicology,2000,40(1):133-157.
    [31]. Kamei, T.,Paegel, B. M.,Scherer, J. R., etc. Integrated hydrogenated amorphous Siphotodiode detector for microfluidic bioanalytical devices[J]. Analytical Chemistry,2003,75(20):5300-5305.
    [32]. Khandurina, J.,Guttman, A. Bioanalysis in microfluidic devices[J]. Journal ofChromatography A,2002,943(2):159-183.
    [33]. Dolan, G. J.,Terstappen, L. W. Magnetic devices and sample chambers for examinationand manipulation of cells. In Google Patents:2000.
    [34]. Wheeler, A. R.,Throndset, W. R.,Whelan, R. J., etc. Microfluidic device for single-cellanalysis[J]. Analytical Chemistry,2003,75(14):3581-3586.
    [35]. Lagally, E.,Medintz, I.,Mathies, R. Single-molecule DNA amplification and analysis inan integrated microfluidic device[J]. Analytical Chemistry,2001,73(3):565-570.
    [36]. Chan, E. Y.,Goncalves, N. M.,Haeusler, R. A., etc. DNA mapping using microfluidicstretching and single-molecule detection of fluorescent site-specific tags[J]. Genome research,2004,14(6):1137-1146.
    [37]. Dittrich, P. S.,Manz, A. Single-molecule fluorescence detection in microfluidicchannels—the Holy Grail in μTAS?[J]. Analytical and bioanalytical chemistry,2005,382(8):1771-1782.
    [38]. Lee, C.-C.,Sui, G.,Elizarov, A., etc. Multistep synthesis of a radiolabeled imaging probeusing integrated microfluidics[J]. Science,2005,310(5755):1793-1796.
    [39]. Foquet, M.,Korlach, J.,Zipfel, W., etc. DNA fragment sizing by single moleculedetection in submicrometer-sized closed fluidic channels[J]. Analytical Chemistry,2002,74(6):1415-1422.
    [40]. Jones, P.,Stride, E.,Saffari, N. Trapping and manipulation of microscopic bubbles with ascanning optical tweezer[J]. Applied physics letters,2006,89(8):081113-081113-3.
    [41]. Zhao, Y.,Cho, S. K. Micro air bubble manipulation by electrowetting on dielectric(EWOD): transporting, splitting, merging and eliminating of bubbles[J]. Lab Chip,2006,7(2):273-280.
    [42]. Rosell-Llompart, J.,Fernandez de La Mora, J. Generation of monodisperse droplets0.3to4μm in diameter from electrified cone-jets of highly conducting and viscous liquids[J].Journal of aerosol science,1994,25(6):1093-1119.
    [43]. Xu, S.,Nie, Z.,Seo, M., etc. Generation of monodisperse particles by using microfluidics:control over size, shape, and composition[J]. Angewandte Chemie,2004,117(5):734-738.
    [44]. Balslev, S.,Kristensen, A. Microfluidic single-mode laser using high-order Bragg gratingand antiguiding segments[J]. Optics express,2005,13(1):344-351.
    [45]. Tang, S. K.,Stan, C. A.,Whitesides, G. M. Dynamically reconfigurable liquid-coreliquid-cladding lens in a microfluidic channel[J]. Lab Chip,2008,8(3):395-401.
    [46]. Hung, P. J.,Lee, P. J.,Sabounchi, P., etc. Continuous perfusion microfluidic cell culturearray for high‐throughput cell‐based assays[J]. Biotechnology and bioengineering,2005,89(1):1-8.
    [47]. Lucchetta, E. M.,Lee, J. H.,Fu, L. A., etc. Dynamics of Drosophila embryonic patterningnetwork perturbed in space and time using microfluidics[J]. Nature,2005,434(7037):1134-1138.
    [48]. Cho, B. S.,Schuster, T. G.,Zhu, X., etc. Passively driven integrated microfluidic systemfor separation of motile sperm[J]. Analytical Chemistry,2003,75(7):1671-1675.
    [49]. Lee, J. N.,Park, C.,Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices[J]. Analytical Chemistry,2003,75(23):6544-6554.
    [50]. Jensen, K. F. Silicon-Based[J]. MRS bulletin,2006,31101.
    [51]. L we, H.,Ehrfeld, W. State-of-the-art in microreaction technology: concepts,manufacturing and applications[J]. Electrochimica Acta,1999,44(21):3679-3689.
    [52]. Froot, H. A. Fluorescent microanalytical system and method for detecting andidentifying organic materials. In Google Patents:1978.
    [53]. Jimoh, M.,Frenzel, W.,Müller, V., etc. Development of a hyphenated microanalyticalsystem for the investigation of leaching kinetics of heavy metals in environmental samples[J].Analytical Chemistry,2004,76(4):1197-1203.
    [54]. Johnson, M. E.,Landers, J. P. Fundamentals and practice for ultrasensitive laser‐induced fluorescence detection in microanalytical systems[J]. Electrophoresis,2004,25(21‐22):3513-3527.
    [55]. Elders, J.,Jansen, H.,Elwenspoek, M., etc. DEEMO: A new technology for thefabrication of microstructures[J].1995.
    [56]. Martynova, L.,Locascio, L. E.,Gaitan, M., etc. Fabrication of plastic microfluid channelsby imprinting methods[J]. Analytical Chemistry,1997,69(23):4783-4789.
    [57].徐溢,陆嘉莉,胡小国, etc.微流控芯片中的流体驱动和控制方式[J].化学通报,2007,12.
    [58]. Zengerle, R.,Richter, A. Mikropumpen als Komponenten für Mikrosysteme[J]. Physik inunserer Zeit,1993,24(2):86-90.
    [59]. Olsson, A.,Stemme, G.,Stemme, E. Simulation studies of diffuser and nozzle elementsfor valve-less micropumps[A]. In Solid State Sensors and Actuators,1997.TRANSDUCERS'97Chicago.,1997International Conference on[C],1997;1039-1042.
    [60]. Duffy, D. C.,Gillis, H. L.,Lin, J., etc. Microfabricated centrifugal microfluidic systems:characterization and multiple enzymatic assays[J]. Analytical Chemistry,1999,71(20):4669-4678.
    [61]. Harrison, D. J.,Fluri, K.,Seiler, K., etc. Micromachining a miniaturized capillaryelectrophoresis-based chemical analysis system on a chip[J]. SCIENCE-NEW YORK THENWASHINGTON-,1993,261895-895.
    [62]. Weibel, D. B.,Whitesides, G. M. Applications of microfluidics in chemical biology[J].Current Opinion in Chemical Biology,2006,10(6):584-591.
    [63]. Groisman, A.,Lobo, C.,Cho, H., etc. A microfluidic chemostat for experiments withbacterial and yeast cells[J]. Nature methods,2005,2(9):685-689.
    [64]. Balagaddé, F. K.,You, L.,Hansen, C. L., etc. Long-term monitoring of bacteriaundergoing programmed population control in a microchemostat[J]. Science,2005,309(5731):137-140.
    [65]. Lee, H.,Purdon, A. M.,Chu, V., etc. Controlled assembly of magnetic nanoparticles frommagnetotactic bacteria using microelectromagnets arrays[J]. Nano letters,2004,4(5):995-998.
    [66]. Jones, L. J.,Carballido-López, R.,Errington, J. Control of cell shape in bacteria: helical,actin-like filaments in Bacillus subtilis[J]. Cell,2001,104(6):913-922.
    [67]. Lee, P. J.,Hung, P. J.,Shaw, R., etc. Microfluidic application-specific integrated devicefor monitoring direct cell-cell communication via gap junctions between individual cellpairs[J]. Applied physics letters,2005,86(22):223902-223902-3.
    [68]. Huang, B.,Wu, H.,Kim, S., etc. Coating of poly (dimethylsiloxane) withn-dodecyl-β-d-maltoside to minimize nonspecific protein adsorption[J]. Lab on a Chip,2005,5(10):1005-1007.
    [69]. Jiang, X.,Xu, Q.,Dertinger, S. K., etc. A general method for patterning gradients ofbiomolecules on surfaces using microfluidic networks[J]. Analytical Chemistry,2005,77(8):2338-2347.
    [70]. Walker, G. M.,Sai, J.,Richmond, A., etc. Effects of flow and diffusion on chemotaxisstudies in a microfabricated gradient generator[J]. Lab on a Chip,2005,5(6):611-618.
    [71]. Wu, H.,Huang, B.,Zare, R. N. Generation of complex, static solution gradients inmicrofluidic channels[J]. Journal of the American Chemical Society,2006,128(13):4194-4195.
    [72]. Zaari, N.,Rajagopalan, P.,Kim, S. K., etc. Photopolymerization in microfluidic gradientgenerators: Microscale control of substrate compliance to manipulate cell response[J].Advanced Materials,2004,16(23‐24):2133-2137.
    [73]. Takayama, S.,Ostuni, E.,LeDuc, P., etc. Subcellular positioning of small molecules[J].Nature,2001,411(6841):1016.
    [74]. Song, H.,Tice, J. D.,Ismagilov, R. F. A microfluidic system for controlling reactionnetworks in time[J]. Angewandte Chemie,2003,115(7):792-796.
    [75]. Li Jeon, N.,Baskaran, H.,Dertinger, S. K., etc. Neutrophil chemotaxis in linear andcomplex gradients of interleukin-8formed in a microfabricated device[J]. Naturebiotechnology,2002,20(8):826-830.
    [76]. Irimia, D.,Liu, S.-Y.,Tharp, W. G., etc. Microfluidic system for measuring neutrophilmigratory responses to fast switches of chemical gradients[J]. Lab Chip,2005,6(2):191-198.
    [77]. Flanagan, L. A.,Rhee, S. W.,Schwartz, P. H., etc. Human neural stem cell growth anddifferentiation in a gradient-generating microfluidic device[J]. Lab on a Chip,2005,5(4):401-406.
    [78]. Gunawan, R. C.,Silvestre, J.,Gaskins, H. R., etc. Cell migration and polarity onmicrofabricated gradients of extracellular matrix proteins[J]. Langmuir,2006,22(9):4250-4258.
    [79]. Dertinger, S. K.,Chiu, D. T.,Jeon, N. L., etc. Generation of gradients having complexshapes using microfluidic networks[J]. Analytical Chemistry,2001,73(6):1240-1246.
    [80]. Jiang, X.,Ng, J. M.,Stroock, A. D., etc. A miniaturized, parallel, serially dilutedimmunoassay for analyzing multiple antigens[J]. Journal of the American Chemical Society,2003,125(18):5294-5295.
    [81]. He, M.,Edgar, J. S.,Jeffries, G. D., etc. Selective encapsulation of single cells andsubcellular organelles into picoliter-and femtoliter-volume droplets[J]. Analytical Chemistry,2005,77(6):1539-1544.
    [82]. Chen, D. L.,Ismagilov, R. F. Microfluidic cartridges preloaded with nanoliter plugs ofreagents: an alternative to96-well plates for screening[J]. Current Opinion in ChemicalBiology,2006,10(3):226-231.
    [83]. Cai, L.,Friedman, N.,Xie, X. S. Stochastic protein expression in individual cells at thesingle molecule level[J]. Nature,2006,440(7082):358-362.
    [84]. Chung, Y.,Zhu, X.,Gu, W., etc. Microscale integrated sperm sorter[J]. METHODS INMOLECULAR BIOLOGY-CLIFTON THEN TOTOWA-,2006,321227.
    [85]. Levy, U.,Shamai, R. Tunable optofluidic devices[J]. Microfluidics and nanofluidics,2008,4(1):97-105.
    [86]. Li, Z.,Psaltis, D. Optofluidic dye lasers[J]. Microfluidics and nanofluidics,2008,4(1):145-158.
    [87]. Monat, C.,Domachuk, P.,Eggleton, B. Integrated optofluidics: A new river of light[J].Nature Photonics,2007,1(2):106-114.
    [88]. Psaltis, D.,Quake, S. R.,Yang, C. Developing optofluidic technology through the fusionof microfluidics and optics[J]. Nature,2006,442(7101):381-386.
    [89]. Berge, B.,Peseux, J. Variable focal lens controlled by an external voltage: An applicationof electrowetting[J]. The European Physical Journal E: Soft Matter and Biological Physics,2000,3(2):159-163.
    [90]. Hsieh, J.,Mach, P.,Cattaneo, F., etc. Tunable microfluidic optical-fiber devices based onelectrowetting pumps and plastic microchannels[J]. Photonics Technology Letters, IEEE,2003,15(1):81-83.
    [91]. Kuiper, S.,Hendriks, B. Variable-focus liquid lens for miniature cameras[J]. Appliedphysics letters,2004,85(7):1128-1130.
    [92]. Wright, B. Improvements in or relating to variable focus lenses[J]. English patent,1968,1(11).
    [93]. Knollman, G.,Bellin, J.,Weaver, J. Variable‐Focus Liquid‐Filled HydroacousticLens[J]. The Journal of the Acoustical Society of America,1971,49(1B):253-261.
    [94]. Xia, Y.,Whitesides, G. M. Soft lithography[J]. Annual review of materials science,1998,28(1):153-184.
    [95]. Zhang, D.-Y.,Lien, V.,Berdichevsky, Y., etc. Fluidic adaptive lens with high focal lengthtunability[J]. Applied physics letters,2003,82(19):3171-3172.
    [96]. Zhang, D.-Y.,Justis, N.,Lo, Y.-H. Fluidic adaptive lens of transformable lens type[J].Applied physics letters,2004,84(21):4194-4196.
    [97]. Zhang, D.-Y.,Justis, N.,Lien, V., etc. High-performance fluidic adaptive lenses[J].Applied optics,2004,43(4):783-787.
    [98]. Chronis, N.,Liu, G.,Jeong, K.-H., etc. Tunable liquid-filled microlens array integratedwith microfluidic network[J]. Optics express,2003,11(19):2370-2378.
    [99]. Werber, A.,Zappe, H. Tunable microfluidic microlenses[J]. Applied optics,2005,44(16):3238-3245.
    [100]. Ren, H.,Fox, D.,Anderson, P. A., etc. Tunable-focus liquid lens controlled using a servomotor[J]. Opt. Express,2006,14(18):8031-8036.
    [101]. Pang, L.,Levy, U.,Campbell, K., etc. Set of two orthogonal adaptive cylindrical lensesin a monolith elastomer device[J]. Optics express,2005,13(22):9003-9013.
    [102]. Fei, P.,He, Z.,Zheng, C., etc. Discretely tunable optofluidic compound microlenses[J].Lab on a Chip,2011,11(17):2835-2841.
    [103]. Unger, M. A.,Chou, H.-P.,Thorsen, T., etc. Monolithic microfabricated valves andpumps by multilayer soft lithography[J]. Science,2000,288(5463):113-116.
    [104]. Li, Z.,Zhang, Z.,Emery, T., etc. Single mode optofluidic distributed feedback dyelaser[J]. Optics express,2006,14(2):696-701.
    [105]. Li, Z.,Psaltis, D. Optofluidic distributed feedback dye lasers[J]. Selected Topics inQuantum Electronics, IEEE Journal of,2007,13(2):185-193.
    [106]. Qian, S.-X.,Snow, J. B.,Tzeng, H.-M., etc. Lasing droplets: highlighting the liquid-airinterface by laser emission[J]. Science (New York, NY),1986,231(4737):486.
    [107]. Ippen, E.,Shank, C.,Dienes, A. Rapid photobleaching of organic laser dyes incontinuously operated devices[J]. Quantum Electronics, IEEE Journal of,1971,7(4):178-179.
    [108]. An, K.,Moon, H.-J. Laser oscillations with pumping-independent ultrahigh cavityquality factors in evanescent-wave-coupled-gain microsphere dye lasers[J]. Journal of thePhysical Society of Japan,2003,72773.
    [109]. Moon, H.-J.,Chough, Y.-T.,An, K. Cylindrical microcavity laser based on theevanescent-wave-coupled gain[J]. Physical review letters,2000,85(15):3161-3164.
    [110]. Pendock, G.,Mackenzie, H.,Payne, F. Tapered optical fibre dye laser[J]. ElectronicsLetters,1992,28(2):149-150.
    [111]. H nsch, T. W. Edible Lasers and Other Delights of the1970s[J]. Optics&PhotonicsNews,2005.
    [112]. Tzeng, H.-M.,Wall, K.,Long, M. B., etc. Evaporation and condensation rates of liquiddroplets deduced from structure resonances in the fluorescence spectra[J]. Optics letters,1984,9(7):273-275.
    [113]. Eversole, J. D.,Lin, H.-B.,Huston, A., etc. High-precision identification ofmorphology-dependent resonances in optical processes in microdroplets[J]. JOSA B,1993,10(10):1955-1968.
    [114]. Helbo, B.,Kristensen, A.,Menon, A. A micro-cavity fluidic dye laser[J]. Journal ofmicromechanics and microengineering,2003,13(2):307.
    [115]. Lapsley, M. I.,Chiang, I.-K.,Zheng, Y. B., etc. A single-layer, planar, optofluidicMach–Zehnder interferometer for label-free detection[J]. Lab on a Chip,2011,11(10):1795-1800.
    [116]. Mairhofer, J.,Roppert, K.,Ertl, P. Microfluidic systems for pathogen sensing: areview[J]. Sensors,2009,9(6):4804-4823.
    [117]. Hunt, H. C.,Wilkinson, J. S. Optofluidic integration for microanalysis[J]. Microfluidicsand nanofluidics,2008,4(1):53-79.
    [118]. Vilkner, T.,Janasek, D.,Manz, A. Micro total analysis systems. Recent developments[J].Analytical Chemistry,2004,76(12):3373.
    [119]. Gauglitz, G.,Proll, G. Strategies for label-free optical detection[J]. Biosensing for the21st Century,2008,395-432.
    [120]. Patrick, H. J.,Kersey, A. D.,Bucholtz, F. Analysis of the response of long period fibergratings to external index of refraction[J]. Journal of Lightwave Technology,1998,16(9):1606.
    [121]. Dumais, P.,Callender, C. L.,Ledderhof, C. J., etc. Monolithic integration of microfluidicchannels, liquid-core waveguides, and silica waveguides on silicon[J]. Applied optics,2006,45(36):9182-9190.
    [122]. Sepúlveda, B.,del Río, J. S.,Moreno, M., etc. Optical biosensor microsystems based onthe integration of highly sensitive Mach–Zehnder interferometer devices[J]. Journal of opticsA: pure and applied optics,2006,8(7): S561.
    [123]. Hradetzky, D.,Mueller, C.,Reinecke, H. Interferometric label-free biomoleculardetection system[J]. Journal of optics A: pure and applied optics,2006,8(7): S360.
    [124]. Dumais, P.,Callender, C. L.,Noad, J. P., etc. Microchannel-based refractive indexsensors monolithically integrated with silica waveguides: structures and sensitivities[J].Sensors Journal, IEEE,2008,8(5):457-464.
    [125]. Monat, C.,Domachuk, P.,Grillet, C., etc. Optofluidics: a novel generation ofreconfigurable and adaptive compact architectures[J]. Microfluidics and nanofluidics,2008,4(1):81-95.
    [126]. Crespi, A.,Gu, Y.,Ngamsom, B., etc. Three-dimensional Mach-Zehnder interferometerin a microfluidic chip for spatially-resolved label-free detection[J]. Lab on a Chip,2010,10(9):1167-1173.
    [127]. Yu, J.,Yang, Y.,Liu, A., etc. Microfluidic droplet grating for reconfigurable opticaldiffraction[J]. Optics letters,2010,35(11):1890-1892.
    [128]. Campbell, K.,Groisman, A.,Levy, U., etc. A microfluidic2×2optical switch[J].Applied physics letters,2004,85(25):6119-6121.
    [129]. Song, W.,Psaltis, D. Pneumatically tunable optofluidic2×2switch for reconfigurableoptical circuit[J]. Lab on a Chip,2011,11(14):2397-2402.
    [130]. Lin, L.,Goldstein, E.,Tkach, R. Free-space micromachined optical switches withsubmillisecond switching time for large-scale optical crossconnects[J]. Photonics TechnologyLetters, IEEE,1998,10(4):525-527.
    [131]. Marom, D. M.,Mendlovic, D. Compact all-optical bypass-exchange switch[J]. Appliedoptics,1996,35(2):248-253.
    [132]. Liu, A.-Q.,Yang, C. Themed issue: Optofluidics[J]. Lab on a Chip,2012.
    [133]. Vezenov, D. V.,Mayers, B. T.,Conroy, R. S., etc. A low-threshold, high-efficiencymicrofluidic waveguide laser[J]. Journal of the American Chemical Society,2005,127(25):8952-8953.
    [134]. Vezenov, D. V.,Mayers, B. T.,Wolfe, D. B., etc. Integrated fluorescent light source foroptofluidic applications[J]. Applied physics letters,2005,86(4):041104-041104-3.
    [135]. Mayers, B. T.,Vezenov, D. V.,Vullev, V. I., etc. Arrays and cascades of fluorescentliquid-liquid waveguides: Broadband light sources for spectroscopy in microchannels[J].Analytical Chemistry,2005,77(5):1310-1316.
    [136]. Trindade, T.,O'Brien, P.,Pickett, N. L. Nanocrystalline semiconductors: synthesis,properties, and perspectives[J]. Chemistry of Materials,2001,13(11):3843-3858.
    [137]. Kou, Q.,Yesilyurt, I.,Chen, Y. Collinear dual-color laser emission from a microfluidicdye laser[J]. Applied physics letters,2006,88(9):091101-091101-3.
    [138]. Galas, J.,Torres, J.,Belotti, M., etc. Microfluidic tunable dye laser with integrated mixerand ring resonator[J]. Applied physics letters,2005,86(26):264101-264101-3.
    [139]. Yin, D.,Deamer, D. W.,Schmidt, H., etc. Single-molecule detection sensitivity usingplanar integrated optics on a chip[J]. Optics letters,2006,31(14):2136-2138.
    [140]. Schmidt, H.,Yin, D.,Barber, J. P., etc. Hollow-core waveguides and2-D waveguidearrays for integrated optics of gases and liquids[J]. Selected Topics in Quantum Electronics,IEEE Journal of,2005,11(2):519-527.
    [141]. Krioukov, E.,Klunder, D.,Driessen, A., etc. Sensor based on an integrated opticalmicrocavity[J]. Optics letters,2002,27(7):512-514.
    [142]. Chao, C.-Y.,Fung, W.,Guo, L. J. Polymer microring resonators for biochemical sensingapplications[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2006,12(1):134-142.
    [143]. Armani, A. M.,Vahala, K. J. Heavy water detection using ultra-high-Q microcavities[J].Optics letters,2006,31(12):1896-1898.
    [144]. Domachuk, P.,Littler, I.,Cronin-Golomb, M., etc. Compact resonant integratedmicrofluidic refractometer[J]. Applied physics letters,2006,88(9):093513-093513-3.
    [145]. Zhu, L.,Huang, Y.,Yariv, A. Integrated microfluidic variable optical attenuator[J].Optics express,2005,13(24):9916-9921.
    [146]. Levy, U.,Campbell, K.,Groisman, A., etc. On-chip microfluidic tuning of an opticalmicroring resonator[J]. Applied physics letters,2006,88(11):111107-111107-3.
    [147]. Neale, S. L.,MacDonald, M. P.,Dholakia, K., etc. All-optical control of microfluidiccomponents using form birefringence[J]. Nature Materials,2005,4(7):530-533.
    [148]. Friese, M.,Nieminen, T.,Heckenberg, N., etc. Optical alignment and spinning oflaser-trapped microscopic particles[J]. arXiv preprint physics/0308113,2003.
    [1]. Cheng, Y.,Sugioka, K.,Midorikawa, K. Microfluidic laser embedded in glass bythree-dimensional femtosecond laser microprocessing[J]. Optics letters,2004,29(17):2007-2009.
    [2]. Sun, H.,He, F.,Zhou, Z., etc. Fabrication of microfluidic optical waveguides on glasschips with femtosecond laser pulses[J]. Optics letters,2007,32(11):1536-1538.
    [3]. Psaltis, D.,Quake, S. R.,Yang, C. Developing optofluidic technology through the fusionof microfluidics and optics[J]. Nature,2006,442(7101):381-386.
    [4]. Kuiper, S.,Hendriks, B. Variable-focus liquid lens for miniature cameras[J]. Appliedphysics letters,2004,85(7):1128-1130.
    [5]. Dong, L.,Agarwal, A. K.,Beebe, D. J., etc. Adaptive liquid microlenses activated bystimuli-responsive hydrogels[J]. Nature,2006,442(7102):551-554.
    [6].Schmidt, H.,Hawkins, A. R. Optofluidic waveguides: I. Concepts and implementations[J].Microfluidics and nanofluidics,2008,4(1):3-16.
    [7]. Hawkins, A. R.,Schmidt, H. Optofluidic waveguides: II. Fabrication and structures[J].Microfluidics and nanofluidics,2008,4(1):17-32.
    [8]. Payne, D.,Gambling, W. The preparation of multimode glass-and liquid-core opticalfibres[J]. Optical and Quantum Electronics,1973,5(4):297-307.
    [9]. Hartog, A. A distributed temperature sensor based on liquid-core optical fibers[J].Lightwave Technology, Journal of,1983,1(3):498-509.
    [10]. Ren, Y.,Yamada, M.,Gerhardt, S., etc. Experimental verification of the Hall effect duringmagnetic reconnection in a laboratory plasma[J]. Physical review letters,2005,95(5):55003.
    [11]. Di, Z.,Chen, X.,Pu, S., etc. Magnetic-field-induced birefringence and particleagglomeration in magnetic fluids[J]. Applied physics letters,2006,89(21):211106-211106-3.
    [12]. Pu, S.,Chen, X.,Chen, L., etc. Suppressing the thermal lens effect bymagnetic-field-induced mass transfer and phase separation in a magnetic fluid[J]. Appliedphysics letters,2005,87(2):021905-021905-3.
    [13]. Reyes, J.,Rodríguez, R. Guiding of optical fields in a liquid crystal cylindrical fiber[J].Optics communications,1997,134(1):349-361.
    [14]. Pu, S.,Chen, X.,Di, Z., etc. Relaxation property of the magnetic-fluid-based fiber-opticevanescent field modulator[J]. Journal of Applied Physics,2007,101(5):053532-053532-5.
    [15]. Chieh, J.,Yang, S.,Horng, H., etc. Magnetic-fluid optical-fiber modulators via magneticmodulation[J]. Applied physics letters,2007,90(13):133505-133505-3.
    [16]. Horng, H.,Chieh, J.,Chao, Y., etc. Designing optical-fiber modulators by using magneticfluids[J]. Optics letters,2005,30(5):543-545.
    [17]. Dumais, P.,Callender, C. L.,Noad, J. P., etc. Integrated optical sensor using a liquid-corewaveguide in a Mach-Zehnder interferometer[J]. Optics express,2008,16(22):18164-18172.
    [1]. Yanik, A. A.,Huang, M.,Kamohara, O., etc. An optofluidic nanoplasmonic biosensor fordirect detection of live viruses from biological media[J]. Nano letters,2010,10(12):4962-4969.
    [2]. Schaap, A.,Bellouard, Y.,Rohrlack, T. Optofluidic lab-on-a-chip for rapid algaepopulation screening[J]. Biomedical optics express,2011,2(3):658-664.
    [3]. Rosenauer, M.,Vellekoop, M. J. Miniaturized absorbance based cell analysis system withintegrated microfluidic and optical elements[A]. In Sensors,2009IEEE[C],2009;1567-1570.
    [4]. Rosenauer, M.,Vellekoop, M. Characterization of a microflow cytometer with anintegrated three-dimensional optofluidic lens system[J]. Biomicrofluidics,2010,4(4).
    [5]. Psaltis, D.,Quake, S. R.,Yang, C. Developing optofluidic technology through the fusionof microfluidics and optics[J]. Nature,2006,442(7101):381-386.
    [6]. Arora, A.,Simone, G.,Salieb-Beugelaar, G. B., etc. Latest developments in micro totalanalysis systems[J]. Analytical Chemistry,2010,82(12):4830.
    [7]. Lee, S.,Lee, S. Micro total analysis system (μ-TAS) in biotechnology[J]. AppliedMicrobiology and biotechnology,2004,64(3):289-299.
    [8]. Monat, C.,Domachuk, P.,Eggleton, B. Integrated optofluidics: A new river of light[J].Nature Photonics,2007,1(2):106-114.
    [9]. Loncar, M.,Scherer, A.,Qiu, Y. Photonic crystal laser sources for chemical detection[J].Applied physics letters,2003,82(26):4648-4650.
    [10]. Kou, Q.,Yesilyurt, I.,Chen, Y. Collinear dual-color laser emission from a microfluidicdye laser[J]. Applied physics letters,2006,88(9):091101-091101-3.
    [11]. Liu, P. Q.,Wang, X.,Fan, J.-Y., etc. Single-mode quantum cascade lasers based on afolded Fabry-Perot cavity[J]. Applied physics letters,2011,98(6):061110-061110-3.
    [12]. Li, Z.,Zhang, Z.,Emery, T., etc. Single mode optofluidic distributed feedback dyelaser[J]. Optics express,2006,14(2):696-701.
    [13]. Song, W.,Vasdekis, A. E.,Li, Z., etc. Optofluidic evanescent dye laser based on adistributed feedback circular grating[J]. Applied physics letters,2009,94(16):161110-161110-3.
    [14]. Chen, Y.,Li, Z.,Henry, M. D., etc. Optofluidic circular grating distributed feedback dyelaser[J]. Applied physics letters,2009,95(3):031109-031109-3.
    [15]. Song, Q.,Liu, L.,Xiao, S., etc. Unidirectional high intensity narrow-linewidth lasingfrom a planar random microcavity laser[J]. Physical review letters,2006,96(3):33902.
    [16]. Wu, X.,Li, H.,Liu, L., etc. Unidirectional single-frequency lasing from a ring-spiralcoupled microcavity laser[J]. Applied physics letters,2008,93(8):081105-081105-3.
    [17]. Shang, L.,Liu, L.,Xu, L. Single-frequency coupled asymmetric microcavity laser[J].Optics letters,2008,33(10):1150-1152.
    [18]. Shang, L.,Liu, L.,Xu, L. Highly collimated laser emission from a peanut-shapedmicrocavity[J]. Applied physics letters,2008,92(7):071111-071111-3.
    [19]. Wu, X.,Sun, Y.,Suter, J. D., etc. Single mode coupled optofluidic ring resonator dyelasers[J]. Applied physics letters,2009,94(24):241109-241109-3.
    [20]. White, I. M.,Gohring, J.,Sun, Y., etc. Versatile waveguide-coupled optofluidic devicesbased on liquid core optical ring resonators[J]. Applied physics letters,2007,91(24):241104-241104-3.
    [21]. Sun, Y.,Suter, J. D.,Fan, X. Robust integrated optofluidic-ring-resonator dye lasers[J].Optics letters,2009,34(7):1042-1044.
    [22]. Li, Z.,Zhang, Z.,Scherer, A., etc. Optofluidic microring dye laser[A]. In IEEE/LEOSSummer Topical Meetings,2007Digest of the[C],2007;70-71.
    [23]. Lee, W.,Li, H.,Suter, J. D., etc. Tunable single mode lasing from an on-chip optofluidicring resonator laser[J]. Applied physics letters,2011,98(6):061103-061103-3.
    [24]. Jia, Y.,Jiang, J.,Ma, X., etc. PDMS microchannel fabrication technique based onmicrowire-molding[J]. Chinese Science Bulletin,2008,53(24):3928-3936.
    [25]. Li, Z.,Psaltis, D. Optofluidic dye lasers[J]. Microfluidics and nanofluidics,2008,4(1):145-158.
    [26]. Johnston Jr, T. Tunable dye lasers[J]. Encyclopedia of Physical Science and Technology,1991,1496-141.
    [27]. Duarte, F. J.,Hillman, L. W. Dye laser principles, with applications[J].1990.
    [1]. Nguyen, N.-T. Micro-optofluidic Lenses: A review[J]. Biomicrofluidics,2010,4(3).
    [2]. Li, Z.,Psaltis, D. Optofluidic dye lasers[J]. Microfluidics and nanofluidics,2008,4(1):145-158.
    [3]. Wolfe, D. B.,Vezenov, D. V.,Mayers, B. T., etc. Diffusion-controlled optical elements foroptofluidics[J]. Applied physics letters,2005,87(18):181105-181105-3.
    [4]. Cuennet, J.,Vasdekis, A.,De Sio, L., etc. Optofluidic modulator based on peristalticnematogen microflows[J]. Nature Photonics,2011,5(4):234-238.
    [5]. Christiansen, M. B.,Lopacinska, J. M.,Jakobsen, M. H., etc. Polymer photonic crystal dyelasers as optofluidic cell sensors[J]. Optics express,2009,17(4):2722-2730.
    [6]. Shamai, R.,Levy, U. On chip tunable micro ring resonator actuated by electrowetting[J].Optics express,2009,17(2):1116-1125.
    [7]. Domachuk, P.,Littler, I.,Cronin-Golomb, M., etc. Compact resonant integratedmicrofluidic refractometer[J]. Applied physics letters,2006,88(9):093513-093513-3.
    [8]. Chin, L.,Liu, A.,Soh, Y., etc. A reconfigurable optofluidic Michelson interferometer usingtunable droplet grating[J]. Lab on a Chip,2010,10(8):1072-1078.
    [9]. Crespi, A.,Gu, Y.,Ngamsom, B., etc. Three-dimensional Mach-Zehnder interferometer ina microfluidic chip for spatially-resolved label-free detection[J]. Lab on a Chip,2010,10(9):1167-1173.
    [10]. Lapsley, M. I.,Chiang, I.-K.,Zheng, Y. B., etc. A single-layer, planar, optofluidicMach–Zehnder interferometer for label-free detection[J]. Lab on a Chip,2011,11(10):1795-1800.
    [11]. Bernini, R.,Testa, G.,Zeni, L., etc. Integrated optofluidic Mach–Zehnder interferometerbased on liquid core waveguides[J]. Applied physics letters,2008,93(1):011106-011106-3.
    [12]. Dumais, P.,Callender, C. L.,Noad, J. P., etc. Integrated optical sensor using a liquid-corewaveguide in a Mach-Zehnder interferometer[J]. Optics express,2008,16(22):18164-18172.
    [13]. Testa, G.,Huang, Y.,Sarro, P. M., etc. High-visibility optofluidic Mach–Zehnderinterferometer[J]. Optics letters,2010,35(10):1584-1586.
    [14]. Ymeti, A.,Greve, J.,Lambeck, P. V., etc. Fast, ultrasensitive virus detection using aYoung interferometer sensor[J]. Nano letters,2007,7(2):394-397.
    [15]. Ymeti, A.,Kanger, J. S.,Greve, J., etc. Realization of a multichannel integrated Younginterferometer chemical sensor[J]. Applied optics,2003,42(28):5649-5660.
    [16]. Brandenburg, A.,Henninger, R. Integrated optical Young interferometer[J]. Appliedoptics,1994,33(25):5941-5947.
    [17]. Chryssis, A. N.,Lee, S. M.,Lee, S. B., etc. High sensitivity evanescent field fiber Bragggrating sensor[J]. Photonics Technology Letters, IEEE,2005,17(6):1253-1255.
    [18]. Schroeder, K.,Ecke, W.,Mueller, R., etc. A fibre Bragg grating refractometer[J].Measurement Science and technology,2001,12(7):757.
    [19]. Monat, C.,Domachuk, P.,Grillet, C., etc. Optofluidics: a novel generation ofreconfigurable and adaptive compact architectures[J]. Microfluidics and nanofluidics,2008,4(1):81-95.
    [1]. Atencia, J.,Beebe, D. J. Controlled microfluidic interfaces[J]. Nature,2004,437(7059):648-655.
    [2]. Stone, H. A.,Stroock, A. D.,Ajdari, A. Engineering flows in small devices[J]. Annu. Rev.Fluid Mech.,2004,36381-411.
    [3]. Trivedi, V.,Doshi, A.,Kurup, G., etc. A modular approach for the generation, storage,mixing, and detection of droplet libraries for high throughput screening[J]. Lab Chip,2010,10(18):2433-2442.
    [4]. Teh, S.-Y.,Lin, R.,Hung, L.-H., etc. Droplet microfluidics[J]. Lab Chip,2008,8(2):198-220.
    [5]. Demello, A. J. Control and detection of chemical reactions in microfluidic systems[J].Nature,2006,442(7101):394.
    [6]. El-Ali, J.,Sorger, P. K.,Jensen, K. F. Cells on chips[J]. Nature,2006,442(7101):403-411.
    [7]. Rosenauer, M.,Vellekoop, M. J.3D fluidic lens shaping—a multiconvexhydrodynamically adjustable optofluidic microlens[J]. Lab on a Chip,2009,9(8):1040-1042.
    [8]. Fuerstman, M. J.,Garstecki, P.,Whitesides, G. M. Coding/decoding and reversibility ofdroplet trains in microfluidic networks[J]. Science,2007,315(5813):828-832.
    [9]. Cheow, L. F.,Yobas, L.,Kwong, D.-L. Digital microfluidics: Droplet based logic gates[J].Applied physics letters,2007,90(5):054107-054107-3.
    [10]. Prakash, M.,Gershenfeld, N. Microfluidic bubble logic[J]. Science,2007,315(5813):832-835.
    [11]. Chin, L.,Liu, A.,Zhang, J., etc. An on-chip liquid tunable grating using multiphasedroplet microfluidics[J]. Applied physics letters,2008,93(16):164107-164107-3.
    [12]. Chin, L.,Liu, A.,Soh, Y., etc. A reconfigurable optofluidic Michelson interferometerusing tunable droplet grating[J]. Lab on a Chip,2010,10(8):1072-1078.
    [13]. Yu, J.,Yang, Y.,Liu, A., etc. Microfluidic droplet grating for reconfigurable opticaldiffraction[J]. Optics letters,2010,35(11):1890-1892.
    [14]. Aubry, G.,Kou, Q.,Soto-Velasco, J., etc. A multicolor microfluidic droplet dye laser withsingle mode emission[J]. Applied physics letters,2011,98(11):111111-111111-3.
    [15]. Tang, S. K.,Li, Z.,Abate, A. R., etc. A multi-color fast-switching microfluidic dropletdye laser[J]. Lab on a Chip,2009,9(19):2767-2771.
    [16]. Song, W.,Psaltis, D. Pneumatically tunable optofluidic2×2switch for reconfigurableoptical circuit[J]. Lab on a Chip,2011,11(14):2397-2402.
    [17]. Bransky, A.,Korin, N.,Khoury, M., etc. A microfluidic droplet generator based on apiezoelectric actuator[J]. Lab Chip,2008,9(4):516-520.
    [18]. Xu, J.,Li, S.,Tan, J., etc. Preparation of highly monodisperse droplet in a T‐junctionmicrofluidic device[J]. AIChE journal,2006,52(9):3005-3010.
    [19]. Thorsen, T.,Roberts, R. W.,Arnold, F. H., etc. Dynamic pattern formation in avesicle-generating microfluidic device[J]. Physical review letters,2001,86(18):4163-4166.
    [20]. Priest, C.,Herminghaus, S.,Seemann, R. Generation of monodisperse gel emulsions in amicrofluidic device[J]. Applied physics letters,2006,88(2):024106-024106-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700